Three tales of Hamiltonian geometry

Allen Knutson

AMS Special Session on Equivariant Cohomology, March 2022

Abstract

I. Abelian and nonabelian Duistermaat-Heckman measures. We recall the multiple ways to define and compute these, and relate nonabelian to abelian.

II. Pictorial calculations in equivariant cohomology. We draw pictures in \mathfrak{t}^* , exploiting its double role as (i) target of the moment map Φ_T , and (ii) the generating space for $H^*_T(pt) \cong Sym(\mathfrak{t}^*)$.

III. NEW! Microlocal geometry of the terms in the Duistermaat-Heckman theorem. Given a locally closed submanifold $A \subseteq M$ (e.g. a Morse stratum), one can associate a \mathcal{D}_M -module and characteristic cycle in T*M. The corresponding term in the Duistermaat-Heckman theorem is *itself* the DH measure of this characteristic cycle.

I. Four approaches to abelian Duistermaat-Heckman measures.

Let $T \circlearrowright (M^{2n}, \omega)$ be a Hamiltonian action, with moment map $\Phi_T : M \to \mathfrak{t}^*$. For convenience assume the generic stabilizer to be finite. Then there are three or four ways to define the associated *Duistermaat-Heckman measure* on \mathfrak{t}^* :

- 1. Push forward M's Liouville measure $[\omega^n]/n!$ along Φ_T , giving a smeared-out version of M's Liouville volume.
- 2. Define a function on t^{*}, taking $\lambda \mapsto vol(M//_{\lambda} T)$, and multiply by Lebesgue measure. This is maybe the best, as it suggests one look at how $M//_{\lambda}T$ changes, not just its volume. (DH's paper title gives it away: the symplectic form changes *linearly*, within regions of regular values.)
- 3. Compute the Fourier transform of $\int_{M} \exp(\tilde{\omega})$, where $\tilde{\omega} = \omega \Phi_{T}$ is the *equivariantly closed extension* of the symplectic form, in Cartan's de Rham model of equivariant cohomology. This is typically the most fruitful for computational purposes (and what we will use in the third tale).
- 4. (When M is complex projective and $[\omega] = c_1(\mathcal{O}(1))$.) For each n > 0, define a Dirac measure $\frac{1}{n^{\dim M}} \sum_{\lambda \in T^*} \dim(\lambda$ -weight space in $\Gamma(M; \mathcal{O}(n))) \delta_{\lambda/n}$ and consider the weak limit $n \to \infty$. (Here $T^* \leq \mathfrak{t}^*$ is the weight lattice.)

A nonabelian analogue.

Now let $K \circlearrowright (M^{2n}, \omega)$ Hamiltonianly, with $T = T_K$ a maximal torus of the compact connected group K. So $\Phi_T = \iota^T \circ \Phi_K$, where $\iota : \mathfrak{t} \hookrightarrow \mathfrak{k}$ is the inclusion. Let $\pi : \mathfrak{k}^* \xrightarrow{/K} \mathfrak{t}^*_+$ be the quotient by the coadjoint action.

One *could* define a measure on \mathfrak{k}^* by $(\Phi_K)_*([\omega^n]/n!)$. But it wouldn't be supported on a polytope, so that's less satisfying.

One *could* take that measure and attempt to "intersect" with $\mathfrak{t}_+^* \subseteq \mathfrak{k}^*$. But that's not a natural thing to do with measures.

One *could* define a measure on \mathfrak{t}^*_+ by $(\pi \circ \Phi_K)_*([\omega^n]/n!)$. This is pretty good, but when M is a coadjoint orbit $K \cdot \lambda$, it gives δ_λ times $vol(K \cdot \lambda)$.

What we *will* do is take that last one and divide by the Vandermonde polynomial $\lambda \mapsto vol(K \cdot \lambda)$. Call the result the **nonabelian DH measure** $DH_K(M)$.

Theorem. (1) If M is complex projective, and we define a Dirac measure $\frac{1}{n^{\dim M}} \sum_{\lambda \in T^*_+} \dim(\lambda$ -multiplicity space in $\Gamma(M; \mathcal{O}(n))) \delta_{\lambda/n}$, then its weak limit as $n \to \infty$ is also $DH_K(M)$. (2) The function $\lambda \mapsto vol(M//_{\lambda}K)$ on \mathfrak{t}^*_+ , times Lebesgue measure, also gives $DH_K(M)$.

