Pipe dreams and conormal varieties

Allen Knutson* (Cornell) and Paul Zinn-Justin (Jussieu)

AMS conference, MSU, March 2015

Abstract

The Bergeron-Billey pipe dream formula for the Schubert polynomial S_{π} reflects a degeneration of Fulton's matrix Schubert variety $\bar{X}_{\pi} \subseteq M_{n \times n}$ to a multiplicity-free union of coordinate subspaces: one component for each $\tau_{r} /+$ pipe dream, or equivalently for each subword with product ∂_{π} of the triangular word for $\partial_{w_{0}}$ in the algebra of divided difference operators [K-Miller '05]. This has a minor enhancement to the rectangular word for $\partial_{k+1 k+2} \ldots k+n 12 \ldots k, \pi \in S_{k+n}$, and some varieties $\bar{X}_{\pi}^{k \times n} \subseteq M_{k \times n}$.

Here we extend this to the conormal variety $C \bar{X}_{\pi}^{k \times n} \subseteq T^{*} M_{k \times n}$ of a matrix Schubert variety. The result is now a union of Lagrangian coordinate spaces, but with multiplicities. When π has a well-defined associated Temperley-Lieb element $\operatorname{TL}(\pi)$ (i.e. is fully commutative, \Leftrightarrow 321 -avoiding), then these components and multiplicities are controlled by subwords of the rectangular word in the Temperley-Lieb algebra.

Mildly generalized matrix Schubert varieties.

Fix k and n. Given $\pi \in S_{k+n}$, define

$$
\bar{X}_{\pi}^{k \times n}:=\left\{M \in M_{k \times n}:\left[\begin{array}{cc}
M & 1_{k} \\
1_{n} & 0
\end{array}\right] \in \overline{\bar{B}_{-} \pi \mathrm{B}_{+}} \subseteq M_{(k+n) \times(n+k)}\right\}
$$

which if $k=n$ and $\pi \in S_{n} \leq S_{n+n}$, gives the usual matrix Schubert variety \bar{X}_{π}. Generalizations of these hold: (1) [Fulton '92] \bar{X}_{π} is defined as a scheme by the rank inequalities on the NW rectangles (of the $(k+n) \times(n+k)$ matrix).
(2) [K-Miller '05] Fulton's determinants are a Gröbner basis w.r.t. any term order picking out their antidiagonal terms (which are squarefree monomials).
(3) [K-Miller '05] The components of the resulting Stanley-Reisner scheme correspond naturally to the pipe dreams of [Bergeron-Billey '93].
Example: $\bar{X}_{21435}^{2 \times 3}=\left\{\left(\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23}\end{array}\right): \underline{m_{11}}=0, \mathfrak{m}_{12} m_{23}-\underline{\mathfrak{m}_{13} m_{22}}=0\right\}$

So init $\bar{X}_{21435}^{2 \times 3}$ has two components:

Conormal varieties, Arnol'd's lemma, and projective duality.

Given $A \subseteq B$ manifolds (A locally closed), define the conormal bundle

$$
\mathrm{CA}:=\left\{(\mathrm{b}, \vec{v}) \in \mathrm{T}^{*} \mathrm{~B}: \mathrm{b} \in A, \vec{v} \perp \mathrm{~T}_{\mathrm{b}} A\right\}
$$

which is always Lagrangian and conical, meaning invariant under scaling the cotangent fibers. If A is only a subvariety (but B still smooth), define the conormal variety $C A:=\overline{C A_{\text {reg }}}$.
Arnol'd's lemma. If $\mathrm{L} \subseteq \mathrm{T}^{*} \mathrm{M}$ is Lagrangian, closed, and conical, then each component $X \subseteq L$ is a conormal variety: specifically, $X=C\left(\pi_{T * M \rightarrow M}(X)\right)$.
So if $X \subseteq V$ is an affine variety, then $C X \subseteq T^{*} V \cong V \times V^{*} \cong T^{*}\left(V^{*}\right)$, but Arnol'd's lemma only applies on the V^{*} side if X itself was conical, the cone over a projective variety $\mathbb{P X}$. In that case, there exists a unique variety $\mathrm{Y} \subseteq \mathrm{V}^{*}$ such that $\mathrm{C}(\mathrm{X} \subseteq \mathrm{V})=\mathrm{C}\left(\mathrm{Y} \subseteq \mathrm{V}^{*}\right)$, and $\mathbb{P} X, \mathbb{P} Y$ are called projectively dual.
The easy case is $\mathrm{X} \leq \mathrm{V}$ a linear subspace, in which case $\mathrm{Y}=\mathrm{X}^{\perp} \leq \mathrm{V}^{*}$.
But projective duality is very strange - for example, the orbits of a group G on a rep V and its dual V^{*} are in correspondence, but the posets of orbit closures can be completely different.

