
The halting problem for chip-firing on finite directed graphs
Cornell University

Mathematics Department Senior Thesis

Matthew Farrell∗ Lionel Levine†

December 2, 2014

We consider a chip-firing game on finite directed graphs and give an answer to a question posed by
Bjorner, Lovasz, and Shor in 1991: given an initial configuration of chips, when does it stabilize?
The approach they took to address this halting problem involves computing a period vector p with
the property that toppling the vertices according to p results in the original configuration, and then
checking if it is possible to topple according to p legally (without any of the vertices ever having
negative chips). This approach is problematic because the entries of p can grow exponentially in
the number of vertices. We make precise a measure of “Eulerianness” and show that, in addition
to graphs with a high degree of Eulerianness, for relatively “anti-Eulerian” graphs you can do
much better. In addition, we take steps toward a potential proof that the problem is NP-Hard
by reducing an NP-Hard problem in the context of another chip-firing game, called the dollar
game, to our problem (where the number of edges making up the graphs could be a very fast-
growing function of the number of vertices). The ideas developed in the course of answering this
stabilization question give rise to a natural generalization of the BEST theorem to general directed
graphs.

1 Introduction

Chip-firing on directed graphs belongs to an interesting class of network automaton known as
abelian networks. In an abelian network we define an action on the vertices of a graph such that
changing the order in which we apply the action does not affect the end state. Despite this step
down from the full complexity of automata, the dynamics of chip-firing are still rich and many
open questions remain that probe at fundamental aspects of system order and behavior. This
paper gives an answer to one such question.

Before we can pose the question, we need to describe the chip-firing model. Given a finite, directed,
strongly connected multigraph G = (V,E) with |V | = n and a collection of indistinguishible chips,
we distribute the chips among the vertices. Labeling vertices as V = {v1, v2, ..., vn}, to keep track
of these chips we define a full chip configuration σ, or full configuration for short, to be a
vector in Zn, where the value of σ(i) is meant to represents the number of chips on the vertex vi.
For additional flexibility, given a vertex v with v = vi we abuse notation and write σ(v) to mean
σ(i).

We let di denote the outdegree of vertex vi, and we say vi is stable with respect to σ if σ(i) < di
and active otherwise. We say that σ is stable if every vertex is stable with respect to σ. Given
vertices vi and vj , we let dij denote the number of edges from vi to vj . We commit an abuse of
∗Arts and Sciences, Class of (January) 2015
†Senior Thesis Advisor

1

notation similar to before, writing dv to mean the outdegree of vertex v, dvw to denote the number
of edges from v to w, and sometimes we mix notation, letting div denote the number of edges from
vi to v. When we write N, we include 0. Given a vector x, we let |x| = 1 ·x and call |x| the degree
of x.

The action on the vertices in this model is known as toppling, wherin a vertex sends one chip
along each of its outgoing edges to its neighbors. To more succinctly describe this toppling action,
we define the Laplacian of G to be the matrix ∆ = D−AT where D is the diagonal matrix whose
(i, i) entry is di and A = (dij) is the adjacency matrix of G. That is,

∆ij =

{
−dji for i 6= j

di − dii for i = j
.

Now given a configuration σ with active vertex vi, let σ′ be the result of toppling vi. We have that

σ′(j) =

{
σ(j) + dij for i 6= j

σ(i)− di for i = j
,

or more succinctly σ′ = σ −∆ei. We can specify a sequence of topplings with a toppling vector
x ∈ Nn, with x(i) being the number of times we topple vi. Since our toppling action is abelian
([9]), if we start with a configuration σ and write σ′ as the result of toppling according to x, we
have that σ′ is uniquely determined by x; that is, σ′ = σ−∆x. In other words, the order in which
we topple vertices does not matter, only the number of times we topple each vertex. We say that
toppling v is legal if v is active, and illegal if v is not active. We say that σ is stabilizable if
there is a legal sequence of topplings resulting in a configuration σ′ such that σ′ is stable.

1.1 Sandpiles and the halting problem

The goal of this paper is to address a question asked by Björner, Lovász, and Shor ([10, 3]): given
a finite, directed multigraph G and a full configuration σ with σ ≥ 0 , when does σ stabilize? We
call the problem of computing whether or not σ stabilizes the halting problem for chip-firing on
finite directed multigraphs, or simply halting problem if there is no confusion.

In this paper we restrict our consideration to strongly connected multigraphs, that is, graphs
for which there is a directed path from each vertex v to every other vertex w. As Björner and
Lovász demonstrate in [3], G can be broken into strongly connected components in such a way
that the halting problem on G reduces to considering the problem for each of the components, so
we lose little generality in requiring that G be strongly connected. We hence pose our problem as
follows.

Problem. The halting problem for chip-firing on finite, strongly connected multigraphs.

Input: A finite, strongly connected multigraph G and a full chip configuration σ with σ ≥ 0.

Output: A decision on whether or not σ stabilizes.