(Had we mistakenly measured "dim(λ -isotypic component)" there, we'd've been off by that same vol($K \cdot \lambda$) factor.)

Computing one from the other.

Let $P_T = \Phi_T(M) \subseteq \mathfrak{t}^*$ and $P_K = (\pi \circ \Phi_K)(M) \subseteq \mathfrak{t}^*_+$, the abelian and nonabelian moment polytopes.

Theorem. We can compute P_T from P_K as $conv(W \cdot P_K)$, the convex hull of the Weyl group translates.

The reverse isn't possible, e.g. for $K = SU(V \cong \mathbb{C}^2)$ the nonabelian moment polytopes of $\mathbb{P}(V)$ and $\mathbb{P}(V \oplus \mathbb{C})$ are a point and an interval.

Perhaps surprisingly, one can go *both* directions if one keeps track of the DH measures, not just their supports.

Theorem.

- 1. Given $DH_T(M)$, apply the differentiation operators $\prod_{\beta \in \Delta_+} \partial_{\beta}$, and restrict the result to \mathfrak{t}^*_+ to get $DH_K(M)$.
- 2. Given $DH_{K}(M)$, apply to $\sum_{w \in W} (-1)^{w}(w \cdot DH_{K}(M))$ the integration operators $\prod_{\beta \in \Delta_{+}} int_{\beta}$ to get $DH_{T}(M)$.

This two-way result is maybe less surprising in K-theory: (1) K-reps are determined by their characters and (2) T meets every K-conjugacy class. To actually get a hold of it one uses the Weyl character formula.

When is $DH_K(M) = DH_T(N)$?

Let $K \circlearrowright (M, \omega)$. The **imploded cross-section** $M_{cs} := \Phi_K^{-1}(\mathfrak{t}_+^*) / \sim$ of [Guillemin-Jeffrey-Sjamaar '02] is the rather nasty space made by modding out null directions in the at-best symplectic-manifold-with-corners $\Phi_K^{-1}(\mathfrak{t}_+^*)$.

Theorem [GLS02]. M_{sc} is a Hamiltonian T-space, and

- 1. $DH_K(M) = DH_T(M_{cs})$
- 2. $M_{cs} \cong (M \times (T^*K)_{cs}) / / K_{\Delta}$, i.e. there is a "universal" case to consider
- 3. $(T^*K)_{cs} \cong G//N$ where $G = K^{\mathbb{C}}$ and $N \leq G$ is maximal unipotent.

If $T \circlearrowright (M, \omega)$, one can make a space $Ind_T^K(M) := K \times^T M$ with a natural presymplectic form, which will be symplectic when $\Phi_T(M) \subseteq (\mathfrak{t}_+^*)^\circ$. In that case $DH_K(Ind_T^K(M)) = DH_T(M)$, and there is an alternate construction $Ind_T^K(M) \cong (M \times (N \setminus G)) / / T_\Delta$.

The composite recipe $\operatorname{Ind}_{T}^{K}(M_{sc})$ can therefore be realized as $(M \times G_{0})//K$, where $G_{0} := (G//N \times N \setminus G) / T_{\Delta}$ is the **Vinberg semigroup**. Its coördinate ring is the *graded* degeneration of the Peter-Weyl ring $\bigoplus_{\lambda} V_{\lambda} \otimes V_{\lambda}^{*}$.

Hence when M is complex projective, M degenerates to $(M \times G_0)//K$, called the **horospherical degeneration** in case M is spherical (i.e. M_{sc} is toric). Note that $(M \times G_0)//K$ has an extra T-action, an algebraic analogue of the "Thimm trick" that uses $M \xrightarrow{\Phi_K} \mathfrak{k}^* \xrightarrow{\pi} \mathfrak{t}^*_+$ as a "moment map". The End.