Gröbner degeneration of conormal varieties.

Let $X \subseteq V$ be an affine variety, with a Gröbner basis $\left(g_{i}\right)$ w.r.t. a term order given by some integral weighting of the variables (i.e. by a circle subgroup S of the diagonal matrices $\mathrm{T} \leq \mathrm{GL}(\mathrm{V})$). Then init X is T -invariant, a schemy union of coordinate subspaces of V .
Extend the action of S on V to a symplectic action on $T^{*} V$. Then init $C X$ is Lagrangian, conical, and T-invariant, so by Arnol'd's lemma must supported on a union of conormal bundles to coordinate subspaces of V .
Example: Let X be the hyperbola $x y=t$ degenerating at $t=0$ to X^{\prime}, the two axes. Then $C X=\{(x, y, a, b): x y=t, a x=y b\}$. At $t \rightarrow 0$ it contains $C\left(X^{\prime}\right)$, but also contains the conormal variety to the origin, with multiplicity 2.
Easy theorems:
(1) init $C X \subseteq$ init $X \times V^{*}$.
(2) init $C X \supseteq C$ (init $X)$.
(3) If X is conical, with projective dual Y, then init $C X \supseteq C($ init $X) \cup C($ init $Y)$.

As the example above shows, extra components of init CX can develop where init X develops singularities, and they need not be multiplicity 1 .

Combinatorial interlude: the Temperley-Lieb algebra.

Consider replacing each divided difference operator ∂_{i} by the corresponding Temperley-Lieb generator e_{i} :

$$
\left.|||X| \rightarrow||\right|_{n} ^{u} \mid
$$

These pictorially satisfy $\left[e_{i}, e_{j}\right]=0$ for $|i-j|>1$, and $e_{i} e_{i+1} e_{i}=e_{i}$; in particular, they do not braid. So the rule above only extends to those $w \in S_{n}$ for which no braid moves are required, called fully commutative elements.
In order for them to define a closed algebra, we have to give a value for e_{i}^{2}, and we will use one of the standard choices, $2 e_{i}$.
Theorem. The fully commutative permutations w are the 321-avoiding ones. There are Catalan many of them, and $\{\mathrm{TL}(w)\}$ give a basis of the Temperley-Lieb algebra on n strands.
Multiplying generators ∂_{i} of the nil Hecke ring gives basis elements ∂_{w}, or 0 if strands cross twice. But when we multiply generators e_{i} of Temperley-Lieb, we get basis elements $\mathrm{TL}(w)$ times $2^{\# \text { of loops. }}$.

The antidiagonal Gröbner degeneration of $C \bar{X}_{\pi}$.

We recapitulate one of the main results of [K-Miller '05]:

So far we know that each component of init $C \bar{X}_{\pi}^{k \times n}$ is the conormal bundle to a coordinate subspace of $M_{k \times n}$. To specify a coordinate subspace is the same amount of data as in a pipe dream: one bit for each matrix entry.
But for the conormal varieties, it turns out to be natural to use the tiles ${ }^{2} r, ר$. Theorem [K-Zinn-Justin]. If π is fully commutative, and $\pi L(\pi)$ its corresponding Temperley-Lieb basis element, then as a cycle

$$
\left[\text { init } C \bar{X}_{\pi}^{k \times n}\right]=\bigcup_{\substack{\text { Jr, pipe dreams } \\ \text { with connectivity } T(\pi)}} 2^{\# \text { of loops }}\left[\mathbb{A}^{J}\left\ulcorner\times \mathbb{A}^{J} r\right] \subseteq M_{k \times n} \times M_{k \times n}^{*} .\right.
$$

The first nonlinear example.

$$
\bar{X}_{1324}^{2 \times 2}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{llll}
a & b & 1 & 0 \\
c & d & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \in \overline{B_{-} \pi B_{+}} \text {, i.e. } \operatorname{rank}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \leq 1\right\}
$$

Then \bar{X}_{π} is isomorphic to its projective dual Y, and init $C \bar{X}_{\pi}$ has components

two from $C\left(\right.$ init $\left.\bar{X}_{\pi}\right)$, two from C (init Y), and one surprise component.
In particular, their projections to $M_{2 \times 2}, M_{2 \times 2}^{*}$ have dimensions $(3,1),(3,1)$, $(1,3),(1,3),(2,2)$; when neither projection has dimension $\operatorname{dim} \bar{X}_{\pi}$ we see a component that can't be seen from either X or Y .
Theorem [K-Z]]. Let π be 321 -avoiding. Then there is a unique π^{\prime} such that the connectivity of $\Pi L(\pi)$ and $\Pi L\left(\pi^{\prime}\right)$ are left-right mirror, and the projective dual of \bar{X}_{π} is also the left-right mirror of $\bar{X}_{\pi^{\prime}}$.

