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Abstract
I. Abelian and nonabelian Duistermaat-Heckman measures.

We recall the multiple ways to define and compute these, and relate
nonabelian to abelian.

II. Pictorial calculations in equivariant cohomology.
We draw pictures in t∗, exploiting its double role as (i) target of the
moment map ΦT , and (ii) the generating space for H∗

T(pt)
∼= Sym(t∗).

III. NEW! Microlocal geometry of the terms in the Duistermaat-Heckman theorem.
Given a locally closed submanifold A ⊆ M (e.g. a Morse stratum),
one can associate a DM-module and characteristic cycle in T∗M. The
corresponding term in the Duistermaat-Heckman theorem is itself the DH
measure of this characteristic cycle.
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I. Four approaches to abelian Duistermaat-Heckman measures.

Let T � (M2n,ω) be a Hamiltonian action, with moment map ΦT : M → t∗.
For convenience assume the generic stabilizer to be finite. Then there are three
or four ways to define the associated Duistermaat-Heckman measure on t∗:

1. Push forward M’s Liouville measure [ωn]/n! along ΦT , giving a smeared-out
version of M’s Liouville volume.

2. Define a function on t∗, taking λ 7→ vol(M//λ T), and multiply by Lebesgue
measure. This is maybe the best, as it suggests one look at how M//λT

changes, not just its volume. (DH’s paper title gives it away: the symplectic
form changes linearly, within regions of regular values.)

3. Compute the Fourier transform of
∫
M
exp(ω̃), where ω̃ = ω − ΦT is the

equivariantly closed extension of the symplectic form, in Cartan’s de Rham
model of equivariant cohomology. This is typically the most fruitful for
computational purposes (and what we will use in the third tale).

4. (When M is complex projective and [ω] = c1(O(1)).) For each n > 0,
define a Dirac measure 1

ndimM

∑
λ∈T∗ dim(λ-weight space in Γ(M;O(n))) δλ/n

and consider the weak limit n→∞. (Here T∗ ≤ t∗ is the weight lattice.)
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A nonabelian analogue.

Now let K � (M2n,ω) Hamiltonianly, with T = TK a maximal torus of the
compact connected group K. So ΦT = ιT ◦ ΦK, where ι : t →֒ k is the inclusion.

Let π : k∗
/K
−→ t∗+ be the quotient by the coadjoint action.

One could define a measure on k∗ by (ΦK)∗([ω
n]/n!). But it wouldn’t be

supported on a polytope, so that’s less satisfying.

One could take that measure and attempt to “intersect” with t∗+ ⊆ k∗. But that’s
not a natural thing to do with measures.

One could define a measure on t∗+ by (π ◦ ΦK)∗([ω
n]/n!). This is pretty good,

but when M is a coadjoint orbit K · λ, it gives δλ times vol(K · λ).

What we will do is take that last one and divide by the Vandermonde
polynomial λ 7→ vol(K·λ). Call the result the nonabelian DH measure DHK(M).

Theorem. (1) If M is complex projective, and we define a Dirac measure
1

ndimM

∑
λ∈T∗+

dim(λ-multiplicity space in Γ(M;O(n))) δλ/n, then its weak limit

as n → ∞ is also DHK(M). (2) The function λ 7→ vol(M//λK) on t∗+, times
Lebesgue measure, also gives DHK(M).

(Had we mistakenly measured “dim(λ-isotypic component)” there, we’d’ve
been off by that same vol(K · λ) factor.)
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Computing one from the other.

Let PT = ΦT(M) ⊆ t∗ and PK = (π ◦ ΦK)(M) ⊆ t∗+, the abelian and nonabelian
moment polytopes.

Theorem. We can compute PT from PK as conv(W · PK), the convex hull of the
Weyl group translates.

The reverse isn’t possible, e.g. for K = SU(V ∼= C
2) the nonabelian moment

polytopes of P(V) and P(V ⊕ C) are a point and an interval.

