Schubert puzzles and R-matrices

Allen Knutson and Paul Zinn-Justin

November 9, 2017

Abstract

We recast the "puzzle" computation of an equivariant Schubert calculus structure constant as a "scattering amplitude", computed from a planar diagram (specifically, dual to the puzzles). Restrictions $\left.\left[X_{w}\right]\right|_{v}$ of equivariant Schubert classes can also be interpreted so, and we use this formalism to give an easy proof of the puzzle rule. The key features to check are the "Yang-Baxter" and "bootstrap" invariance under planar isotopies, requiring the extra freedom of the planar diagrams.

Known solutions of the YBE for the groups A_{2}, D_{4}, E_{6} let us discover and prove puzzle formulæ for K_{T} of Grassmannian/"1-step" flag manifolds (known from [Pechenik-Yong], [Wheeler-Zinn-Justin]), K_{T} of 2step (new), and K of 3-step (new). Maulik-Okounkov create YBE solutions ("R-matrices") using quiver varieties, such as T^{*} (d -step flag manifolds); we spell out the connection for $\mathrm{d}=1$.

Equivariant Schubert classes on $\mathrm{GL}_{n} / \mathrm{P}$ and their restrictions.

Let $G=G L_{n}$ always, $B_{ \pm}$the upper/lower triangular matrices with intersection T, and $P \geq B_{+}$with Levi $\prod_{i=0}^{d} G L\left(n_{i}\right)$. Then $G L_{n} / P$ is a d-step flag manifold and we can index its B_{-}orbits by words λ with $\operatorname{sort}(\lambda)=0^{n_{0}} 1^{n_{1}} \cdots d^{n_{d}}$. Let X_{λ} be the corresponding orbit closure, and $\left[X_{\lambda}\right] \in K_{T}\left(G L_{n} / P\right)$ its class in T-equivariant K-theory. If $\lambda=\operatorname{sort}(\lambda)$ then $X_{\lambda}=G / P,\left[X_{\lambda}\right]=1$.
We want formulæ for the $c_{\lambda \mu}^{\nu} \in K_{T}(p t)$ in the expansion $\left[X_{\lambda}\right]\left[X_{\mu}\right]=\sum_{\nu} c_{\lambda \mu}^{\nu}\left[X_{\nu}\right]$. By Kirwan injectivity, it's enough to prove $\left.\left.\left[X_{\lambda}\right]\right|_{\sigma}\left[X_{\mu}\right]\right|_{\sigma}=\left.\sum_{\nu} c_{\lambda \mu}^{v}\left[X_{\nu}\right]\right|_{\sigma}$, an equation in $K_{T} \cong \mathbb{Z}\left[e^{ \pm y_{1}}, \ldots, e^{ \pm y_{n}}\right]$.
Theorem (AJS/Billey in H_{\top}; Graham/Willems in K_{T}.) Let Q be a reduced expression for $\sigma \in W^{P}$. Then $\left.\left[X_{\lambda}\right]\right|_{\sigma}$ can be computed as a sum over subwords of Q with Demazure/nil Hecke product (or 0-Hecke product, for $\mathrm{H}_{\mathrm{T}}^{*}$) equal to λ.
If σ is 321 -avoiding, then Q is unique up to (unimportant) commuting moves, and its heap is a skew partition. These hold when $d=1$ ("Grassmannian permutations are 321-avoiding"), where Q is read from σ^{\prime} s partition [IkedaNaruse].

Restrictions to fixed points, as scattering amplitudes.

Let V_{a} be the vector space with basis $\mathbb{Q}, 1, \ldots, \mathbb{d}$, where a is a currently mysterious parameter. Hence the Schubert classes on all d-step flag manifolds, taken together, correspond to the tensor basis of $\bigotimes_{i=1}^{n} V_{y_{i}}$.
Define a very sparse matrix $\mathrm{R}: \mathrm{V}_{\mathrm{a}} \otimes \mathrm{V}_{\mathrm{b}} \rightarrow \mathrm{V}_{\mathrm{b}} \otimes \mathrm{V}_{\mathrm{a}}$ by specifying only a few of its $(d+1)^{4}$ entries to be nonzero:

Then $\left.\left[X_{\lambda}\right]\right|_{\sigma}$ is the $(\lambda, \operatorname{sort}(\lambda))$ matrix entry in $\prod_{Q} \check{R} \in \operatorname{End}\left(\otimes_{i=1}^{n} V_{y_{i}}\right)$, expressed diagramatically as follows:

More general scattering amplitudes.