The following result frees us from considering only legal toppling sequences in looking for an answer
to the halting problem on finite directed graphs.

Lemma 1 ([9]). (Least Action Principle) A full configuration σ is stabilizable if and only if there
exists an x ∈ Nn such that σ −∆x is stable.

A sizeable portion of the ground soon to be covered is motivated by the following principle: in
looking for a stabilizing toppling sequence, instead of toppling willy-nilly we can establish some
structure by choosing a special vertex s that we “topple last” (in a sense to be made more explicit),

2

and we will call this vertex the sink. The process is as follows: we topple active, nonsink vertices
until each of the nonsink vertices are stable. At this point we then topple the sink (once), repeat
the non-sink stabilization, topple the sink, and repeat, paying attention to what shows up as we
go along.

Specifying a sink gives rise to a familiar object in the context of chip-firing games, the abelian
sandpile. We begin by defining the sandpile analogue of the Laplacian, the reduced Laplacian
∆s which is gotten by deleting the row and column of ∆ corresponding with the sink.

Definition 2. Let G = (V,E) be a finite directed strongly connected multigraph. Specify a global
sink s. The sandpile group of G is the group quotient

S(G, s) = Zn−1/∆sZn−1

where ∆sZn−1 is the integer column-span of ∆s.

If the choice of sink is clear, we sometimes write S(G, s). We call a chip configuration η ∈ Zn−1
indexed by the nonsink nodes of G a sandpile chip configuration, or sandpile for short (as
opposed to full chip configurations belonging to Zn). The definitions “stable” and” toppling vector”
have direct analogues in the context of sandpiles: a sandpile η is stable if η(i) < di for all vi 6= s, and
we have toppling vectors x ∈ Zn−1. On strongly connected graphs, every sandpile is stabilizable
[1], and we denote the stabilization of η as η◦. The sandpile group treats as equivalent sandpiles
such that one can be gotten from the other by toppling nonsink vertices.

To help us go back and forth between sandpiles and full configurations, we make the following
definitions: given σ ∈ Zn, we let σ̃ denote the restriction of σ to the nonsink vertices. Given a
η ∈ Zn−1, we let ηk denote the extension of η to Zn such that |ηk| = k. Note that η and k together
uniquely determine ηk, since |η|+ ηk(s) = k.

We begin with some useful properties of sandpiles.

Lemma 3 ([5]). The order of S(G, s) is the determinant of ∆s.

There is another interesting and useful connection with what are called the oriented spanning trees
of G.

Definition 4. An oriented spanning tree of a digraph G = (V,E) rooted at r ∈ V is a spanning
subgraph T = (V,A) such that

1. Every vertex v 6= r has outdegree 1.

2. r has outdegree 0.

3. T has no oriented cycles.

Hence an oriented spanning tree has as its limbs edges that point toward the root. Let TG(v)
denote the number of oriented spanning trees in G rooted at v.

Theorem 5 ([8]). (Kirchhoff’s matrix tree theorem) Let G be a directed graph. Then TG(s) is the
determinant of the reduced laplacian for S(G, s).

To summarize, we have that |S(G, s)| = det ∆s = TG(s). In particular, if G is strongly connected
then ∆s is invertible and ∆ has rank n− 1.

It turns out that there is a natural representative for each equivalence class of S(G, s). To describe
these, we say that a sandpile η is accessible if from any other sandpile it is possible to obtain
η by a combination of adding chips and selectively firing active vertices. A sandpile that is both
stable and accessible is called recurrent.

We then have the following:

3

Theorem 6 ([5]). The set of all recurrent chip configurations on G is an abelian group under
the operation (σ, η) 7→ (σ + η)◦, and it is isomorphic via the inclusion map to the sandpile group
S(G, s).

Despite this isomorphism, it will be convenient to consider the set of recurrent chip configurations
on G as an individual entity, so we give it the notation Sr(G, s). We denote the group operation
on recurrent sandpiles by ⊕ (we will write the operation additively).

Let σmax denote the maximal (sometimes called “saturated”) stable full configuration, so σmax(i) =
di − 1 for all i, and let mG = |σmax|. Clearly if the number of chips on G exceeds mG, then it
is possible to topple active vertices indefinitely. We consider a natural question that arises: what
conditions on G will ensure that toppling ceases if the number of chips on G is exactly mG?
Graphs with this property will turn out to be in some senses opposite to Eulerian graphs. With
this in mind, we call a graph co-Eulerian if it has the property that V0/∆Zn is trivial, where
V0 = {x ∈ Zn : |x| = 0}. Our main result shows that co-Eulerian graphs have the property we seek
(the reasoning behind the name “co-Eulerian” will become clearer as we develop more theory). Let
βs be the sandpile such that βs(i) = dsi, and let es denote the identity of Sr(G, s).

Theorem 7. Let G be a strongly connected, directed multigraph. Then the following are equivalent.

