Bruhat atlases on wonderful compactifications and elsewhere

Allen Knutson (Cornell)

In memory of my friend and inspiration, Andrei Zelevinsky

Abstract

In 1985, Andrei identified spaces of representations of the equioriented A_{n} quiver with certain intersections of Schubert varieties and opposite Bruhat cells, as stratified spaces. This suggests that we might study other stratified spaces using (stratified) atlases of Bruhat cells, or of these intersections.

I'll explain how to recognize that a space might be amenable to this, and the spaces where we've constructed such atlases: G / P, and wonderful compactifications. This is joint work with Xuhua He and Jiang-Hua Lu.

Cluster varieties have suitable stratifications (described by Zwicknagl), and I'll identify the A_{n} cluster variety with an opposite Bruhat cell intersected with a Schubert variety, much as Andrei did.

Andrei's study of A_{n} quiver representations.

Fix dimensions r_{0}, \ldots, r_{n}, and consider linear maps $V_{0} \xrightarrow{\phi_{1}} \mathrm{~V}_{1} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\phi_{n}} \mathrm{~V}_{\mathrm{n}}$, where $\operatorname{dim} V_{i}=r_{i}$. Let Hom $:=\left\{\vec{\phi}=\left(\phi_{0}, \ldots, \phi_{n}\right)\right\} \cong \mathbb{A}^{\sum_{i=1}^{n} r_{i-1} r_{i}}$.
Then Hom is stratified by the discrete invariants $\vec{\phi} \mapsto\left(\operatorname{rank}\left(\phi_{i} \circ \cdots \circ \phi_{j}\right)\right)_{i \leq j}$, which by Gabriel's theorem index the orbits of the gauge group $\prod_{i=0}^{n} G L\left(V_{i}\right)$. In 1985, Andrei Zelevinskii (!) defined the map

$$
\left(\phi_{0}, \ldots, \phi_{n}\right) \mapsto\left[\begin{array}{cccccc}
0 & \cdots & & & \phi_{n} & \mathrm{I}_{\mathrm{r}_{n}} \\
\vdots & & & \phi_{n-1} & \mathrm{I}_{\mathrm{r}_{n-1}} & 0
\end{array}\right] \text { B/B } \quad \in \mathrm{GL}\left(\sum \mathrm{r}_{i}\right) / \mathrm{B},
$$

an isomorphism of Hom with $\mathrm{B} w_{0} w_{0}^{P} \mathrm{~B} / \mathrm{B} \cap \overline{\mathrm{B}_{-} \pi_{\mathrm{Z}} \mathrm{B}} / \mathrm{B}$, additionally identifying each orbit closure Ω_{r} with $\mathrm{B} w_{0} w_{0}^{P} \mathrm{~B} / \mathrm{B} \cap \overline{\mathrm{B}_{-} \pi_{r} \mathrm{~B}} / \mathrm{B}$. [Lakshmibai-Magyar '98] used this to study the singularities of these orbit closures, and [K-MillerShimozono '06] used it to compute their equivariant cohomology classes.

The stratification of opposite Bruhat cells.

Let ($\mathrm{G}, \mathrm{B}, \mathrm{B}, \mathrm{T}=\mathrm{B} \cap \mathrm{B}_{-}, \mathrm{W}$) be a pinning of a Kac-Moody group.
Then each opposite Bruhat cell $X_{\circ}^{v}:=B \vee B / B \cong \mathbb{A}^{\ell(v)}$ is stratified by its intersections with Schubert varieties $X_{w}:=\overline{\mathrm{B} w \mathrm{~B}} / \mathrm{B}$. The strata are nice:

- Each open stratum is smooth.
- Each closed stratum is normal, Cohen-Macaulay, with rational singularities.
- There is a Frobenius splitting, and these are the compatibly split subvarieties.
- There is a Poisson structure, for which these are the T-leaves.

But even moreso, the stratification considered as a whole is nice:

- It is the coarsest stratification by varieties with this given open stratum.
- The complement of the open stratum is an anticanonical divisor, and by repeated adjunction, the boundary of every stratum is anticanonical.
- The poset $[1, \nu]$ of strata is ranked and EL-shellable.

Note that these good properties do not hold for the rank stratification of Hom the finer stratification on $X_{o}^{w_{0} w_{0}^{p}} \cap X_{Z}$ is simpler!

Bruhat atlases.

Let M be a manifold, with a stratification \mathcal{Y}. Define a Bruhat atlas on M to be

- a choice G of Kac-Moody group
- a map $v: \mathcal{Y}^{\text {op }} \rightarrow W_{G}$, identifying $\mathcal{Y}^{\text {op }}$ with an order ideal in the Bruhat order
- an open cover $\left\{\mathrm{U}_{f}\right\}_{f \in \mathcal{Y}_{\text {min }}}$ of M
- stratified isomorphisms $X_{o}^{v(f)} \cong U_{f}, f \in \mathcal{Y}_{\text {min }}$.

