Stable map resolutions of Richardson varieties

Allen Knutson (Cornell)

Allensdottirs seminar, September 2020

Abstract

To a simple normal crossings divisor (sncd) D, one associates its "dual simplicial complex", with a vertex for each component D_{i} and face F for each stratum $\cap_{f \in F} D_{f} \neq \emptyset$. For example, Escobar's brick manifolds (which among other things, provide resolutions of Richardson varieties) come with an sncd whose dual complex is a subword complex. In good cases (which includes brick manifolds) the dual complex is a sphere.

With no such geometrical input, Björner-Wachs showed that the order complex of a Bruhat interval (u, v) is a sphere. I'll define a space of equivariant stable maps from \mathbb{P}^{1} to the Richardson variety X_{u}^{v}, and prove that this space is a smooth orbifold, which comes with a natural sncd whose dual is the Björner-Wachs complex. There are no choices, e.g. of reduced words. In the Grassmannian case this space is GKM, and I describe its GKM graph in terms of rim-hook tableaux.

Simple normal crossing divisors and their dual complexes.

Let $D_{1}, D_{2}, \ldots, D_{m}$ be a collection of smooth divisors in a (complex, say) manifold M. They are simple normal crossings if $\bigcap_{f \in F} D_{f}$ is smooth connected of codimension $|F|$ (when nonempty) for each $F \subseteq[m$, i.e. rather like a set of coördinate hyperplanes in \mathbb{C}^{n}. Their union $\mathrm{D}=\mathrm{D}_{1} \cup \ldots \cup \mathrm{D}_{\mathrm{m}}$ is a simple normal crossings divisor or sncd.
A good test case is $M=T V_{P}$ the projective toric variety associated to a polytope P, and D the complement of the open T-orbit. Then $\cap_{f \in F} D_{F}$ is always irreducible (when nonempty), but will only have always the right codimension when M is orbifold, i.e. when P is "simple". Consider a pyramid for counterexamples.
Another nonexample is $M=\mathbb{C P}^{2}=\{[x: y: z]\}, D_{1}=\{x=0\}, D_{2}=\left\{y^{2}=x z\right\}$. The intersection $D_{1} \cap D_{2}$ is smooth and codim 2 but disconnected.
Yet another is the Schubert divisors in the 3-fold $G L_{3} / B$, two smooth surfaces whose intersection $\mathbb{P}^{1} \cup_{p t} \mathbb{P}^{1}$ is not smooth.
When D is snc, define its dual complex $\Delta(\mathrm{D}) \subseteq 2^{[m]}$ to be the simplicial complex with vertex set $[m]$, where $F \subseteq[m]$ to be a face iff $\bigcap_{f \in F} D_{f} \neq \emptyset$.
[Kollár '14] showed that every simplicial complex arises as the dual of some sncd - but states in [Kollár-Xu '16] a "folklore conjecture": if D is anticanonical in M, then $\Delta(D)$ is homeomorphic to a sphere mod a finite group.

Bott-Samelson manifolds and their boring sncds.

Fix a pinning ($\mathrm{G}, \mathrm{B}, \mathrm{T}, \mathrm{W}$) of a Lie (or Kac-Moody) group. Given a word Q in the simple reflections of the Weyl group W, define the Bott-Samelson manifold
$B S^{Q}:=\left\{\left(F_{0}, \ldots, F_{\# Q}\right) \in(G / B)^{1+\# Q}: F_{0}=B / B, \forall i\left(F_{i}, F_{i+1}\right) \in \overline{G_{\Delta} \cdot\left(B / B, r_{\mathrm{r}_{\mathrm{i}}} B / B\right)}\right\}$
of tuples of (generalized) flags, starting at the base flag B/B and only changing a little bit at each step. This is an iterated \mathbb{P}^{1} bundle, hence smooth projective irreducible, and possesses a B-action, with $\left(B S^{Q}\right)^{\top}$ isolated and $\cong 2^{\mathrm{Q}}$.
The Bott-Samelson map $B S^{Q} \rightarrow G / B$ takes $\left(F_{i}\right) \mapsto F_{\# Q}$, with image some B orbit closure $\mathrm{X}^{w}:=\overline{\mathrm{B} w \mathrm{~B}} / \mathrm{B}$. This w is the Demazure product of Q , the (unique) maximum product of any subword of Q . (In the boring case for us $w=\Pi \mathrm{Q}$, though people like that $B S^{Q} \rightarrow X^{w}$ is then a resolution of singularities.)
Whenever $F_{i-1}=F_{i}$, we might as well skip letter i in Q, giving us an injection $B S^{Q \backslash i} \hookrightarrow B S^{Q}$. Intersecting these images we get a stratum $\cong B S^{R}$ for each of the $2^{\# Q}$ many subwords $R \subseteq Q$. Every intersection is nonempty!
Hence if $D=\bigcup_{i=1}^{\# Q} B S^{Q}$ minusletter i, it forms an sncd in $B S^{Q}$ whose $\Delta(D)$ is the entire simplex, rather than some interesting subcomplex of that simplex.