1. Every full configuration σ with|σ| = mG stabilizes.

2. For some choice of sink s, S(G, s) is cyclic with generator β. Equivalently, Sr(G, s) is cyclic
with generator γs = (βs + es)

◦.

3. The greatest common divisor M of the numbers {|S(G, v)|v ∈ V } is 1.

4. G is co-Eulerian.

2 Cyclic Subgroups of the Sandpile Group

In accordance with our principle of controlled sink toppling, given a recurrent sandpile σ we are
interested in

Cσ = {(σ + kβs)
◦

: k ∈ N},

the set of sandpiles that appear starting from σ when we topple the sink, stabilize, and repeat. It is a
basic property of recurrent configurations that adding chips to the nonsink vertices and stabilizing
results in another recurrent configuration ([1]), so that Cσ is a set of recurrent configurations.
We want to consider recurrent configurations as equivalent if they are in the same Cσ for some
recurrent σ (that is, if one can be reached from the other by repeatedly toppling the sink and then
stabilizing). This is an equivalence relation, so Sr(G, s) is partitioned by the Cσ. Note that we
can write

(σ + βs)
◦

= (σ + es + βs)
◦

= σ ⊕ γs
where γs = (es + βs)

◦ is recurrent. It follows that Cσ = σ ⊕ 〈γs〉 where 〈γs〉 denotes the cyclic
subgroup of Sr(G, s) generated by γs. Then |Cσ| = ord(γs) where ord(γs) denotes the order of γs
as an element of Sr(G, s).

To investigate these cosets of the sandpile group, we will first need a concept introduced by ([3]),
that of a period vector.

Definition 8. Given a graph G with full laplacian ∆, a vector p ∈ Zn is called a period vector
if it is non-negative and ∆p = 0. A period vector is primitive if its entries have no non-trivial
common divisor.

4

In other words, a period vector p is a toppling vector such that starting with a full configuration σ
and toppling each vertex v ∈ V a total ofp(v) times get us back to σ. The following Lemma sums
up some useful properties of period vectors.

Lemma 9 ([3]). We have the following:

1. Every strongly connected digraph G has a unique primitive period vector πG. It is strictly
positive, and all period vectors are of the form tπG, t = 1, 2,

2. If G is connected eulerian, then πG = 1.

We now introduce a very special period vector. Recall that TG(v) denotes the number of oriented
spanning trees in G rooted at v.

Lemma 10 ([6, 7]). We have that (TG(v1), TG(v2), ..., TG(vn)) ∈ ker ∆.

Let M be the greatest common divisor of the numbers in {TG(v)|v ∈ G}. By Lemma 9, the
vector π = 1

M (TG(v1), TG(v2), ..., TG(vn)) is the unique primitive period vector of G. Recalling
the definition γs = (es + βs)

◦, we have that ord(γs) = π(s) since π(s) is the least positive integer
m such that (es +mβs)

◦
= es; that is, the least positive number of times we need to topple the

sink, starting from es, before we can return to es. More explicitly, we have that es + π(s)βs ≡ es
mod ∆sZn−1 since, starting from the sandpilees + π(s)βs, we can topple each nonsink vertex vi
a total of π(i) times and return to the configuration es. Since es is recurrent it follows that
(es + π(s)βs)

◦
= es. Upon observing that π(s) = TG(s)/M , from this discussion we conclude the

following.

Lemma 11. We have that

ord(γs) = TG(s)/M = |S(G, s)|/M.

so that M is the number of distinct cosets of 〈γs〉 in S(G, s); that is,

|S(G, s)/ 〈γs〉| = M.

The value M was originally studied in ([2]) as a way to count unicycles in the rotor-router model.
We will demonstrate that it also serves as a measure of the “Eulerianness” of a graph.

2.1 An Isomorphism of Groups

We now investigate the structure of Sr(G, s)/ 〈γs〉 by using the isomorphism Sr(G, s)/ 〈γs〉 ∼=
S(G, s)/

〈
β
〉
, where for a sandpile σ we write σ ≡ σ mod ∆sZn−1. Recall that βs is the sandpile

such that βs(i) = ds,i where s denotes the sink, and that V0 is the group of vectors in Zn with
degree 0.

Theorem 12. We have that

Sr(G, s)/ 〈γs〉 ∼= S(G, s)/
〈
βs
〉 ∼= V0/∆Zn.

The meat of the proof for this Theorem is packaged in the following workhorse lemma.

Lemma 13. The following are equivalent.

