Pipe dreams and conormal varieties

Allen Knutson* (Cornell) and Paul Zinn-Justin (Jussieu)

AMS conference, MSU, March 2015

Abstract

The Bergeron-Billey pipe dream formula for the Schubert polynomial S_{π} reflects a degeneration of Fulton's matrix Schubert variety $\overline{X}_{\pi} \subseteq M_{n \times n}$ to a multiplicity-free union of coordinate subspaces: one component for each $\neg_{c} / +$ pipe dream, or equivalently for each subword with product ∂_{π} of the triangular word for $\partial_{w_{0}}$ in the algebra of divided difference operators [K-Miller '05]. This has a minor enhancement to the rectangular word for $\partial_{k+1 \ k+2 \ \dots \ k+n \ 1 \ 2 \ \dots \ k}, \pi \in S_{k+n}$, and some varieties $\overline{X}_{\pi}^{k \times n} \subseteq M_{k \times n}$. Here we extend this to the *conormal variety* $C\overline{X}_{\pi}^{k \times n} \subseteq T^*M_{k \times n}$ of

a matrix Schubert variety. The result is now a union of Lagrangian coordinate spaces, but *with* multiplicities. When π has a well-defined associated Temperley-Lieb element $TL(\pi)$ (i.e. is fully commutative, \Leftrightarrow 321-avoiding), then these components and multiplicities are controlled by subwords of the rectangular word in the Temperley-Lieb algebra.

These transparencies are available at http://math.cornell.edu/~allenk/

Mildly generalized matrix Schubert varieties.

Fix k and n. Given $\pi \in S_{k+n}$, define

$$\overline{X}_{\pi}^{k \times n} := \left\{ M \in M_{k \times n} : \begin{bmatrix} M & \mathbf{1}_{k} \\ \mathbf{1}_{n} & \mathbf{0} \end{bmatrix} \in \overline{B_{-}\pi B_{+}} \subseteq M_{(k+n) \times (n+k)} \right\}$$

which if k = n and $\pi \in S_n \leq S_{n+n}$, gives the usual matrix Schubert variety \overline{X}_{π} .

Generalizations of these hold: (1) [Fulton '92] \overline{X}_{π} is defined as a scheme by the rank inequalities on the NW rectangles (of the $(k + n) \times (n + k)$ matrix).

(2) [K-Miller '05] Fulton's determinants are a Gröbner basis w.r.t. any term order picking out their *antidiagonal* terms (which are squarefree monomials).

(3) [K-Miller '05] The components of the resulting Stanley-Reisner scheme correspond naturally to the pipe dreams of [Bergeron-Billey '93].

Example:
$$\overline{X}_{21435}^{2\times3} = \left\{ \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \end{pmatrix} : \underline{m}_{11} = 0, m_{12}m_{23} - \underline{m}_{13}m_{22} = 0 \right\}$$

So init $\overline{X}_{21435}^{2\times3}$ has two components: $4 \quad 3 \quad 5$

These transparencies are available at http://math.cornell.edu/~allenk/

Conormal varieties, Arnol'd's lemma, and projective duality.

Given $A \subseteq B$ manifolds (A locally closed), define the **conormal bundle**

$$CA := \{(b, \vec{v}) \in \mathsf{T}^*\mathsf{B} : b \in \mathsf{A}, \, \vec{v} \perp \mathsf{T}_b\mathsf{A}\}$$

which is always Lagrangian and **conical**, meaning invariant under scaling the cotangent fibers. If A is only a subvariety (but B still smooth), define the **conormal variety** $CA := \overline{CA_{reg}}$.

Arnol'd's lemma. If $L \subseteq T^*M$ is Lagrangian, closed, and conical, then each component $X \subseteq L$ is a conormal variety: specifically, $X = C(\pi_{T^*M \to M}(X))$.

So if $X \subseteq V$ is an affine variety, then $CX \subseteq T^*V \cong V \times V^* \cong T^*(V^*)$, but Arnol'd's lemma only applies on the V^* side if X itself was conical, the cone over a projective variety $\mathbb{P}X$. In that case, there exists a unique variety $Y \subseteq V^*$ such that $C(X \subseteq V) = C(Y \subseteq V^*)$, and $\mathbb{P}X$, $\mathbb{P}Y$ are called **projectively dual**.

The easy case is $X \leq V$ a linear subspace, in which case $Y = X^{\perp} \leq V^*$.

But projective duality is **very** strange – for example, the orbits of a group G on a rep V and its dual V* are in correspondence, but the posets of orbit closures can be completely different.

Gröbner degeneration of conormal varieties.