Brick manifolds and spherical subword complexes.

The brick manifold Brick ${ }^{Q} \subseteq B^{Q}$ is the $F_{\# Q}=w B / B$ fiber of $B S^{Q} \rightarrow X^{w}$ (w being the Demazure product). It is smooth (by Sard), T-invariant, and of dimension $\# \mathrm{Q}-\ell(w)$ (so, boring when Q reduced).
Let $\mathrm{D}=\bigcup_{\mathrm{q} \in \mathrm{Q}}\left(\right.$ Brick $\left.^{\mathrm{Q}} \cap \mathrm{BS}^{\mathrm{Q} \backslash \mathrm{q}}\right) \subseteq$ Brick ${ }^{\mathrm{Q}}$; it is an sncd in Brick ${ }^{\mathrm{Q}}$.
Theorem [Escobar '16]. $\Delta(\mathrm{D})$ is the "subword complex" $\Delta(\mathrm{Q}, w)$ whose facets are the complements $\mathrm{Q} \backslash \mathrm{R}$ of reduced subwords $\mathrm{R} \subseteq \mathrm{Q}$ with product w. It is therefore homeomorphic to a sphere [K-Miller '05].
Since D is anticanonical in Brick ${ }^{Q}$, this is consonant with the folklore conjecture.
A Richardson variety $X_{u}^{v} \subset G / B$ is the transverse intersection of a Schubert variety $X_{u}:=\overline{\bar{B}_{-} u \bar{B}} / \mathrm{B}$ and an opposite Schubert variety $X^{v}:=\overline{\mathrm{B} v \mathrm{~B}} / \mathrm{B}$.
We can resolve $X_{u}=w_{0} X^{w_{0} u}$ using $B S_{R}:=w_{0} B S^{R}$, where R is a reduced word for $w_{0} u$. Brion constructed a resolution of X_{u}^{v} using the fiber product of $B S^{Q} \rightarrow X^{v}$ and $B S_{R} \rightarrow X_{u}$. This fiber product is naturally identified with the brick manifold Brick $Q \overleftarrow{R}$, where \overleftarrow{R} is R reversed, and the map to G / B takes $\left(F_{0}, F_{1}, \ldots, F_{\# Q}, \ldots, F_{\# Q+\# R}\right) \mapsto F_{\# Q}$.
In the slides to come, we will give canonical resolutions of Richardson varieties (and thus of projected Richardsons too), not dependent on choices of Q and R.

Example: Brion's "log resolutions" of the Richardson stratification of $\mathrm{GL}_{3} / \mathrm{B}$.

Let $Q=R=121$, reduced words in S_{3}, so $Q \stackrel{\leftarrow}{R}=121121$. Then the dual complex is a 2 -sphere:

The vertices are labeled with the complements of letters, the regions with reduced subwords with product w_{0}. $\mathrm{R}=212$ gives an isomorphic complex:

Moduli spaces of stable maps of rational curves.