1. σ ≡ η mod ∆Zn

2. σ̃ ≡ η̃ mod ∆sZn−1 + Zβs

5

3. (σ̃ + es)
◦ ∈ (η̃ + es)

◦ ⊕ 〈γs〉

Proof. (1 ⇐⇒ 2) Let m = |σ| = |η|. Recall that σk denotes the extension of σ to Zn such that
|σk| = k. We observe that σ̃ ∈ η̃ ⊕ 〈γs〉 if and only if there is an x̃ ∈ Zn−1 and a k ∈ Z such that
σ̃ = η̃ − kβs −∆sx̃. If σ = η −∆x, then

σ = η −∆x = η −∆

[
x̃
0

]
−∆

[
0

x(s)

]
= η −

[
∆sx̃
a

]
− x(s)cs

where cs denotes the column of ∆ corresponding with the sink and a is the dot product of the nth
row of ∆ with (x̃, 0). Since βs(i) = −cs(i) for each i 6= s, it follows that σ̃ = η̃ −∆sx̃ + x(s)βs.
Note that if σ̃ and η̃ are recurrent, then we can drop the ∆sx̃ and so write σ̃ ∈ η̃ ⊕ 〈γs〉. Going
the other way, we assume that σ̃ = η̃ − kβs −∆sx̃ for some k ∈ N and x̃ ∈ Nn−1. Note that if σ̃
and η̃ are recurrent, then this assumption is equivalent to the assumption that σ̃ ∈ η̃ ⊕ 〈γs〉. Let
σ′ be the full configuration

σ′ = η −∆

[
x̃
k

]
.

Then σ′(i) = σ̃(i) for all i 6= s and |σ′| = |η|. Since σ(s) is determined by |σ′|, we have that σ′ = σ.

(2 ⇐⇒ 3) As can easily be checked, (es)0 ∈ ∆Zn. Hence σ + (es)0 ≡ η + (es)0 mod ∆Zn if and
only if σ ≡ η mod ∆Zn. Since (σ̃ + es)

◦ and (η̃ + es)
◦ are recurrent, by the first part of the proof

we conclude that σ + (es)0 ≡ η + (es)0 mod ∆Zn if and only if (σ̃ + es)
◦ ∈ (η̃ + es)

◦ ⊕ 〈γs〉, as
desired.

Proof. (Theorem 12) Define a map φ : S(G, s)/
〈
βs
〉
→ V0/∆Zn by taking σ mod

〈
βs
〉
to σ0

mod ∆Zn. If σ ≡ η mod
〈
βs
〉
, then by Lemma 13 we have that σ = η mod ∆Zn, so that φ

is well-defined. The equation σ0 + η0 = (σ + η)0 is immediate from the definition, so that φ is
a homomorphism. The map φ is also surjective, since for each σ ∈ V0 there is a corresponding
σ̃ ∈ Zn−1 , and φ

(
σ̃ mod

〈
βs
〉)

= σ mod ∆Zn. We now show that φ is injective to complete
the proof that φ is an isomorphism. Suppose that σ = η mod ∆Zn. Then by Lemma 13 we have
that σ̃ = η̃ mod

〈
βs
〉
and the theorem is proved.

With this machinery we may give a more succinct proof of the following result than that found in
[1] .

Lemma 14. Let G be an Eulerian graph. Then for any vertex s we have that S(G, s) ∼= V0/∆Zn.
In particuar, the sandpile group of G is independent of choice of sink up to isomorphism.

Proof. Since the outdegree and indegree of v are equal we see that toppling v and all of its neighbors
once leaves v with the same number of chips as before. Hence 1 is the primitive period vector for
G. Then

〈
βs
〉
is trivial and the isomorphism S(G, s) ∼= V0/∆Zn follows by Theorem 12 .

Note that for Eulerian graphs, the greatest common divisor M of the numbers in {TG(v)|v ∈ G}
is |S(G, s)| where s is any vertex.

2.2 Co-Eulerian Graphs

With the progress we’ve made we can now make short work of the proof of Theorem 7.

Proof. (1 =⇒ 2) We prove the contrapositive. Assume there is a sink s such that S(G, s) 6= 〈γs〉,
and fix the number of chips on G to be m = mG. There are two distinct cyclic subgroups C1 and
C2 of G such that σ̃max ∈ C1. Choosing an η ∈ C2, we remark that ηm stabilizes if and only
if ηm ≡ σmax mod ∆Zn (since σmax is the only stable full configuration with degree m). This
occurs if and only if η ∈ σ̃max ⊕ 〈γs〉 = C1 by Lemma 13, so we see that ηm does not stabilize.

6

(2 =⇒ 1) Suppose
〈
β
〉

= S(G, s), and let η be a full configuration with |η| = m = mG. Since
η̃ = σ̃max mod ∆sZn−1 + Zβ, we have that η ≡ σmax mod ∆Zn by Lemma 13, so that η
stabilizes by the least action principle.

(2 ⇐⇒ 3) This follows from our previous assertion that ord(γv) = |S(G, v)|/M.

(2 ⇐⇒ 4) This follows from Theorem 12.

Theorem 12 gives us that the isomorphism of V0/∆Zn with the entire sandpile group S(G, s) for
Eulerian graphs is in a sense maximal. Theorem 15 characterizes the graphs for which V0/∆Zn is
minimal, and this dichotomy supplies the reasoning behind our naming them “co-Eulerian” graphs.
Note that this theorem gives that the halting problem can be solved quickly for co-Eulerian graphs.