II. Pictures of equivariant classes.

Let $T \circlearrowright (M, \omega)$ for M compact, with moment map Φ_T , and assume M^T finite for convenience. Then we have two H^*_T -algebra homomorphisms

$$\begin{array}{cccc} H^*(M) \xleftarrow{/_{H^{>0}_{T}(pt)}} H^*_{T}(M) & \longrightarrow & H^*_{T}(M^{T}) = \bigoplus_{f \in M^{T}} H^*_{T} \\ \\ \alpha & \mapsto & (\alpha|_{f})_{f \in M^{T}} \end{array}$$

where the left one is (Kirwan) surjective, and the right one is an injection into a particularly convenient ring. This suggests that to do calculations in $H^*(M)$, it might be more convenient to lift them to $H^*_T(M^T)$. Note that if a closed submanifold $A \subseteq M$ gives our class $\alpha = [A]$ by the Thom isomorphism, then $[A]|_f = \prod (T\text{-weights in } T_f M/T_f A)$ (or 0 if $f \notin A$).

(There is a lot of work on describing the image of the second map, but we won't actually use any of it!)

If Φ_T is injective on M^T , then there's a natural place to list the elements in the tuple $(\alpha|_f)_{f \in M^T} \in \bigoplus_{f \in M^T} H^*_T$; draw $\alpha|_f$ at the point $\Phi_T(f) \in \mathfrak{t}^*$.

But we can do much better, since $\alpha|_f \in H_T^* \cong \text{Sym}(\mathfrak{t}^*)$: draw $\alpha|_f$ as a polynomial *in arrows living in* \mathfrak{t}^* .

Theorem: Two lines in the plane intersect in a point.

We do a sample computation in $H^*(\mathbb{CP}^2)$. Let $T \circlearrowright \mathbb{C}^3$ with weights (0,0), (0,1), (1,0) and let $\mathbb{CP}^0 := \{[*,0,0]\}, \mathbb{CP}^1 := \{[*,*,0]\}$. The corresponding pictures are

and with them we compute $[\mathbb{CP}^1]^2 = (y_1 - y_2)[\mathbb{CP}^1] + [\mathbb{CP}^0]$:

If we then set the $H_T^{>0}(pt)$ -coefficients to 0, we get $[\mathbb{CP}^1]^2 = [\mathbb{CP}^0]$ in $H^*(\mathbb{CP}^2)$.

A more complicated Schubert calculus computation.

Consider flags $(V_1 < V_2 < \mathbb{C}^3)$ such that $V_{\bullet} \in X_{213}(F_{\bullet}) \cap X_{213}(G_{\bullet})$, i.e. $V_1 \le F_2, G_2$. If $F_2 \ne G_2$ and $H_2 > H_1 := F_2 \cap G_2$, then $X_{213}(F_{\bullet}) \cap X_{213}(G_{\bullet}) = X_{312}(H_{\bullet})$.

In the equivariant calculation, $F_{\bullet} = G_{\bullet}$; the above computes only the nonequivariant terms.

 $[X_{\pi}]|_{\rho} \neq 0$ only for $\rho \geq \pi$ in Bruhat order. In this tiny example the Schubert varieties are smooth; otherwise, one needs the AJS/Billey formula for point restrictions of Schubert classes.

If we define the "support" of α as { $f \in M^T : \alpha|_f \neq 0$ }, then by these support calculations one can easily prove e.g. $c_{\pi\rho}^{\sigma} \neq 0 \implies \sigma \geq \pi, \rho$.

Extending to K-theory.

Bott's K-theoretic version of the Thom isomorphism is based on the SES of equivariant sheaves on the T-representation L of weight λ

$$0 \to \mathcal{O}_{\mathsf{L}} \otimes \mathbb{C}_{-\lambda} \xrightarrow{z \cdot} \mathcal{O}_{\mathsf{L}} \to \mathcal{O}_{\{0\}} \to 0$$

giving $[\{0\}]|_0 = 1 - \exp(-\lambda) \in K_T(L)$, for the origin in the 1-d rep \mathbb{C}_{λ} of T. The $[\mathbb{CP}^1]^2$ calculation in equivariant K-theory now becomes

Reducing to nonequivariant K-theory involves setting each $\exp(\vec{v}) \mapsto 1$.

The End.

III. Microlocal geometry of the individual terms in the Duistermaat-Heckman theorem.

Let (M^{2n}, ω) be a compact symplectic manifold. Its **volume** can be computed as $\int_M \frac{\omega^n}{n!}$ or as $\int_M \exp(\omega)$. The latter is more suggestive of Hirzebruch-Riemann-Roch, which is about $\int_M \exp(\omega) \operatorname{Td}(M)$, since $\operatorname{Td}(M) = 1$ + higher degree terms. Alternately, one can view this as the pushforward of the Liouville measure $[\omega^n]/n!$ to a point.