Fix a 2-homology class $\beta \in H_{2}(M)$ and a number n of "marked points". We consider maps $\gamma: \Sigma \rightarrow M$, where Σ is a tree of smooth \mathbb{P}^{1} s with simple normal (i.e. nodal) crossings and n points (not at the nodes) marked $1 \ldots n$. Also we require $\gamma_{*}([\Sigma])=\beta$. (The 0 in " $\overline{\mathcal{M}}_{0, n}$ " below is for the only genus we consider.)
Call the map γ stable if Σ has only finitely many automorphisms compatible with γ. Specifically, each component of Σ collapsed by γ to a point should have at least three nodes + marked points.
There is a natural topology on this space $\overline{\mathcal{M}}_{0, n}(M, \beta)$ of maps, making it compact (in limits, Σ can break). It is more naturally a stack than a scheme, in that one should remember the finite automorphism groups.
Theorem [Fulton-Pandharipande '95]. $\overline{\mathcal{M}}_{0, \mathfrak{n}}(G / P, \beta)$ is a smooth proper stack, or in other language, a compact orbifold.
This space comes with an sncd, consisting of the reducible Σ.
Already the case $\overline{\mathcal{M}}_{0, \mathfrak{n}}(\mathfrak{p t}, 0)$ is interesting. Here D has one component for each of the $2^{n-1}-n-1$ nontrivial divisions of the marked points. The classical crossratio gives an isomorphism $\overline{\mathcal{M}}_{0,4} \cong \mathbb{P}^{1}$, where the sncd is the values $0,1, \infty$. In particular the sncd is not anticanonical.

(Now the new stuff!) A moduli space of equivariant maps.

We define a locally closed substack $\overline{\mathcal{M}}^{\prime}$. Assume Σ 's components come in a chain $000 \cdots \mathrm{O}$, not in a knottier tree. Put a \mathbb{G}_{m} action on Σ, speed 1 on each component, with opposed weights $+1,-1$ at the two tangent lines at each node. The two \mathbb{G}_{m}-fixed points in Σ at the ends, with respective tangent weights $+1,-1$, we mark and call $0, \infty \in \Sigma$ (note in particular that $n \geq 2$).
If a circle acts on M, together we get a T^{2}-action on $\overline{\mathcal{M}}_{0, n}^{\prime}(M, \beta)$. The fixed points $\overline{\mathcal{M}}_{0, \mathfrak{n}}^{\prime}(M, \beta)^{\mathbb{G}_{m}}$ for the diagonal are the circle-equivariant stable maps.
Theorem. $\overline{\mathcal{M}}_{0, n \leq 3}^{\prime}(G / P, \beta)^{\mathbb{G}_{m}}$ is a smooth stack (albeit disconnected).
Fix a regular dominant weight, say $\check{\rho}$, acting on G/P; by regularity $(G / P)^{\check{\rho}} \cong W / W_{P}$ with Białynicki-Birula decompositions the Bruhat and opposite Bruhat decompositions.
Let $\beta=[\check{\rho} \cdot \bar{x}] \in \mathrm{H}_{2}(\mathrm{G} / \mathrm{P})$ where $x \in X_{u}^{v}$ is general in the Richardson variety.
Theorem. Let $\widetilde{X}_{u}^{v}(\mathfrak{m})=\left\{\gamma \in \overline{\mathcal{M}}_{0, \mathfrak{m}+2}^{\prime}(\mathrm{G} / \mathrm{P}, \beta)^{\mathbb{G}_{m}}: \gamma(0)=u \mathrm{P} / \mathrm{P}, \gamma(\infty)=\nu \mathrm{P} / \mathrm{P}\right\}$. Then $\widetilde{X}_{u}^{v}(\mathfrak{m})$ is smooth, connected, and for $m \leq 1$ is proper. The map $\widetilde{X}_{u}^{v}(1) \rightarrow$ X_{u}^{v} taking $\gamma \mapsto \gamma($ the marked point $\neq 0, \infty)$ is a resolution of singularities.
Effectively, we're not just specifying a class in homology $\mathrm{H}_{2}(\mathrm{G} / \mathrm{P})$, but in equivariant homology $H_{2}^{G_{m}}(G / P)$.

Main theorems: the sncd $D \subset \widetilde{X}_{u}^{v}(0)$.