3 Multi-Eulerian Tours

We again build off of the counting of cyclic subgroups of unicycles conducted by [2], generalizing
the BEST theorem to general strongly directed multigraphs. Let π be the primitive period vector
of a directed graph G = (V,E). We define a multi-Eulerian tour of G to be a closed path that
uses each directed edge (u, v) exactly π(u) times.

Corollary 15. Let G = (V,E) be a strongly connected directed multigraph. Fix an edge e ∈ E and
let tail(e) = w. Let TG(w) denote the number of oriented spanning trees in G rooted at w, and let
ε(G, e) be the number of multi-Eulerian tours of G starting with the edge e. Then

ε(G, e) =
TG(w)

∏
v∈V π(v)

∏
v∈V (dvπ(v)− 1)!∏

v∈V (π(v)!)dv
.

We start with the an observation. Note that by Dhar’s burning test, a sandpile σ on an Eulerian
graph G is recurrent if and only if (σ + β)o = σ, and this is equivalent to 1 ∈ ker ∆. A converse
is also true: if G is strongly connected and 1 ∈ ker ∆, then G is Eulerian. This can be seen as
follows: let σ be a recurrent sandpile, and assume that G is not Eulerian. Then there is a vertex
v with outdegree greater than indegree. After toppling v, we topple all neighbors of v, and notice
that we are left with less chips on v than σ(v). Hence 1 /∈ ker ∆ .

Proof. We define a graph G̃ to be G with every edge e′ ∈ E from u to v replaced by π(u) edges
from u to v. We first relate the number of spanning trees of G̃ to those ofG. For edge e′ ∈ E from
u to v, let Be′ denote the set of π(u) edges from u to v replacing e′ in G̃, where π is the primitive
period vector of G̃. Given a graph H, letK(H,w) denote the set of oriented spanning trees rooted
at w. Define a map φ : K(G̃, w) → K(G,w) taking a spanning tree in G̃ rooted at w to one in
G rooted at w by mapping edges of Be′ onto the edge e′ in G . For each edge e′ of a tree Tw in
K(G,w) from u to v, there are π(u) edges from u to v in G̃. Hence |φ−1(Tw)| =

∏
u 6=w π(u). Given

a spanning tree T ′w 6= Tw, there is an edge e′ of T ′w that is not an edge of Tw. Each tree in φ−1(T ′w)
is mapped by φ to a tree with the edge e′, and no tree in φ−1(Tw) is mapped to a tree with edge
e′. Thus φ−1(T ′w) ∩ φ−1(Tw) = ∅, and it follows that |K(G̃, w)| = |K(G,w)|

∏
u6=v π(u).

Note that π = 1
M (|K(G, v1)|, |K(G, v2)|, ..., |K(G, vn)|) whereM = gcd (|K(G, v1)|, |K(G, v2)|, ..., |K(G, vn)|).

Since the quantity

|K(G, v)|
∏
u 6=v

π(u) = |K(G, v)|
∏
u 6=v

1

M
|K(G, u)|

is independent of choice of v, by Lemma (10) we have that the period vector for G̃ is 1, so that G̃
is Eulerian by the observation preceding this proof.

7

The BEST theorem gives us the number of Eulerian tours of G̃, so to proceed we relate this
quantity to the number of multi-Eulerian tours of G. By fixing an ordering of Be′ for each edge
e′ ∈ E, we may take an Eulerian tour of G̃ as follows: begin a multi-Eulerian tour of G, and for
the ith traversal of each edge e′ in G, traverse the ith edge in Be′ . Conversely, given an Eulerian
tour of G̃, for each traversal of an edge in Be′ , where e′ is an edge from u to v, we may traverse
the edge e′ in G. Since |Be′ | = π(u), this determines a multi-eulerian tour of G. Hence for each
multi-Eulerian tour ei1ei2 · · · eit there is a corresponding ordering Bei1Bei2 · · ·Beit . Note that this
multi-Eulerian tour of G is determined only up to the order in which the Be′ are chosen (where Be′
is chosen whenever an edge in Be′ is traversed), so that if π 6= 1 there are more Eulerian tours of
G̃ than there are multi-Eulerian tours of G. To calculate the precise ratio, we fix a multi-Eulerian
tour of G, say ei1ei2 · · · eit as before. Observe that for each edge eij in the tour, there are |Beij |!
corresponding Eulerian tours of G̃, as for each Beij in Bei1Bei2 · · ·Beit we assign one edge in Beij
to be the edge taken in the tour (each edge is only assigned once, as each edge is traversed once in
an Eulerian tour). Hence there are ∏

e∈E
|Be|! =

∏
v∈V

(π(v)!)dv

Eulerian tours of G̃ starting at w for each multi-Eulerian tour of G starting at w. If we now fix a
multi-eulerian tour eei2 · · · eit of G starting from e and an eulerian tour ẽBei2 · · ·Beit of G̃ starting
from an edge ẽ ∈ Be, we see that for each edge eij with tail(eij) 6= w we have that there are |Beij |!
corresponding Eulerian tours of G̃. For the dw − 1 edges e′ 6= e with tail(e′) = w there are also
|Be′ |! corresponding Eulerian tours of G̃, while there are only (|Be| − 1)! that correspond with e
(since the first edge ẽ is fixed). Hence

ε(G, e) =
ε(G̃, ẽ)

D

where

D = (π(w)!)dw−1(π(w)− 1)!
∏
v 6=w

(π(v)!)dv

=

∏
v∈V (π(v)!)dv (π(w)!)dw−1(π(w)− 1)!