Perhaps surprisingly, one can go both directions if one keeps track of the DH
measures, not just their supports.

Theorem.

1. Given DHT(M), apply the differentiation operators
∏

β∈∆+
∂β, and restrict

the result to t∗+ to get DHK(M).

2. Given DHK(M), apply to
∑

w∈W(−1)w(w·DHK(M)) the integration operators∏
β∈∆+

intβ to get DHT(M).

This two-way result is maybe less surprising in K-theory: (1) K-reps are
determined by their characters and (2) T meets every K-conjugacy class. To
actually get a hold of it one uses the Weyl character formula.
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When is DHK(M) = DHT(N)?

Let K � (M,ω). The imploded cross-section Mcs := Φ−1
K (t∗+)

/

∼ of [Guillemin-
Jeffrey-Sjamaar ’02] is the rather nasty space made by modding out null
directions in the at-best symplectic-manifold-with-corners Φ−1

K (t∗+).

Theorem [GLS02]. Msc is a Hamiltonian T -space, and

1. DHK(M) = DHT(Mcs)

2. Mcs
∼= (M× (T∗K)cs)//K∆, i.e. there is a “universal” case to consider

3. (T∗K)cs ∼= G//N where G = KC and N ≤ G is maximal unipotent.

If T � (M,ω), one can make a space IndK
T (M) := K ×T M with a natural

presymplectic form, which will be symplectic when ΦT(M) ⊆ (t∗+)
◦.

In that case DHK(Ind
K
T (M)) = DHT(M), and there is an alternate construction

IndK
T (M) ∼= (M× (N\\G)) // T∆.

The composite recipe IndK
T (Msc) can therefore be realized as (M × G0)//K,

where G0 := (G//N × N\\G) // T∆ is the Vinberg semigroup. Its coördinate
ring is the graded degeneration of the Peter-Weyl ring

⊕

λVλ⊗V∗
λ .

Hence when M is complex projective, M degenerates to (M × G0)//K, called
the horospherical degeneration in case M is spherical (i.e. Msc is toric). Note
that (M × G0)//K has an extra T -action, an algebraic analogue of the “Thimm

trick” that uses M
ΦK
−−→ k∗

π
−→ t∗+ as a “moment map”. The End.
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II. Pictures of equivariant classes.

Let T � (M,ω) for M compact, with moment map ΦT , and assume MT finite
for convenience. Then we have two H∗

T -algebra homomorphisms

H∗(M)

/

H>0
T (pt)

←−−−−−− H∗
T(M) −→ H∗

T(M
T) =

⊕

f∈MT H∗
T

α 7→ (α|f)f∈MT

where the left one is (Kirwan) surjective, and the right one is an injection into a
particularly convenient ring. This suggests that to do calculations in H∗(M),
it might be more convenient to lift them to H∗

T(M
T). Note that if a closed

submanifold A ⊆ M gives our class α = [A] by the Thom isomorphism, then
[A]|f =

∏
(T -weights in TfM/TfA) (or 0 if f /∈ A).

(There is a lot of work on describing the image of the second map, but we won’t
actually use any of it!)

If ΦT is injective on MT , then there’s a natural place to list the elements in the
tuple (α|f)f∈MT ∈

⊕

f∈MT H∗
T ; draw α|f at the point ΦT(f) ∈ t∗.

But we can do much better, since α|f ∈ H∗
T
∼= Sym(t∗): draw α|f as a polynomial

in arrows living in t∗.
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Theorem: Two lines in the plane intersect in a point.

We do a sample computation in H∗(CP2). Let T � C
3 with weights (0, 0), (0, 1),

(1, 0) and let CP0 := {[∗, 0, 0]}, CP1 := {[∗, ∗, 0]}. The correponding pictures are

00

0

and with them we compute [CP1]2 = (y1 − y2)[CP
1] + [CP0]:

0

= =

0 0

0

( )
2

0

+

If we then set the H>0
T (pt)-coefficients to 0, we get [CP1]2 = [CP0] in H∗(CP2).
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A more complicated Schubert calculus computation.