Example [Snider '10] Let $M=\operatorname{Gr}_{k}\left(\mathbb{A}^{n}\right)$.
Let \mathcal{Y} be the common refinement of the n cyclic shifts of the Bruhat decomposition, the positroid stratification considered by Lusztig, Postnikov, Rietsch, Williams, K-Lam-Speyer, ...
Let $G=\widehat{\operatorname{GL}(n)}$, so $W_{G} \cong\{f \in \operatorname{Sym}(\mathbb{Z}): f(i+n)=f(i)+n \forall i\}$.
Then v takes rowspan $\left[\vec{v}_{1} \cdots \vec{v}_{n}\right] \in \operatorname{Gr}_{k}\left(\mathbb{A}^{n}\right)$ to its "bounded juggling pattern" $f(i):=\min \left\{j \geq i: \vec{v}_{i \bmod n} \in \operatorname{span}\left(\vec{v}_{i+1 \bmod n}, \ldots, \vec{v}_{j \bmod n}\right)\right\}$. By [KLS] this is an identification of $\mathcal{Y}^{\text {op }}$ with an order ideal in W_{G}.
Let U_{f} be the evident permuted big cell, of which there are $\binom{n}{k}$. Then Snider defines an isomorphism $X_{0}^{v(f)} \cong \mathrm{U}_{\mathrm{f}}$, and checks that it corresponds the anticanonical divisors, which is all that's necessary.

The Coxeter diagram of a stratified manifold.

If (M, \mathcal{Y}) is to have a Bruhat atlas, then it needs a choice of G. The map v is to correspond the divisors in M with length 1 elements of W_{G}. So attempt to construct a Coxeter diagram $\mathrm{D}(\mathrm{M})$:

- The vertices of $D(M)$ are the divisors in \mathcal{Y}.
- Given two divisors $\mathrm{D}_{1}, \mathrm{D}_{2}$, intersect them, decompose that, intersect, decompose, ..., generating a poset. If that doesn't fit in a rank 2 Bruhat order, give up. Otherwise take the smallest such and connect the vertices appropriately.
In particular, if $D_{1} \cap D_{2}$ is irreducible, the poset is $M \supset \underset{D_{2}}{D_{1}} \supset D_{1} \cap D_{2}$, the $A_{1} \times A_{1}$ Bruhat order. So the vertices don't get connected.
Example. In $\mathrm{Gr}_{\mathrm{k}}\left(\mathbb{A}^{n}\right)$, we have the n cyclic shifts D_{i} of the Schubert divisor.
If $i \neq j \pm 1 \bmod n$, then $D_{i} \cap D_{j}$ is irreducible.
If $i=j \pm 1 \bmod n$, then they generate an A_{2} poset (except for $k=1, n-1$).
So the Coxeter diagram is $\widehat{A_{n-1}}$, as in Snider's result.
(If $k=1, n-1$, then $\operatorname{Gr}_{k}\left(\mathbb{A}^{n}\right)$ is projective space, \mathcal{Y} is the coordinate subspace stratification, and the diagram is completely disconnected.)

$\mathrm{H} / \mathrm{B}_{\mathrm{H}}$ and its Richardson stratification.

Let $M=H / B_{H}$ for H finite-dim, and define its open strata to be the nonempty intersections of B_{H}-orbits and $\mathrm{B}_{\mathrm{H}^{-}}^{-}$-orbits, the open Richardson varieties. Then

$$
\mathcal{Y} \cong\left\{(a, b) \in W_{H}: a \leq b\right\} .
$$

The divisors are the $\left\{X_{r_{\alpha}}\right\}$ and $\left\{X^{r_{\alpha}}\right\}$. The Coxeter diagram of M is two copies of H's diagram, not connected to one another: the $\left\{\mathrm{X}_{\mathrm{r}_{\alpha}}\right\}$ give one copy, the $\left\{\mathrm{X}^{r_{\alpha}}\right\}$ the other, and as each $X_{r_{\alpha}} \cap X^{r_{\beta}}$ is irreducible there are no connections.
This suggests that we take $\mathrm{G}=\mathrm{H} \times \mathrm{H}$. The combinatorics is easy:

$$
\begin{aligned}
(a, b) & \mapsto\left(a, w_{0} b\right) \\
\mathcal{Y}^{\mathrm{op}} & \cong\left\{(a, c): a \leq w_{0} c\right\}=\bigcup_{w}\left[(1,1),\left(w, w_{0} w\right)\right]
\end{aligned}
$$

Theorem [Kazhdan-Lusztig '79 half the stratification, K-Woo-Yong '13 full] Let $\mathrm{U}_{w}=w \mathrm{~B}_{\mathrm{H}}^{-} \mathrm{B}_{\mathrm{H}} / \mathrm{B}_{\mathrm{H}}, w \in W_{\mathrm{H}}$. Then $\mathrm{U}_{w} \cong X_{w}^{\circ} \times \mathrm{X}_{\circ}^{w}$ as a stratified T-space.