(π(w)!)
dw

=

∏
v∈V (π(v)!)dv

π(w)
.

By Corollary 4.10 of [1], the number of Eulerian tours in G̃ starting with ẽ is

ε(G̃, ẽ) = TG̃(w)
∏
v∈V

(dvπ(v)− 1)! = TG(w)
∏
v 6=w

π(u)
∏
v∈V

(dvπ(v)− 1)!.

It follows that

ε(G, e) =
π(w)ε(G̃, ẽ)∏
v∈V (π(v)!)dv

=
π(w)TG(w)

∏
v 6=w π(v)

∏
v∈V (dvπ(v)− 1)!∏

v∈V (π(v)!)dv

=
TG(w)

∏
v∈V π(v)

∏
v∈V (dvπ(v)− 1)!∏

v∈V (π(v)!)dv
.

8

4 Computational Aspects of Chip-Firing

4.1 Methods for checking if a full configuration stabilizes

The ideas developed thus far allow for more sophisticated methods for checking if a full configura-
tion stabilizes. We will first need an efficient way to calculate when two recurrent sandpiles σ and
η are equivalent modulus 〈γs〉. This occurs when

σ −∆sx + kβs = η

for a nonnegative integer k and integral x. We can search for an integral x by inverting ∆s and
looking for k such that

a1 + kb1

a2 + kb2
...

an + kbn

are all integral for the rational ai and bi, 1 ≤ i ≤ n, that result from multiplying η − σ − kβs by
− (∆s)

−1. Clearing denominators, this becomes a system of linear congruences, and we can check
for the existence of a solution in polynomial time using the Chinese Remainder Theorem.

Recall that ηk is the full configuration such that ηk(i) = η(i) for i 6= s and |ηk| = k, and that es
is the identity of Sr(G, s). Consider a full configuration σ with |σ| = k and recurrent restrictionσ̃,
and let ξ be the recurrent sandpile(σ̃ + es)

◦. Since σ = ηk mod ∆Zn if and only if (η + es)
◦ ∈ Cξ

by Lemma 13, by the least action principle we have that σ stabilizes if and only if there is some
recurrent configuration η ∈ Cξ such that ηk(s) < ds . Since ηk(s) + |η| = k, the latter inequality
is equivalent to the condition that|η| > k − ds. Using this information, we develop a method for
checking if σ stabilizes.

We calculate the primitive period vector π of G, and if π(i) is small for some i ∈ [1, 2, ..., n] then
we take s = vi as the sink and obtain a corresponding γs with ord(γs) = π(i) small. We can
then quickly generate Cξ, which by the recent discussion is enough to determine whether or not σ
stabilizes. Note that, in particular, π(i) = 1 for all i in an Eulerian graph, so that our methods
coincide with the work by Tardos [11] showing that the halting problem can be solved in polynomial
time for Eulerian graphs.

If ord(γs) is large for all choices of sink s but the number of cosets M of 〈γs〉 is small, we can make
use of the procedure for checking if two recurrent sandpiles are in the same coset to determine if
σ stabilizes. Since we are looking for any η ∈ Cξ such that |η| > k − ds, we start with η = σ̃max
and work our way down, checking for all η such that |η| = |σ̃max| − 1, then for all η such that
|η| = |σ̃max| − 2, and so on, until for all cyclic subgroups C of S(G, s) we have checked for some
η ∈ C. If after all this we have not found an η such that |η| > k− ds, we conclude that σ does not
stabilize. Note that M gives a heuristic for the number of checks we need to make: in particular,
for M a constant that does not depend on n and a certain class of graphs, we have that we will
require only a constant number of checks before we have hit upon each of the M cyclic subgroups
of S(G, s). In particular, our analysis coincides with the This class of graphs is defined by having
the property that the degrees of recurrent configurations do not correlate too strongly with the
cyclic subgroups – for instance, our method can be thwarted by a graph with a sandpile group
having a cyclic subgroup that contains all of the highest degree sandpiles.

We do not even have a heuristic for classes of graphs with large M and large |S(G, v)|/M for each
vertex v. One example of such a class is the graph where we put four edges from vi to vi+1 and six
from vi+1 to vi. Here M = 2n and min {TG(v)|v ∈ G} = 4n. It turns out that in this particular
case we actually can use the ideas developed up to this point in clever ways to solve the halting
problem on this class of graphs – in the interest of brevity we leave this to the reader. For more
complicated graphs there may not be such tricks.