Theorem. 1. Let $\gamma: \Sigma \rightarrow X_{u}^{v}$ lie in our space $\widetilde{X}_{u}^{v}(0)$, and enumerate Σ 's fixed points $p_{0}=0, p_{1}, \ldots, p_{c}=\infty \in \Sigma^{\mathbb{G}_{m}}$ so that p_{i-1}, p_{i} lie in the same component of Σ for $\mathfrak{i}=1 \ldots c$. Then $\gamma\left(p_{1}\right)<\ldots<\gamma\left(p_{c-1}\right)$ in the open Bruhat interval (u, v). 2. The substack of $\widetilde{X}_{u}^{v}(0)$ consisting of stable curves through $w_{1}<\ldots<w_{c-1}$ in the open Bruhat interval (u, v) is isomorphic to $\prod_{i=1}^{c} \widetilde{X}_{w_{i-1}}^{w_{i}}(0)$, and in particular is smooth of codimension $c-1$. (Here we take $w_{0}=u, w_{c}=v$.)
3. Hence the substack D consisting of reducible stable curves is sncd, and in the G / B case, is anticanonical.
4. $\widetilde{X_{u}^{v}}(1) \cong \widetilde{X_{u}^{v} \times \mathbb{P}^{1}}(0)$. (This doesn't quite work for higher n.)
\#3 prompts us to consider D's dual complex, which is exactly the order complex of the Bruhat interval (u, v). This simplicial complex was proven in [Björner-Wachs '82] to be homeomorphic to a sphere, using "EL-shellability".
Another case confirmed of the folklore conjecture!
By \#4, the dual of the sncd for $\widetilde{X}_{u}^{v}(1)$ is almost the suspension of the BjörnerWachs sphere - first cross with an interval, triangulate, then cone the ends.
Note that one can define $\widetilde{X}_{u}^{v}(n)$ using stable maps into X_{u}^{v} rather than into G / B; we only used maps into G / B to more easily prove smoothness. The singular variety X_{u}^{v} already contains the seeds of its resolution!

Example: the dual complex $\Delta(\mathrm{D})$ to the sncd D in $\widetilde{\mathrm{X}}_{123}^{321}(1)$.

In each component of D, Σ breaks into OO, with the marked point on one of the two components. Each corresponding vertex of $\Delta(\mathrm{D})$ is labeled by γ (the node). When the component with the marked point collapses, taking the node with it, we [box] its image. Otherwise the $*$ specifies the component of the marked point. A few of the bigger faces of $\Delta(\mathrm{D})$ are also labeled.
The link of the $[u]$ (or $[v]$) vertex is a copy of the Björner-Wachs sphere. Deleting those (gold) balls gives a (blue) triangulation of their sphere times an interval.

GKM spaces and the Grassmannian case.

Call a torus action d-GKM (for Goresky-Kottwitz-MacPherson) if it fixes only finitely many subvarieties of dimension $\leq \mathrm{d}$ (necessarily toric). [GKM '98] only considered $\mathrm{d}=1$, which includes flag manifolds G/P. The fixed points and curves in a $1-G K M$ space give the vertices and edges of a graph.
It is easy to see that if M is $d-G K M$, then each $\overline{\mathcal{M}}_{0, n}(M, \beta)$ is $(d-1)$-GKM. For example, the isolated fixed points in $\widetilde{X}_{u}^{v}(0)$ consist of chains of covers of T-fixed curves, each connecting some w_{i} to $w_{i+1}=w_{i} r_{\delta}$.
[Guillemin-Zara '01] observed that Grassmannians are 2-GKM, which they called " 3 -independence" (of isotropy weights). Hence each $\widetilde{X}_{\mu}^{v}(0)$ is 1-GKM.
To describe its GKM graph, we need recall the combinatorial notion of rim-hook tableau of shape μ / ν. This is a chain $\mu=\lambda_{0} \subset \lambda_{1} \subset \ldots \subset \lambda_{m}=v$ of partitions, where each $\lambda_{i} / \lambda_{i-1}$ is a rim-hook, i.e. connected and containing no 2×2 square.
Theorem. The T-fixed points on $\widetilde{X}_{\mu}^{v}(0)$ correspond to rim-hook tableaux $\{\tau\}$. Most of the edges out of τ involve breaking a rim-hook into two or gluing two together, making τ^{\prime}. If rim-hooks i and $i+1$ of τ together contain a 2×2 square (so can't be glued), or share no boundary (ditto), the resulting union has a canonical alternate breaking, τ^{\prime}. These pairs $\left(\tau, \tau^{\prime}\right)$ are the graph edges.