Both of these have generalizations when a torus T acts on M (or more generally a compact group K, which we won't discuss here). The first requires extending $\omega \in \Omega^2(M)$ to an *equivariantly closed* symplectic form $\omega - \Phi_T \in \Omega^2_T(M)$, the second requires picking a moment map $\Phi_T \colon M \to \mathfrak{t}^*$. (So, the same data.)

Theorem [Atiyah-Bott '84], elucidating [Duistermaat-Heckman '84]. The **Duistermaat-Heckman measure** $DH_T(\mathcal{M}, \omega) := (\Phi_T)_*([\omega^n]/n!)$ on \mathfrak{t}^* is the Fourier transform of

$$\int_{M} \exp(\omega - \Phi_{\mathsf{T}}) \qquad = \sum_{\mathsf{f} \in \mathcal{M}^{\mathsf{T}}} \frac{\exp(-\Phi_{\mathsf{T}}(\mathsf{f}))}{\prod(\mathsf{T}\text{-wts in } \mathsf{T}_{\mathsf{f}}\mathcal{M})} \quad \text{if } |\mathcal{M}^{\mathsf{T}}| < \infty$$

At this point, it would be nice if we could Fourier transform this function on t term by term.

Choices to be made when Fourier transforming term by term.

The easy parts: $FT \exp(-\lambda) = \delta_{\lambda}$ (Dirac delta), and $FT(\lambda f) = D_{\lambda}FT(f)$ (directional derivative). So $FT(f/\lambda)$ involves... integrating? How to choose the constant?

Theorem [e.g. Guillemin-Lerman-Sternberg]. Pick $\vec{X} \in t$ such that $\langle \vec{X}, \lambda \rangle \neq 0$ for all isotropy tangent weights. If $(\lambda_i^f)_{i=1}^n$ are \pm the weights at f, sign picked so that $\langle \vec{X}, \lambda_i \rangle > 0$ $\forall i$, define $FT(\exp(-\Phi_T(f)) / \prod_i \lambda_i := (\prod_i int_{\lambda_i}) \delta_{\Phi_T(f)}$. Then

$$DH_{T}(M, \omega) = \sum_{f \in M^{T}} (-1)^{\# \text{ flipped } \lambda_{i}^{f}} \left(\prod_{i} \text{ int}_{\lambda_{i}^{f}}\right) \delta_{\Phi_{T}(f)}$$

Here "int_{λ}" means "integrate in direction λ ".

Our only measures are linear combinations of such terms. Call two such measures **Fourier equivalent** if they come from the same function on t. At most one class representative can be supported inside a fixed pointed cone.

Theorem [Prato-Wu '94]. A similar theorem holds for M noncompact, as long as $\langle \vec{X}, \Phi_T \rangle$ is proper and bounded below. (In particular, a bad choice of \vec{X} leads to measures that are only Fourier equivalent to the right answer, not equal.)

Interlude: characteristic cycles and CSM classes.

Given a locally closed submanifold $\iota: A \hookrightarrow M$ of a complex manifold (both algebraic, say) we can associate the \mathcal{D}_M -module $\iota_*(\mathcal{O}_A)$ of distributions supported on A.

The algebra \mathcal{D}_M of differential operators has a filtration by degree, with gr $\mathcal{D}_M \cong \mathcal{O}_{T^*M}$. If we give $\iota_*(\mathcal{O}_A)$ a "good" compatible filtration, then gr $\iota_*(\mathcal{O}_A)$ defines a sheaf on T*M supported on a conical Lagrangian cc(A) with multiplicities, the **characteristic cycle** of $\iota_*(\mathcal{O}_A)$.

Examples, where $M = \mathbb{C}$ *so* $\mathcal{D}_M = \mathbb{C}\langle \hat{x}, \frac{d}{dx} \rangle$ *and* $\operatorname{gr} \mathcal{D}_M \cong \mathbb{C}[q, p]$.