9

4.2 Reduction from an NP-Hard problem

We’ve shown that if M or |S(G, v)|/M is appropriately small for some vertex v, then the halting
problem can be tractable. We proceed by developing a reduction from an NP-hard problem to
the halting problem for chip firing. However, in order to conclude that the halting problem is
NP-Hard, we would require that the reduction be to a version of the halting problem such that
the edges of the graph can be represented by a polynomial number of bits. The question remains
open as to whether or not this is achievable.

We begin by considering a closely related chip firing game (sometimes referred to as the dollar
game) that goes as follows: given an initial full configuration we ask if there is some sequence of
topplings that results in the number of chips on each node being at least zero. Chip configurations
in this context are generally referred to as divisors in the literature.

In this context, we translate the question of whether or not we can take every node out of debt to
the following: given a sub-lattice L of V0 of full rank (that is, rank n− 1), we say that r(D) = −1
if there is no E ∈ Zn with E ≥ 0 such that D−E ∈ L. This means we cannot bring D out of debt
for all nodes. We will make use of the following Theorem by [5].

Theorem 16 ([5]). For an arbitrary full rank sub-lattice L of An, the problem of deciding if
r(D) = −1 given a point D ∈ Zn and a basis of L is NP-hard.

We would like to translate this to a context more closely related to the halting problem, where we
have a Laplacian to work with.

Lemma 17. For any full rank sub-lattice L of V0 there exists a graph with Laplacian ∆ such that
∆Zn = L, and ∆ can be computed in time polynomial in n.

This Lemma follows almost immediately from the proof of Theorem 4.11 in ([4]), which says that
for any lattice L of Zn having rank n, there exists a graph whose reduced Laplacian lattice ∆s is
such that ∆sZn−1 = L. The proof is constructive, and is paired with an algorithm that performs
integer column operations to transform L into ∆s in polynomial time. The algorithm terminates
with |c1| > 0 and |cj | = 0 for j > 1 where ci denotes column i of ∆s.

Proof. Let M be an integer matrix such that MZn = L. We show that there exists a Laplacian
∆ of a graph with the same integer column span as M . We remark that necessary and sufficient
conditions for a matrix A to be a full graph laplacian are that the degree of the columns of A be
zero, the diagonal entries of A be nonpositive, and the offdiagonal entries of A be nonnegative.

Since M has rank n− 1, there is a sequence of legal column operations that puts the last column
of M to zero. More explicitly, we can use the Euclidean algorithm, adding one column to another,
on the upper triangular portion of each of the first rows n − 1 rows of M in turn. Once we are
done with this, each of the entries of the first n − 1 rows above the diagonal are zero. Since the
degree of the last column of the resulting matrix is zero, we conclude that the last column is all
zeros. With this done we apply the algorithm of Theorem 4.11 of ([4]) to the matrix M ′ gotten
by discarding the bottom row and rightmost column of M , where the column operations specified
by the algorithm are extended to column operations of M . Note that M ′ is an (n− 1) × (n− 1)
matrix of rank n− 1, so that the conditions of Theorem 4.11 are fulfilled. Since all of the columns
of M have degree 0, the integer column operations do not change the degree of the columns of M .
Letting ci denote the ith column of M ′, we have that |c1| > 0 and |cj | = 0 for j > 1. It follows
that the bottom left entry of M is now negative, while the remaining entries in the bottom row
are zero. Since M ′ is a reduced laplacian, we have that M is the full laplacian of a graph.

We now observe a useful connection between divisors and sandpiles:

10

Lemma 18. Given a full rank sub-lattice L of An and a full configuration σ, we have that r(σ) ≥ 0
if and only if there is a graph laplacian ∆ with ∆Zn = L and a vector x ≥ 0 such that σmax−σ−
∆x ≤ σmax .

Proof. By Lemma 17 we can find a laplacian ∆ of some graph such that ∆Zn = L. Then r(σ) ≥ 0
if and only if there is a firing script x such that σ−∆x ≥ 0. We observe that the condition
σ−∆x ≥ 0 is equivalent to the condition that σ− σmax −∆x ≥ −σmax and negating both sides
yields σmax − σ − ∆(−x) ≤ σmax. Since ∆(−x + p) = ∆ for p a period vector, we can find a
period vector p such that −x+p ≥ 0 and subtract ∆p from both sides to get a nonnegative firing
vector.

We would like to say that, given an oracle for solving the halting problem on finite directed graphs,
we can solve whether or not r(σ) = −1. This is not the case in general, since we could have
(σmax − σ) (i) < 0 for some i, and the halting problem oracle can only take as input nonnegative
full configurations. This problem can be averted if we can find a nonnegative configuration η such
that η = σmax−σ mod ∆Zn, as stabilization of this sandpile implies that r(σ) ≥ 1. If we cannot
find such an η, it turns out not to be a problem as computing r(σ) in this case is trivial.