Let $X \subseteq V$ be an affine variety, with a Gröbner basis (g_i) w.r.t. a term order given by some integral weighting of the variables (i.e. by a circle subgroup S of the diagonal matrices $T \leq GL(V)$). Then init X is T-invariant, a schemy union of coordinate subspaces of V.

Extend the action of S on V to a symplectic action on T*V. Then init CX is Lagrangian, conical, and T-invariant, so by Arnol'd's lemma must supported on a union of conormal bundles to coordinate subspaces of V.

Example: Let X be the hyperbola xy = t degenerating at t = 0 to X', the two axes. Then $CX = \{(x, y, a, b) : xy = t, ax = yb\}$. At $t \to 0$ it contains C(X'), but also contains the conormal variety to the origin, with multiplicity 2.

Easy theorems:

- (1) init $CX \subseteq init X \times V^*$.
- (2) init $CX \supseteq C(init X)$.
- (3) If X is conical, with projective dual Y, then init $CX \supseteq C(init X) \cup C(init Y)$.

As the example above shows, extra components of init CX can develop where init X develops singularities, and they need not be multiplicity 1.

Combinatorial interlude: the Temperley-Lieb algebra.

Consider replacing each divided difference operator ∂_i by the corresponding *Temperley-Lieb* generator e_i :

These pictorially satisfy $[e_i, e_j] = 0$ for |i - j| > 1, and $e_i e_{i+1} e_i = e_i$; in particular, they do not braid. So the rule above only extends to those $w \in S_n$ for which no braid moves are required, called **fully commutative** elements.

In order for them to define a closed algebra, we have to give a value for e_i^2 , and we will use one of the standard choices, $2e_i$.

Theorem. The fully commutative permutations w are the 321-avoiding ones. There are Catalan many of them, and $\{TL(w)\}$ give a basis of the Temperley-Lieb algebra on n strands.

Multiplying generators ∂_i of the nil Hecke ring gives basis elements ∂_w , or 0 if strands cross twice. But when we multiply generators e_i of Temperley-Lieb, we get basis elements TL(w) times $2^{\# \text{ of loops}}$.

The antidiagonal Gröbner degeneration of $C\overline{X}_{\pi}$.

We recapitulate one of the main results of [K-Miller '05]:

$$\operatorname{init} \overline{X}_{\pi} = \bigcup_{\substack{\searrow_{\Gamma}, + \text{ pipe dreams} \\ \text{with product } \pi, \\ \text{no two pipes cross twice}}} \left(\mathbb{A}^{\neg_{\Gamma}} := \{ M \in M_{k \times n} : m_{i,j} = 0 \text{ at } +s \} \right) \subseteq M_{k \times n}.$$

So far we know that each component of init $C\overline{X}_{\pi}^{k \times n}$ is the conormal bundle to a coordinate subspace of $M_{k \times n}$. To specify a coordinate subspace is the same amount of data as in a pipe dream: one bit for each matrix entry.

But for the conormal varieties, it turns out to be natural to use the tiles -7.

Theorem [K-Zinn-Justin]. If π is fully commutative, and TL(π) its corresponding Temperley-Lieb basis element, then as a cycle

$$[\text{init } C\overline{X}_{\pi}^{k \times n}] = \bigcup_{\substack{\checkmark, \checkmark \\ \text{ pipe dreams} \\ \text{with connectivity } TL(\pi)}} 2^{\# \text{ of loops}} \left[\mathbb{A}^{\checkmark} \times \mathbb{A}^{\checkmark} \right] \subseteq \mathcal{M}_{k \times n} \times \mathcal{M}_{k \times n}^{*}.$$

These transparencies are available at http://math.cornell.edu/~allenk/

The first nonlinear example.

$$\overline{X}_{1324}^{2\times2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \in \overline{B_{-}\pi B_{+}}, \text{ i.e. rank} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \le 1 \right\}$$

Then \overline{X}_{π} is isomorphic to its projective dual Y, and init $C\overline{X}_{\pi}$ has components

two from C(init \overline{X}_{π}), two from C(init Y), and one surprise component.

In particular, their projections to $M_{2\times 2}$, $M_{2\times 2}^*$ have dimensions (3, 1), (3, 1), (1, 3), (1, 3), (2, 2); when neither projection has dimension dim \overline{X}_{π} we see a component that can't be seen from either X or Y.

Theorem [K-ZJ]. Let π be 321-avoiding. Then there is a unique π' such that the connectivity of $TL(\pi)$ and $TL(\pi')$ are left-right mirror, and the projective dual of \overline{X}_{π} is also the left-right mirror of $\overline{X}_{\pi'}$.