H / P and its projected Richardson stratification.

Under the natural projection $H / B_{H} \rightarrow H / P$, define the projected Richardson stratification of H / P as the images of the strata in $\mathrm{H} / \mathrm{B}_{\mathrm{H}}$. These have basically all the good properties of Richardson varieties ([KLS '13], [Billey-Coşkun '13]). It keeps the w_{0} symmetry, and for H / P cominuscule, it is also invariant under

$$
\left.\left\{w \in W_{H}: w \cdot(\text { the Weyl alcove })=\text { (a translate }\right)\right\} \cong Z(H) \text { [Yakimov '10]. }
$$

Theorem [He-K-Lu]. The Coxeter diagram of H/P is two copies of H's diagram, glued together along P's diagram, using the duality involution thereon.
Taking that for our G , we can construct a Bruhat atlas on H / P.
(To be precise: for tiny H / P we could connect up less. But this G works.)

H is the black dots, P uses the dots on the vertical lines

If H / P is cominuscule, but not \mathbb{P}^{n}, this diagram is just the affine diagram!

The wonderful compactification of a group.

Let H be an adjoint group, and $\overline{\mathrm{H}}$ its wonderful compactification.
Define the open strata in the double Bruhat decomposition of $\overline{\mathrm{H}}$ to be the intersections of ($\mathrm{B}_{\mathrm{H}} \times \mathrm{B}_{\mathrm{H}}$)-orbits with ($\mathrm{B}_{\mathrm{H}}^{-} \times \mathrm{B}_{\mathrm{H}}^{-}$)-orbits.
Inside H , these are the double Bruhat cells of [Fomin-Zelevinsky '99].
There are three kinds of divisors: the ones in $\overline{\mathrm{H}} \backslash \mathrm{H}$, which are $\mathrm{H} \times \mathrm{H}$-invariant and generate a boolean lattice [de Concini-Procesi '83], the ($B_{H} \times B_{H}$)-invariant divisors inside H , and the $\left(\mathrm{B}_{\mathrm{H}}^{-} \times \mathrm{B}_{\mathrm{H}}^{-}\right)$-divisors inside H .
Theorem [He-K-Lu]. The Coxeter diagram of $\overline{\mathrm{H}}$ is two copies of H's diagram, each vertex glued to that in a third copy, which is completely disconnected.
Taking that for our G, we can construct a Bruhat atlas.
Springer studied the $\left(\mathrm{B}_{\mathrm{H}} \times \mathrm{B}_{\mathrm{H}}\right)$-orbits on $\overline{\mathrm{H}}$, which amounts to looking at the stratification in the attracting neighborhood of the ($\mathrm{B}_{\mathrm{H}} \times \mathrm{B}_{\mathrm{H}}$)-fixed point, which rips out the ($\mathrm{B}_{\mathrm{H}}^{-} \times \mathrm{B}_{\mathrm{H}}^{-}$)-divisors.
For that smaller space, the Coxeter diagram is just the Nakajima doubling of H's diagram, and we recover the [Chen-Dyer '03] description of Springer's poset.

Why is the Nakajima doubling showing up here???
The full diagram is a sort of fiber product of two, and appeared also in [Li '10].

The A_{n} cluster variety.

Zwicknagl showed that on a cluster variety, there are finitely many T-invariant Poisson subvarieties, the T-leaves. Since these are singular, we shouldn't hope to cover them with Bruhat cells X_{\circ}^{v}, but perhaps with $X_{\circ}^{v} \cap X_{w}$, as in [Zelevinskii]. The A_{n-3} cluster variety is the cone $\widehat{G_{2}\left(\mathbb{A}^{n}\right)}$, which Plücker embeds into $\Lambda^{2}\left(\mathbb{A}^{n}\right)$. So we could additionally ask that that serve as X_{\circ}^{v}.
Theorem. Embed the Dynkin diagram D_{n-2} into D_{n} in the obvious way, and choose a particular antler to amputate producing A_{n-2}, A_{n}.
Let $v(k):=w_{0}\left(D_{k}\right) w_{0}\left(A_{k}\right) \in W_{D_{n}}$, for $k=n, n-2$.
Then $X_{0}^{\nu(n)} \cong \Lambda^{2}\left(\mathbb{A}^{n}\right)$, and $\left.X_{0}^{v(n)} \cap X_{v(n-2)} \cong \widehat{G r_{2}\left(\mathbb{A}^{n}\right.}\right)$, as stratified T-spaces.
It doesn't seem likely that there will be a similar description of other cones over Grassmannians. But perhaps of other finite-type cluster varieties?