$A\subseteq\mathbb{C}$	generator g of $\iota_*(\mathcal{O}_A)$	ann(g)	$cc(A) := supp(gr \iota_*(\mathcal{O}_A))$	cartoon
$\mathbb{C}\subseteq\mathbb{C}$	1	d/dx	$\{(q,p):p = 0\}$	
$\mathbb{C}^{\times}\subseteq\mathbb{C}$	χ^{-1}	$(d/dx)\hat{x}$	$\{(q,p): pq = 0\}$	+
$\{0\}\subseteq\mathbb{C}$	δο	$\hat{\chi}$	$\{(q, p): q = 0\}$	

Theorem [Victor "Ginsburg" '86]. Let $csm(A) := (-1)^{codim_M A} [cc(A)]$ in $H^*_{\mathbb{C}^{\times}}(T^*M) \cong H^*(M)[\hbar]$. Then (1) $csm(A) = csm(A \setminus B) + csm(B)$ for B closed in A, and (2) $csm(M)|_{\hbar=-1} = c(TM)$.

In particular this definition extends well-definedly to constructible functions, giving the **Chern-Schwartz-MacPherson classes**.

Exploiting the additivity.

For C a T-invariant cycle in M (i.e. linear combo of subvarieties of M), write $DH_T(C)$ for $(\Phi_T)_*$ (Liouville measure on C_{reg} , weighted with multiplicities).

Let $M = \coprod_{f \in M} M_f^{\circ}$ be the Morse decomposition w.r.t. a component $\langle \vec{X}, \Phi_T(\bullet) \rangle$ of the moment map. Then

$$\begin{aligned} \mathsf{D}\mathsf{H}_{\mathsf{T}\times\mathbb{C}^{\times}}(\mathsf{M}) &= \mathsf{FT} \, \int_{\mathsf{M}} \exp(\tilde{\omega}) = \mathsf{FT} \, \int_{\mathsf{T}^*\mathsf{M}} \exp(\tilde{\omega})[\mathsf{M}] &= \mathsf{FT} \, \int_{\mathsf{T}^*\mathsf{M}} \exp(\tilde{\omega}) \mathsf{csm}(\mathsf{M}) \\ &= \mathsf{FT} \, \int_{\mathsf{T}^*\mathsf{M}} \exp(\tilde{\omega}) \sum_{\mathsf{f}\in\mathsf{M}} \mathsf{csm}(\mathsf{M}^\circ_\mathsf{f}) = \sum_{\mathsf{f}\in\mathsf{M}} \mathsf{FT} \, \int_{\mathsf{T}^*\mathsf{M}} \exp(\tilde{\omega})\mathsf{csm}(\mathsf{M}^\circ_\mathsf{f}) \\ &= \sum_{\mathsf{f}\in\mathsf{M}} (-1)^\mathsf{f} \, \mathsf{FT} \, \int_{\mathsf{T}^*\mathsf{M}} \exp(\tilde{\omega})[\mathsf{cc}(\mathsf{M}^\circ_\mathsf{f})] = \sum_{\mathsf{f}\in\mathsf{M}} (-1)^\mathsf{f} \, \mathsf{D}\mathsf{H}_{\mathsf{T}\times\mathbb{C}^\times}(\mathsf{cc}(\mathsf{M}^\circ_\mathsf{f})) \end{aligned}$$

Lemma [Weber '12]. If $p \notin A$ then $[cc(A)]|_p \equiv 0 \mod \hbar$.

Corollary. $DH_{T \times \mathbb{C}^{\times}}(cc(M_{f}^{\circ}))$ is Fourier equivalent to a measure whose $\hbar \mapsto 0$ projection is the corresponding term in the DH formula.

Irritatingly, I haven't been able to remove the "Fourier equivalent to" weasel words, and know examples of non-Morse decompositions where they are definitely necessary – the projection is improper on the support.

The Brianchon-Gram theorem.

Let $M = TV_P$ be the toric variety of a simple integral polytope, and $M = \coprod_{F \subseteq P} M_F^\circ$ be the decomposition into $T^{\mathbb{C}}$ -orbits, indexed by faces F of P. We can run the same computation as last slide, obtaining

$$\mathsf{DH}_T(M) = \sum_{F \in P} (-1)^{\operatorname{codim} F} \mathsf{DH}_T(\mathsf{cc}(M_F^\circ))$$

and then discovering that $DH_T(cc(M_F^\circ))$ is the term in the outward-pointing *Brianchon-Gram theorem*, whose statement is best done through example.

[Guillemin-Ohsawa-Viktor Ginzburg-Karshon '02] also gave geometric meaning to individual DH terms, and [Harada-Karshon '12] connected that to the Brianchon-Gram theorem. Really The End.