Lemma 19. Let ∆ be an n× n graph laplacian of rank n− 1 with σ ∈ Zn , and suppose that for
all x ∈ Zn there exists an i such that (σmax − σ −∆x) (i) < 0. Then r(σ) ≥ 0.

Proof. The condition (σmax − σ −∆x) (i) < 0 is equivalent to the condition that σ(i) + ∆x >
σmax, so that the condition of the Lemma gives us that for any sequence of topplings, there
will always be a vertex vi with greater than σmax(i) chips. Since we may topple such vertices
indefinitely, we suppose that we do so, letting H ⊆ V denote the set of vertices that are toppled
infinitely many times. To be more precise, on each step we topple every currently active vertex,
and we continue taking steps indefinitely. Since G is finite, we have that H 6= ∅. Suppose that
H 6= V ; we will draw a contradiction. Note that G is strongly connected: this follows at once
from the matrix tree theorem, as choosing any vertex v as a sink yields a reduced laplacian ∆v of
rank n− 1, so that there is at least one spanning tree rooted at v. Since G is strongly connected,
there is a vertex v ∈ V −H and a vertex w ∈ H with dwv > 0. Since w topples infinitely many
times in the process, so too does v, giving us our contradiction. Hence H = V . We can thus carry
out our toppling procedure until every vertex has become active and subsequently toppled (note
that in our procedure we never topple inactive vertices). At this point we have reached the desired
nonnegative configuration, so that r(σ) ≥ 0.

We can thus restrict the configurations σ in Lemma 16 to those such that σmax − σ−∆x ≥ 0 for
some x and retain the NP-Hardness. Lemmas 17 through 19, along with Theorem 16 give us the
following.

Conjecture 20. The problem of computing if r(D) = −1 reduces to the halting problem for finite,
directed, strongly connected graphs.

Proof. Given an arbitrary full rank sub-lattice L of An and a full configuration σ ∈ Zn such that
σmax−σ−∆x = η ≥ 0 for some x, we can decide if r(σ) = −1 by computing the full laplacian ∆
with ∆Zn = L and checking to see if η is equivalent to a stable configuration modulo ∆Zn. The
least action principle gives us that this is equivalent to checking if η is stabilizable, and so we have
a reduction from the dollar game problem to the halting problem.

One issue remains: the Laplacian ∆ we compute may have very large entries, corresponding with
many edges existing between vertices in the underlying graph. For our efforts to bear fruit, we will
need to be able to encode these edges with a polynomial number of bits. To make this precise, we
define the following.

11

Problem. The halting problem for chip-firing on finite, strongly connected graphs with
O(2n) edges between each pair of vertices.

Input: A finite, strongly connected multigraph G with O(2n) edges between each pair of vertices
and a full chip configuration σ with σ ≥ 0.

Output: A decision on whether or not σ stabilizes.

The question remains: does the NP-Hard problem of computing if r(D) = −1 reduce to this, or a
similar, more restrictive halting problem?

References

[1] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp and David
B. Wilson, Chip-Firing and Rotor-Routing on Directed Graphs, In and Out of Equilibrium 2,
Progress in Probability (2008), Vol. 60, 331–364

[2] Trung Van Pham, Period of rotor-router operation, arXiv:1403.5875v3 (2014).

[3] Anders Björner and László Lovász, Chip-Firing games on directed graphs, J. Algebraic Combin
(1992) Vol 1. 305-328

[4] D. Perkinson, J. Perlman, and J. Wilmes, Primer for the algebraic geometry of sandpiles.
Contemporary Mathematics (2014) Vol. 605.

[5] O. Amini and M. Manjunath, Riemann-Roch for Sublattices of the Root Lattice An, Electronic
Journal of Combinatorics (2010), 17(1)

[6] Aldous, D. The random walk construction of uniform spanning trees and uniform labelled
trees. SIAM J. Disc. Math. 3, (1990) 450–465.

[7] Broder, A. Generating random spanning trees. In Symp. Foundations of Computer Sci., IEEE,
New York, (1989) 442–447.

[8] John Harris, Jeffry Hirst, and Michael Mossinghoff, Combinatorics and Graph Theory, Un-
dergraduate Texts in Mathematics (2nd ed.), Springer (2008).

[9] Benjamin Bond and Lionel Levine. Abelian Networks: Foundations and Examples.
arXiv:1309.3445 (2014)

[10] Anders Björner and László Lovász, Chip-Firing games on directed graphs, European Journal
of Combinatorics (1991) Vol. 12 Issue 4, 283–291

[11] Gábor Tardos. Polynomial bound for a chip firing game on graphs. Siam J. Disc. Math. (1988)
Vol. 1, No. 3.

12

	Introduction
	Sandpiles and the halting problem

	Cyclic Subgroups of the Sandpile Group
	An Isomorphism of Groups
	Co-Eulerian Graphs

	Multi-Eulerian Tours
	Computational Aspects of Chip-Firing
	Methods for checking if a full configuration stabilizes
	Reduction from an NP-Hard problem

