
Pipe dreams and conormal varieties

Allen Knutson∗ (Cornell) and Paul Zinn-Justin (Jussieu)

AMS conference, MSU, March 2015

Abstract
The Bergeron-Billey pipe dream formula for the Schubert polynomial

Sπ reflects a degeneration of Fulton’s matrix Schubert variety Xπ ⊆ Mn×n

to a multiplicity-free union of coordinate subspaces: one component for
each ✆✞ / pipe dream, or equivalently for each subword with product
∂π of the triangular word for ∂w0

in the algebra of divided difference
operators [K-Miller ’05]. This has a minor enhancement to the rectangular

word for ∂k+1 k+2 ... k+n 1 2 ... k, π ∈ Sk+n, and some varieties X
k×n

π ⊆ Mk×n.

Here we extend this to the conormal variety CX
k×n

π ⊆ T∗Mk×n of
a matrix Schubert variety. The result is now a union of Lagrangian
coordinate spaces, but with multiplicities. When π has a well-defined
associated Temperley-Lieb element TL(π) (i.e. is fully commutative, ⇔
321-avoiding), then these components and multiplicities are controlled by
subwords of the rectangular word in the Temperley-Lieb algebra.

These transparencies are available at http://math.cornell.edu/~allenk/

http://math.cornell.edu/~allenk/


Mildly generalized matrix Schubert varieties.

Fix k and n. Given π ∈ Sk+n, define

X
k×n

π :=

{
M ∈ Mk×n :

[

M 1k
1n 0

]

∈ B−πB+ ⊆ M(k+n)×(n+k)

}

which if k = n and π ∈ Sn ≤ Sn+n, gives the usual matrix Schubert variety Xπ.

Generalizations of these hold: (1) [Fulton ’92] Xπ is defined as a scheme by the
rank inequalities on the NW rectangles (of the (k+ n)× (n+ k) matrix).
(2) [K-Miller ’05] Fulton’s determinants are a Gröbner basis w.r.t. any term order
picking out their antidiagonal terms (which are squarefree monomials).
(3) [K-Miller ’05] The components of the resulting Stanley-Reisner scheme
correspond naturally to the pipe dreams of [Bergeron-Billey ’93].

Example: X
2×3

21435 =

{(

m11 m12 m13

m21 m22 m23

)

: m11 = 0,m12m23 −m13m22 = 0

}

So init X
2×3

21435 has two components:

1 2 3

4

5

2

1

4 3 5

1 2 3

4

5

2

1

4 3 5
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Conormal varieties, Arnol ′d’s lemma, and projective duality.

Given A ⊆ B manifolds (A locally closed), define the conormal bundle

CA :=
{
(b,~v) ∈ T∗B : b ∈ A, ~v ⊥ TbA

}

which is always Lagrangian and conical, meaning invariant under scaling the
cotangent fibers. If A is only a subvariety (but B still smooth), define the
conormal variety CA := CAreg.

Arnol ′d’s lemma. If L ⊆ T∗M is Lagrangian, closed, and conical, then each
component X ⊆ L is a conormal variety: specifically, X = C (πT∗M։M(X)).

So if X ⊆ V is an affine variety, thenCX ⊆ T∗V ∼= V×V∗ ∼= T∗(V∗), but Arnol ′d’s
lemma only applies on the V∗ side if X itself was conical, the cone over a
projective variety PX. In that case, there exists a unique variety Y ⊆ V∗ such
that C(X ⊆ V) = C(Y ⊆ V∗), and PX,PY are called projectively dual.

The easy case is X ≤ V a linear subspace, in which case Y = X⊥ ≤ V∗.

But projective duality is very strange – for example, the orbits of a group G on
a rep V and its dual V∗ are in correspondence, but the posets of orbit closures
can be completely different.
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Gröbner degeneration of conormal varieties.

Let X ⊆ V be an affine variety, with a Gröbner basis (gi) w.r.t. a term order
given by some integral weighting of the variables (i.e. by a circle subgroup S of
the diagonal matrices T ≤ GL(V)). Then init X is T -invariant, a schemy union
of coordinate subspaces of V .

Extend the action of S on V to a symplectic action on T∗V . Then init CX is
Lagrangian, conical, and T -invariant, so by Arnol ′d’s lemma must supported
on a union of conormal bundles to coordinate subspaces of V .

Example: Let X be the hyperbola xy = t degenerating at t = 0 to X ′, the two
axes. Then CX = {(x, y, a, b) : xy = t, ax = yb}. At t → 0 it contains C(X ′),
but also contains the conormal variety to the origin, with multiplicity 2.

Easy theorems:
(1) init CX ⊆ init X× V∗.
(2) init CX ⊇ C(init X).
(3) If X is conical, with projective dual Y, then init CX ⊇ C(init X) ∪ C(init Y).

As the example above shows, extra components of init CX can develop where
init X develops singularities, and they need not be multiplicity 1.
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Combinatorial interlude: the Temperley-Lieb algebra.

Consider replacing each divided difference operator ∂i by the corresponding
Temperley-Lieb generator ei:

These pictorially satisfy [ei, ej] = 0 for |i− j| > 1, and eiei+1ei = ei; in particular,
they do not braid. So the rule above only extends to those w ∈ Sn for which no
braid moves are required, called fully commutative elements.

In order for them to define a closed algebra, we have to give a value for e2i , and
we will use one of the standard choices, 2ei.

Theorem. The fully commutative permutations w are the 321-avoiding ones.
There are Catalan many of them, and {TL(w)} give a basis of the Temperley-Lieb
algebra on n strands.

Multiplying generators ∂i of the nil Hecke ring gives basis elements ∂w, or 0 if
strands cross twice. But when we multiply generators ei of Temperley-Lieb, we
get basis elements TL(w) times 2# of loops.
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The antidiagonal Gröbner degeneration of CXπ.

We recapitulate one of the main results of [K-Miller ’05]:

init Xπ =
⋃

✆✞, pipe dreams
with product π,

no two pipes cross twice

(

A := {M ∈ Mk×n : mi,j = 0 at s}

)

⊆ Mk×n.

So far we know that each component of init CX
k×n

π is the conormal bundle to
a coordinate subspace of Mk×n. To specify a coordinate subspace is the same
amount of data as in a pipe dream: one bit for each matrix entry.

But for the conormal varieties, it turns out to be natural to use the tiles , .

Theorem [K-Zinn-Justin]. If π is fully commutative, and TL(π) its
corresponding Temperley-Lieb basis element, then as a cycle

[init CX
k×n

π ] =
⋃

, pipe dreams
with connectivity TL(π)

2# of loops

[

A × A

]

⊆ Mk×n ×M∗

k×n.
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The first nonlinear example.

X
2×2

1324 =






[

a b

c d

]

:









a b 1 0

c d 0 1

1 0 0 0

0 1 0 0









∈ B−πB+, i.e. rank

[

a b

c d

]

≤ 1






Then Xπ is isomorphic to its projective dual Y, and init CXπ has components

2x

two from C(init Xπ), two from C(init Y), and one surprise component.

In particular, their projections to M2×2,M
∗

2×2 have dimensions (3, 1), (3, 1),

(1, 3), (1, 3), (2, 2); when neither projection has dimension dimXπ we see a
component that can’t be seen from either X or Y.

Theorem [K-ZJ]. Let π be 321-avoiding. Then there is a unique π ′ such that the
connectivity of TL(π) and TL(π ′) are left-right mirror, and the projective dual of
Xπ is also the left-right mirror of Xπ ′.
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