Consider flags (V1 < V2 < C
3) such that V• ∈ X213(F•)∩X213(G•), i.e. V1 ≤ F2, G2.

If F2 6= G2 and H2 > H1 := F2 ∩G2, then X213(F•) ∩ X213(G•) = X312(H•).

In the equivariant calculation, F• = G•; the above computes only the
nonequivariant terms.

[Xπ]|ρ 6= 0 only for ρ ≥ π in Bruhat order. In this tiny example the Schubert
varieties are smooth; otherwise, one needs the AJS/Billey formula for point
restrictions of Schubert classes.

0

0

= +)(
2

0

0

0

0 0

0

If we define the “support” of α as {f ∈ MT : α|f 6= 0}, then by these support
calculations one can easily prove e.g. cσπρ 6= 0 =⇒ σ ≥ π, ρ.
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Extending to K-theory.

Bott’s K-theoretic version of the Thom isomorphism is based on the SES of
equivariant sheaves on the T -representation L of weight λ

0→ OL⊗C−λ
z·
−→ OL → O{0} → 0

giving [{0}] |0 = 1 − exp(−λ) ∈ KT(L), for the origin in the 1-d rep Cλ of T . The
[CP1]2 calculation in equivariant K-theory now becomes

=

0

1−exp(     )

1−exp(     )

0

1−exp(     )

1−exp(     )

( )
2

(1−exp(     )) (1−exp(   ))

(1−exp(     ))

0

0

+ exp(     )

Reducing to nonequivariant K-theory involves setting each exp(~v) 7→ 1.

The End.
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III. Microlocal geometry of the individual terms in the

Duistermaat-Heckman theorem.

Let (M2n,ω) be a compact symplectic manifold. Its volume can be computed as∫
M

ωn

n!
or as

∫
M
exp(ω). The latter is more suggestive of Hirzebruch-Riemann-

Roch, which is about
∫
M
exp(ω) Td(M), since Td(M) = 1+ higher degree terms.

Alternately, one can view this as the pushforward of the Liouville measure
[ωn]/n! to a point.

Both of these have generalizations when a torus T acts on M (or more generally
a compact group K, which we won’t discuss here). The first requires extending
ω ∈ Ω2(M) to an equivariantly closed symplectic form ω − ΦT ∈ Ω2

T(M), the
second requires picking a moment map ΦT : M→ t∗. (So, the same data.)

Theorem [Atiyah-Bott ’84], elucidating [Duistermaat-Heckman ’84]. The
Duistermaat-Heckman measure DHT(M,ω) := (ΦT)∗([ω

n]/n!) on t∗ is the
Fourier transform of

∫

M

exp(ω−ΦT) =
∑

f∈MT

exp(−ΦT(f))∏
(T -wts in TfM)

if |MT | <∞

At this point, it would be nice if we could Fourier transform this function on t

term by term.
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Choices to be made when Fourier transforming term by term.

The easy parts: FT exp(−λ) = δλ (Dirac delta), and FT(λf) = DλFT(f) (directional
derivative). So FT(f/λ) involves... integrating? How to choose the constant?

Theorem [e.g. Guillemin-Lerman-Sternberg]. Pick ~X ∈ t such that 〈~X, λ〉 6= 0

for all isotropy tangent weights. If (λfi)
n
i=1 are ± the weights at f, sign picked

so that 〈~X, λi〉 > 0 ∀i, define FT(exp(−ΦT(f))/
∏

i λi :=
(∏

i intλi
)

δΦT (f)
. Then

DHT(M,ω) =
∑

f∈MT

(−1)# flipped λfi

(

∏

i

intλf
i

)

δΦT (f)

Here “intλ” means “integrate in direction λ”.

