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Abstract
The Bergeron-Billey pipe dream formula for the Schubert polynomial
S reflects a degeneration of Fulton’s matrix Schubert variety X € Misn
to a multiplicity-free union of coordinate subspaces: one component for
each -~ /+ pipe dream, or equivalently for each subword with product
0 of the triangular word for 0, in the algebra of divided difference
operators [K-Miller ‘05]. This has a minor enhancement to the rectangular

.. —kXn
word for Oy i1 k42 .. kin 12 ..k 7T € Skin, and some varieties X C My xn.
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Here we extend this to the conormal variety CXW><n C T*Myxq of

a matrix Schubert variety. The result is now a union of Lagrangian
coordinate spaces, but with multiplicities. When 7t has a well-defined
associated Temperley-Lieb element TL(7r) (i.e. is fully commutative, &
321-avoiding), then these components and multiplicities are controlled by
subwords of the rectangular word in the Temperley-Lieb algebra.

These transparencies are available athttp://math.cornell.edu/~allenk/
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Mildly generalized matrix Schubert varieties.

Fix k and n. Given 7t € Sy, define

Xl;xn = {M € Myxn []]\/l 1Ok]

which if k =n and 7 € §;, < §;,1y, gives the usual matrix Schubert variety Xor.

Generalizations of these hold: (1) [Fulton '92] X is defined as a scheme by the
rank inequalities on the NW rectangles (of the (k +n) x (n + k) matrix).

(2) [K-Miller “05] Fulton’s determinants are a Grobner basis w.r.t. any term order
picking out their antidiagonal terms (which are squarefree monomials).

(3) [K-Miller "05] The components of the resulting Stanley-Reisner scheme
correspond naturally to the pipe dreams of [Bergeron-Billey "93].
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Example: X;435 = R 12 13
M1 M2 M3

c BB, C M(k+n)><(n+k)}

) : myp = 0, mypamp3 — myzmy; = 0}
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"
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So init X51435 has two components: 4
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Conormal varieties, Arnol’d’s lemma, and projective duality.

Given A C B manifolds (A locally closed), define the conormal bundle
CA:={(b,y) eT'B: beA VvL A}

which is always Lagrangian and conical, meaning invariant under scaling the
cotangent fibers. If A is only a subvariety (but B still smooth), define the
conormal variety CA := CA,,.

Arnol’d’s lemma. If L C T*M is Lagrangian, closed, and conical, then each
component X C L is a conormal variety: specifically, X = C (7tr+pm_.m(X)).

Soif X C Vis an affine variety, then CX C T*V =V xV* = T*(V*), but Arnol’d’s
lemma only applies on the V* side if X itself was conical, the cone over a

projective variety PX. In that case, there exists a unique variety Y C V* such
that C(X C V) = C(Y C V*), and PX, PY are called projectively dual.

The easy case is X < V a linear subspace, in which case Y = Xt < v~

But projective duality is very strange — for example, the orbits of a group G on
a rep V and its dual V* are in correspondence, but the posets of orbit closures
can be completely different.

These transparencies are available at http://math.cornell.edu/~allenk/ 2


http://math.cornell.edu/~allenk/

Grobner degeneration of conormal varieties.

Let X C V be an affine variety, with a Grobner basis (g;) w.r.t. a term order
given by some integral weighting of the variables (i.e. by a circle subgroup S of
the diagonal matrices T < GL(V)). Then init X is T-invariant, a schemy union
of coordinate subspaces of V.

Extend the action of S on V to a symplectic action on T*V. Then init CX is
Lagrangian, conical, and T-invariant, so by Arnol’d’s lemma must supported
on a union of conormal bundles to coordinate subspaces of V.

Example: Let X be the hyperbola xy = t degenerating at t = 0 to X’, the two
axes. Then CX = {(x,y,a,b) : xy =t, ax = yb}. Att — 0 it contains C(X’),
but also contains the conormal variety to the origin, with multiplicity 2.

Easy theorems:

(1) init CX C init X x V*.

(2) init CX D C(init X).

(3) If X is conical, with projective dual Y, then init CX O C(init X) U C(init Y).

As the example above shows, extra components of init CX can develop where
init X develops singularities, and they need not be multiplicity 1.
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Combinatorial interlude: the Temperley-Lieb algebra.

Consider replacing each divided difference operator 0; by the corresponding
Temperley-Lieb generator e;:

nl

These pictorially satisfy [e;, ;] = O for [i —j| > 1, and e;ei1e; = ey; in particular,
they do not braid. So the rule above only extends to those w € §,, for which no
braid moves are required, called fully commutative elements.

Al

In order for them to define a closed algebra, we have to give a value for e?, and
we will use one of the standard choices, 2e;.

Theorem. The fully commutative permutations w are the 321-avoiding ones.
There are Catalan many of them, and {TL(w)} give a basis of the Temperley-Lieb
algebra on n strands.

Multiplying generators 0; of the nil Hecke ring gives basis elements 0., or O if
strands cross twice. But when we multiply generators e; of Temperley-Lieb, we
get basis elements TL(w) times 2* ©f100ops,
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The antidiagonal Grobner degeneration of CX..

We recapitulate one of the main results of [K-Miller "05]:

_ 'Jl"
init X, = U (A ={M € Myxn : my; =0at +s}> C Myxn.
~~,—} pipe dreams

with product 7,
no two pipes cross twice

—k .
So far we know that each component of init CX. " is the conormal bundle to
a coordinate subspace of My«n. To specify a coordinate subspace is the same
amount of data as in a pipe dream: one bit for each matrix entry.

But for the conormal varieties, it turns out to be natural to use the tiles “r ,+.

Theorem [K-Zinn-Justin]. If m is fully commutative, and TL(7) its
corresponding Temperley-Lieb basis element, then as a cycle

) -
.o okXn
[init CX, ] = g 2# of loops [A T x A" ] C Myxn X M.
J_ L
", pipe dreams
with connectivity TL(m)
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The first nonlinear example.

( a b 1 0] )
S2x2 a b c d 0 1 — a b
Xi324 = § [c d] 11 0 o0 ol € B_nB., i.e. rank [c d] <171,

\ 0o 1 0 0 )

Then X is isomorphic to its projective dual Y, and init CX,; has components

OO QO O
RS [ N RIS RS

two from C(init X, ), two from C(init Y), and one surprise component.

In particular, their projections to M., Mj. , have dimensions (3,1),(3,1),

(1,3),(1,3), (2,2); when neither projection has dimension dim X, we see a
component that can’t be seen from either X or Y.

Theorem [K-Z]]. Let 7 be 321-avoiding. Then there is a unique 7’ such that the
connectivity of TL(7) and TL(7") are left-right mirror, and the projective dual of
Xr is also the left-right mirror of X,/
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