Example: the GKM graph for $\widetilde{X}_{\emptyset}^{2+2}(0)$.

To the j th rim-hook we associate a root $\beta_{j}:=e_{\ell}-e_{r}$ where $\ell, r \in[n]$ are the diagonals of the ends of the rim-hook (e.g. $r=\ell+1$ for single squares). Draw the GKM graph nicely by placing τ at position $\Phi(\tau):=\sum \square \mathfrak{i}, \operatorname{l}^{\operatorname{sign}(j-i) \beta_{j}}$.

In this example the edges for gluing-or-cutting rim-hooks are red, those for gluing-then-rebreaking-the-other-way edges are green.
WARNING: in larger examples this function Φ is not injective.

Bonus: computing the isotropy weights on $\widetilde{X}_{\mu}^{v}(0)$, up to scale.

Let T act on the 1-GKM space M, and $\rho: \mathbb{G}_{m} \rightarrow T$ a regular coweight $\left(M^{\rho}=M^{\top}\right)$. A T-fixed curve δ in $\overline{\mathcal{M}}_{0, \mathfrak{n}}(M, \beta)^{\mathbb{G}_{\mathfrak{m}}}$ is a family $\left(\gamma_{\mathrm{t}}\right)_{\mathrm{t} \in \mathbb{P}^{1}}$ of $\mathbb{G}_{\mathfrak{m}}$-equivariant stable maps $\gamma_{t}: \Sigma_{t} \rightarrow M$, the union of whose images forms a toric T-invariant surface $S \subseteq M$. The images $\gamma_{\mathrm{t}}(0)$ and $\gamma_{\mathrm{t}}(\infty)$ are constant in t , and are the sink and source of the $\mathbb{G}_{\mathfrak{m}}$-action on S.
Let λ, μ be the isotropy weights on $T_{\gamma_{t}(0)} S$. Then the coweight lattice of $\operatorname{Stab}_{T}(\delta)$ is $\left(\lambda^{\perp} \cap \mu^{\perp}\right)+\mathbb{Z} \rho$, whose perp is $(\mathbb{Z} \lambda+\mathbb{Z} \mu) \cap \rho^{\perp}$.
The isotropy weights of T on $\gamma_{0}, \gamma_{\infty} \in \delta$ lie in $+\mathbb{N} \lambda-\mathbb{N} \mu$ and $-\mathbb{N} \lambda+\mathbb{N} \mu$ respectively, whose intersections with ρ^{\perp} are $\cong \mathbb{N}$. We have thus determined those isotropy weights up to scale.
In the case $M=\operatorname{Gr}(\mathrm{k}, \mathrm{n})$, the possible S boil down to \quad (here $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$)

- $\operatorname{Gr}\left(1, \mathbb{C}^{a b c}\right)$, gluing two rim-hooks along a horizontal edge
- $\operatorname{Gr}\left(2, \mathbb{C}^{\mathrm{abc}}\right)$, gluing two rim-hooks along a vertical edge
- $\operatorname{Gr}\left(1, \mathbb{C}^{a b}\right) \times \operatorname{Gr}\left(1, \mathbb{C}^{c d}\right)$, swapping nonoverlapping rim-hooks
- $\operatorname{Gr}\left(1, \mathbb{C}^{\mathrm{ac}}\right) \times \operatorname{Gr}\left(1, \mathbb{C}^{\mathrm{bd}}\right)$ or $\operatorname{Gr}\left(1, \mathbb{C}^{\mathrm{ad}}\right) \times \operatorname{Gr}\left(1, \mathbb{C}^{\mathrm{bc}}\right)$, gluing then rebreaking.

I computed each isotropy weight with the recipe above, then invented Φ, which I set up so the isotropy weight would be a multiple of $\Phi(\tau)-\Phi\left(\tau^{\prime}\right)$.
Q: \exists an equivariant ample line bundle \mathcal{L} on $\widetilde{X}_{\mu}^{\gamma}(0)$ with $\Phi(\tau)=\mathrm{T}-w \mathrm{t}\left(\left.\mathcal{L}\right|_{\tau}\right)$?