In the most general setup, we consider edge-colored directed graphs in a disc, with some prescribed lists of colors and of allowed vertices (up to isotopy). Each edge has a parameter, and the vertices may include restrictions on the parameters.
To obtain a number (or rational function) from a graph, which we will call a scattering amplitude, we need some more data:

- A vector space with basis for each color.

In Graham/Willems, the only color is the standard rep of $A_{d}=S L_{d+1}$.

- A tensor in Hom(\otimes incoming edges, \otimes outgoing edges) for each vertex type, whose matrix entries are functions of the edge parameters.

In Graham/Willems, there is only one kind of vertex, and the in- and outgoing parameters must match up: a, b, a, b.

- For each boundary vertex, a chosen basis element in its vector space.

In Graham/Willems, the labels along the bottom are weakly increasing.
The key feature to look for: is the scattering amplitude invariant under isotopies of the graph rel its intersection with the disc? (More about this soon.)

Scattering amplitudes for puzzles: the vertices.

We focus on $\mathrm{H}_{\mathrm{T}}^{*}$ and $\mathrm{d}=1$, where all the salient features are already visible. There are three colors $\mathbb{C}^{3}, \mathbb{C}^{3}$, and $\left(\mathbb{C}^{3}\right)^{*}$, irreps of SL_{3}. (In fact they will extend to irreps of $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}[\mathrm{t}]\right)$, and the choice of extension involves a parameter.) In all cases the bases are indexed by $\{0,1,10\}$.
Then we define three kinds of vertices, two trivalent (one rotated 180° with arrows reversed), and a tetravalent:

On the tetravalent vertex, the parameters must pass through as before; on the trivalent (except inside the tetravalent), all three parameters must match. In both cases the element of Hom(\otimes incoming edges, \otimes outgoing edges) will be $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{3}[\mathrm{t}]\right.$-equivariant. (The T -equivariance alone suffices to figure out which basis vector corresponds to which of $0,1,10$.)

Scattering amplitudes for puzzles: the diagrams.

Theorem 1. [K-Tao '03, restated]
$c_{\lambda \mu}^{v}$ is the scattering amplitude of the diagram on the left.
2. (combined with [AJS/Billey])
$\left.\sum_{\nu} c_{\lambda_{\mu}}^{v}\left[X_{\nu}\right]\right]_{\sigma}$ is the scattering amplitude of the diagram on the right.
(Note that sort $\lambda=$ sort $\mu=$ the identity class.)

So we've got the RHS of the equation we want to prove, as the scattering amplitude of a single diagram. That suggests that we should manipulate it to get the desired LHS, $\left.\left[X_{\lambda}\right]_{\sigma}\left[X_{\mu}\right]\right]_{\sigma}$.

Keys to the proof: The Yang-Baxter and bootstrap equations.

Proposition.

1. With any choice of orientations, colors, and boundary conditions, we have the first two equations on scattering amplitudes, implying the third:

2. If a puzzle has the identity on the bottom, it must also have it on the NW and NE sides, and have scattering amplitude $=1$.
Hence

so there's our $\left.\left.\left[X_{\lambda}\right]\right|_{\sigma}\left[X_{\mu}\right]\right|_{\sigma}$. Of course proposition \#1 above is a big case check.

Sources of solutions to the YBE and bootstrap equations.

Any minuscule representation V_{ω} (i.e. all weights extremal) of a Lie algebra \mathfrak{g} extends to its quantized loop algebra $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g}\left[z^{ \pm}\right]\right)$, but the extension $\mathrm{V}_{\omega, \mathfrak{c}}$ depends on a choice of parameter c. Then as Drinfel'd and Jimbo observed, the Schur's-lemma-unique (!) map $\check{R}: V_{\omega_{1}, c} \otimes V_{\omega_{2}, \mathrm{~d}} \rightarrow \mathrm{~V}_{\omega_{2}, \mathrm{~d}} \otimes \mathrm{~V}_{\omega_{1}, \mathrm{c}}$ gives a solution to the "trigonometric" YBE (meaning, entries depend only on c / d).
In order to have a trivalent vertex, we need $\mathrm{V}_{\omega_{1}, \mathrm{c}} \otimes \mathrm{V}_{\omega_{2}, \mathrm{~d}}$ to become reducible $\rightarrow V_{\gamma, e}$ which only happens at special c / d. For our Schubert situation, where we know the ordinary-cohomology specialization should be Z_{3}-symmetric, we need $Z_{3}=\langle\tau\rangle$ to act on \mathfrak{g} and its weight lattice with $\omega_{1}=\tau \omega_{2}=-\tau^{2} \gamma$.