=

+

−

+

Our only measures are linear combinations of such terms. Call two such
measures Fourier equivalent if they come from the same function on t. At most
one class representative can be supported inside a fixed pointed cone.

Theorem [Prato-Wu ’94]. A similar theorem holds for M noncompact, as long

as 〈~X,ΦT〉 is proper and bounded below. (In particular, a bad choice of ~X leads
to measures that are only Fourier equivalent to the right answer, not equal.)
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Interlude: characteristic cycles and CSM classes.

Given a locally closed submanifold ι : A →֒M of a complex manifold (both
algebraic, say) we can associate the DM-module ι∗(OA) of distributions
supported on A.

The algebra DM of differential operators has a filtration by degree, with
gr DM

∼= OT∗M. If we give ι∗(OA) a “good” compatible filtration, then
gr ι∗(OA) defines a sheaf on T∗M supported on a conical Lagrangian cc(A) with
multiplicities, the characteristic cycle of ι∗(OA).

Examples, where M = C so DM = C〈x̂, d
dx
〉 and gr DM

∼= C[q, p].

A ⊆ C generator g of ι∗(OA) ann(g) cc(A) := supp(gr ι∗(OA)) cartoon
C ⊆ C 1 d/dx {(q, p) : p = 0} −

C
× ⊆ C x−1 (d/dx)x̂ {(q, p) : pq = 0} +

{0} ⊆ C δ0 x̂ {(q, p) : q = 0} |

Theorem [Victor “Ginsburg” ’86]. Let csm(A) := (−1)codimMA [cc(A)] in
H∗

C×(T
∗M) ∼= H∗(M)[~]. Then (1) csm(A) = csm(A \ B) + csm(B) for B closed

in A, and (2) csm(M)|~=−1 = c(TM).

In particular this defintion extends well-definedly to constructible functions,
giving the Chern-Schwartz-MacPherson classes.
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Exploiting the additivity.

For C a T -invariant cycle in M (i.e. linear combo of subvarieties of M), write
DHT(C) for (ΦT)∗(Liouville measure on Creg, weighted with multiplicities).

Let M =
∐

f∈MM◦
f be the Morse decomposition w.r.t. a component 〈~X,ΦT(•)〉

of the moment map. Then

DHT×C×(M) = FT

∫

M

exp(ω̃) = FT

∫

T∗M

exp(ω̃)[M] = FT

∫

T∗M

exp(ω̃)csm(M)

= FT

∫

T∗M

exp(ω̃)
∑

f∈M

csm(M◦
f ) =

∑

f∈M

FT

∫

T∗M

exp(ω̃)csm(M◦
f )

=
∑

f∈M

(−1)f FT

∫

T∗M

exp(ω̃)[cc(M◦
f )] =

∑

f∈M

(−1)f DHT×C×(cc(M◦
f ))

Lemma [Weber ’12]. If p /∈ A then [cc(A)]|p ≡ 0 mod ~.

Corollary. DHT×C×(cc(M◦
f )) is Fourier equivalent to a measure whose ~ 7→ 0

projection is the corresponding term in the DH formula.

Irritatingly, I haven’t been able to remove the “Fourier equivalent to” weasel
words, and know examples of non-Morse decompositions where they are
definitely necessary – the projection is improper on the support.
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The Brianchon-Gram theorem.

Let M = TVP be the toric variety of a simple integral polytope, and
M =

∐
F⊆PM

◦
F be the decomposition into TC-orbits, indexed by faces F of P.

We can run the same computation as last slide, obtaining

DHT(M) =
∑

F∈P

(−1)codimF DHT(cc(M
◦
F))

and then discovering that DHT(cc(M
◦
F)) is the term in the outward-pointing

Brianchon-Gram theorem, whose statement is best done through example.

− −= +

[Guillemin-Ohsawa-Viktor Ginzburg-Karshon ’02] also gave geometric meaning
to individual DH terms, and [Harada-Karshon ’12] connected that to the
Brianchon-Gram theorem. Really The End.
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