Theorem.

$\mathrm{d}=2$. The 8 puzzle edge labels $0,1,2,10,20,21,2(10),(21) 0$ now index bases of the three minuscule representations \mathbb{C}^{8}, spin $_{+}$, spin_ of D_{4}.
$\mathrm{d}=3$. The 27 labels, including Buch's "three parenthesis rule" labels like $3(((32) 1) 0)$, now index bases of the minuscule representations $\mathbb{C}^{27}, \mathbb{C}^{27},\left(\mathbb{C}^{27}\right)^{*}$.
These turn out to be easy to guess from the known/conjectured puzzle rules, from two considerations: each puzzle piece/trivalent vertex should be $\mathrm{T}_{\mathrm{G}}{ }^{-}$ equivariant (essentially Buch's theory of "auras"), and (for minusculeness) the T-weights associated to edge labels should have the same norm.

Degenerating - or not - the standard $\check{\mathrm{R}}$-matrices.

Already at $d=1$ the \check{R}-matrix $\mathbb{C}_{a}^{3} \otimes \mathbb{C}_{b}^{3} \rightarrow \mathbb{C}_{b}^{3} \otimes \mathbb{C}_{a}^{3}$ has matrix entries we don't see in H^{*} puzzles: ${ }_{10}^{1010}{ }^{10}{ }^{1010}$ If we include only the first, we get K -theory (Buch/Tao); only the second, we get K-theory in the dual basis [Wheeler-ZJ].
Theorem (foreshadowing) 1. If one includes both pieces (with factor +1 not -1), the resulting puzzles compute the coproduct structure constants of CSM classes under $\operatorname{Gr}(k, n) \stackrel{\Delta}{\hookrightarrow} \operatorname{Gr}(k, n) \times \operatorname{Gr}(k, n)$.
2. If one gives those pieces independent weights α, β, the resulting algebra is still commutative associative!
Interesting as those are, this says that the standard $\check{\mathrm{R}}$-matrix is not quite computing K_{T}. To "fix" it we rescale various basis vectors by powers of $q^{ \pm}$, and let $\mathrm{q} \rightarrow 0$ (similar to, but not quite the same as, the crystal limit).
Theorem. For $d=1,2$ this works great and gets us K_{T} puzzles.
For $\mathrm{d}=3$ certain matrix entries go to ∞ as $\mathrm{q} \rightarrow 0$, but we can suppress those by first specializing to the nonequivariant case, which is why we only get K - (and H -)puzzles, not K_{T} (or H_{T}). To do K requires 151 new puzzle pieces.
For $\mathrm{d}=4$ we actually have a nice group E_{8} and three representations, $\mathfrak{e}_{8} \oplus \mathbb{C}$, but alas, even nonequivariance doesn't save $q \rightarrow 0$ this time.

Cotangent bundles as quiver varieties.

An A_{d} quiver variety $\mathcal{M}(\vec{h}, \vec{w})$ is associated to two "dimension vectors" $\left(h_{1}, \ldots, h_{d}\right),\left(w_{1}, \ldots, w_{d}\right) \in \mathbb{N}^{d}$, and is a moduli space of representations of the doubled quiver

$$
\begin{array}{ccccccc}
\mathbb{C}^{h_{1}} & \mathbb{C}^{h_{2}} & \cdots & & \mathbb{C}^{h_{d}} & \text { "framed vertices" } \\
\uparrow \downarrow & & \uparrow \downarrow \\
\mathbb{C}^{w_{1}} & \rightleftarrows & & & \uparrow \downarrow & \\
\mathbb{C}^{w_{2}} & \Rightarrow & \cdots & \rightleftarrows & \mathbb{C}^{w_{d}} & \text { "gauged vertices" }
\end{array}
$$

such that at each gauged vertex, \sum (go out then in) $=0$, plus some open "stability" condition. We mod out by $\prod_{i} G L\left(\mathbb{C}^{w_{d}}\right)$. Let $\mathcal{M}(\vec{h}):=\coprod_{\vec{w}} \mathcal{M}(\vec{h}, \vec{w})$.
Theorems. (Nakajima) $U_{s l_{d+1}}$ acts on $H_{\text {top }}(\mathcal{M}(\vec{h}))$, making it $V_{\sum_{i} h_{i} \omega_{i}}$ and $H_{\text {top }}(\mathcal{M}(\vec{h}, \vec{w}))$ is the $\sum_{i} h_{i} \omega_{i}-\sum_{i} w_{i} \alpha_{i}$ weight space.
(Varagnolo) $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g} l_{\mathrm{d}+1}[y]\right)$ acts on $\mathrm{H}_{*}(\mathcal{M}(\overrightarrow{\mathrm{~h}}))$.
(Nakajima) $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g l}_{\mathrm{d}+1}\left[e^{ \pm y]}\right)\right.$ acts on $K(\mathcal{M}(\overrightarrow{\mathrm{~h}}))$.
As modules, $K(\mathcal{M}(\lambda+\mu)) \cong K(\mathcal{M}(\lambda)) \otimes K(\mathcal{M}(\mu))$.
If $\vec{h}=(n, 0, \ldots, 0)$, then $\mathcal{M}(\vec{h}, \vec{w}) \cong T^{*} \amalg\left(\left\{p a r t i a l ~ f l a g s ~ i n ~ \mathbb{C}^{n}\right.\right.$ with dims $\left.\vec{w}\right)$.
This last is fun to check; consider powers of $\mathbb{C}^{n} \rightarrow \mathbb{C}^{w_{1}} \rightarrow \mathbb{C}^{n}$ vs. the images $\mathbb{C}^{w_{i}} \rightarrow \mathbb{C}^{n}$, and one recognizes the Springer resolution.

Maulik-Okounkov's geometric K-matrices, and $d=1$ puzzles.

[MO] dress up the natural map $\prod_{i} \mathcal{M}\left(\lambda_{i}\right) \xrightarrow{\oplus} \mathcal{M}\left(\sum_{i} \lambda_{i}\right)$ to a "stable envelope" Lagrangian relation, giving a convolution in homology. (If all these spaces are cotangent bundles, we can equivalently map the CSM classes on the base.)
In particular, if the λ_{i} are minuscule, then the LHS is points indexing the stable basis of $\mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathcal{M}\left(\sum_{i} \lambda_{i}\right)\right)\left[\hbar^{ \pm}\right]$, depending crucially on the order of summands. If we change this order (say by a simple transposition), then the basis changes, and this change of basis is the generic rational K -matrix!
The boundary labels of $\mathrm{d}=1$ puzzles are restricted to 0 or 1 not 10 ; correspondingly the A_{2} quiver varieties involved reduce to A_{1} quiver varieties. (N.B. The subspaces $\mathbb{C}^{2} \leq \mathbb{C}^{3}$ on the three sides are Z_{3}-related, not the same!)

Theorem. Consider these two Lagrangian relations relating quiver varieties, the first a stable envelope and the second a symplectic reduction:

$$
\mathcal{M}\left(\begin{array}{ll}
n & \\
k & 0
\end{array}\right) \times \mathcal{M}\left(\begin{array}{ll}
n & \\
n & k
\end{array}\right) \rightarrow \mathcal{M}\left(\begin{array}{cc}
2 n & \\
n+k & k
\end{array}\right) \xrightarrow{/ / / \operatorname{Rad}\left(P_{n}\right)} \mathcal{I d}\left(\begin{array}{ll}
n & n \\
k & k
\end{array}\right)
$$

Then the puzzle scattering amplitudes using the generic R -matrix compute the induced map on stable classes. In cohomology, they compute the product in the basis $\left\{\mathrm{MO}_{\lambda} /[\right.$ zero section $\left.]\right\}$ of $\mathrm{K}_{\mathrm{T} \times \mathbb{C}^{\times}}\left(\mathrm{T}^{*} \operatorname{Gr}(\mathrm{k}, \mathrm{n})\right) \otimes \mathrm{frac} \mathrm{K}_{\mathrm{T} \times \mathbb{C}^{\times}}(\mathfrak{p t})$.

