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Abstract
Each finite-dimensional Bruhat cell in Kac-Moody flag varieties is

stratified by its intersections with the finite-codimensional Schubert
varieties. This stratification has many excellent combinatorial and
geometric qualities: it is generated (in a precise sense) by the hypersurface
complementary to the dense stratum, and every stratum is normal with
anticanonical boundary. I’ll trace this to the fact that the hypersurface
has leading term = the product of the variables. Using Gröbner bases I’ll
rederive standard results about Bruhat order, and deeper ones like the fact
that subword complexes are balls or spheres. With Bruhat cells firmly in
place, I’ll use them to put ”Bruhat atlases” on famous stratified spaces.
This latter work is joint with X. He and J.-H. Lu, with results by Snider,
Huang, K-Woo-Yong, Elek, Bao-He, and Galashin-Karp-Lam.
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The objects in play, and outline of the talk.

Let G,B±, T,W be a pinning of a Kac-Moody group, with Xw
◦ := BwB/B the

ℓ(w)-dimensional Bruhat cell and and Xv := B−vB/B the ℓ(v)-codimensional
opposite Schubert variety. Then Xw

◦ is isomorphic to a finite-dimensional
vector space, and is stratified by its intersections with {Xv : v ≤ w}, each T -
invariant.

Call this the Bruhat decomposition of Xw
◦ .

The plan:

1. The algebra of a stratification.

2. Many excellent properties of the Bruhat decomposition of Xw
◦ .

3. Interlude: Frobenius splitting and LMP polynomials.

4. Application to open Bott-Samelson manifolds, and thereby, proofs of the
properties via subword complexes.

5. Bruhat atlases (joint with Xuhua He and Jiang-Hua Lu).
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The algebra of a stratification.

In the usual axiomatization, a stratification Y◦ of a scheme X by irreducible
subvarieties is a finite decomposition X =

∐
Y◦∈Y Y◦ where each Y is locally

closed and irreducible, such that ∀Y◦ ∈ Y , its closure Y◦ is
∐

Z◦∈Y◦,Z◦⊆Y◦ Z
◦.

We will prefer to take Y as a collection of closed subsets, with Yirr ⊆ Y the
irreducible ones. Then Y has three operations: union, intersection, and (a
multivalued one) “take irreducible components”.

Upsides: we only deal with closed subsets, and can talk about “generating” a
stratification.

Downside (?): if an intersection is nonreduced, when we take the union of its
components, we get two elements of Y with the same support. Maybe we want
to insist all intersections are reduced?

Example: let H =

{[
a b

c d

]
: a(ad− bc) = 0

}
. This hypersurface first

generates its two components, a = 0 and ad − bc = 0, which then generate
their intersection a = bc = 0, which then generates its components a = b = 0

and a = c = 0, finally giving us the codimension 3 intersection a = b = c = 0.

Similarly, the NW determinants in an n× n matrix generate a poset ∼= Sn+1.
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The (excellent) Bruhat decomposition of Xw
◦ .

Here are some of the fine properties of Y(Xw
◦ ):

1. Let Y1, Y2 ∈ Y be unions of strata. Then Y1 ∩ Y2 is reduced.

2. The boundary ∂Y :=
⋃

{Z : Z ∈ Yirr, Z ( Y} of a stratum Y is defined by a
T -invariant section of the anticanonical bundle (on the regular locus in Y).

3. The stratification is generated (as in the example just given) by the
hypersurface ∂Xw

◦ .

4. Each (closed) stratum is normal and Cohen-Macaulay.

5. (Not relevant for this talk) There is a T -invariant Poisson structure π on Xw
◦ ,

such that the open strata Y \ ∂Y are exactly the T ·leaves. (This essentially
implies #2.)

6. There is a Frobenius splitting on Xw
◦ with respect to which Y is exactly the

compatibly split subschemes.
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Frobenius splitting of rings, the definition.

A commutative ring R is reduced if for all (or any) n > 1, rn = 0 =⇒ r = 0

for all r ∈ R. It would be nice to phrase this as “ker(r 7→ rn) = 0”, but the nth
power map isn’t linear... or is it?

Assume R ≥ Fp, and n = p, so we can use the Freshman’s Dream. If ker(F) = 0,
we can ask for a left inverse ϕ : R → R, and hope for the following properties:

1. ϕ(a+ b) = ϕ(a) +ϕ(b)

2. ϕ(apb) = aϕ(b)

3. ϕ(1) = 1 this is the hard one to satisfy

Example. Let p
√

: Fp[z1, . . . , zn] → Fp[z1, . . . , zn] take a monomial to its pth
root (if it exists) or 0 (if not), and extend additively, and call it the standard
Frobenius splitting of Fp[z1, . . . , zn]. Easy extension to F a perfect field over Fp.

If ϕ only satisfies #1 and #2 (e.g. ϕ = 0) call it a near-splitting.
The basic example is Tr(f) := p

√∏
i zif/

∏
i zi, which at n = 1 has

the residue-like property that Tr(f) = 0 ⇐⇒ f = d
dz1

g for some g.
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Frobenius splittings of affine space, and compatibly split ideals.

Easy theorem (see e.g. [Brion-Kumar, §1.3]): every near-splitting of F[z1, . . . , zn]
is of the form h 7→ Tr(gh), for some unique g ∈ F[z1, . . . , zn].

An ideal I ≤ R is compatibly split w.r.t ϕ : R → R if ϕ(I) ≤ I, i.e. iff ϕ descends
to R/I.

Theorem. Let ϕ be a splitting of R, and I, J ≤ R be compatibly split.

1. R is reduced. 2. I is radical. 3. I ∩ J is compatibly split.

4. I+ J is compatibly split. (Trivial to prove but geometrically striking!)

5. I : K is compatibly split. (Proof: r ∈ I : K ⇐⇒ ∃k, kr ∈ I =⇒ ∃k, kpr ∈ I

=⇒ ∃k,ϕ(kpr) ∈ I =⇒ ∃k, kϕ(r) ∈ I ⇐⇒ ϕ(r) ∈ I : K.)

6. Each prime component of I is compatibly split. (Follows from #5.)

Three-page theorem [Kumar-Mehta ’09]. There are only finitely many such I.

Consequently, Y := {compatibly split subschemes} forms a stratification in our
strong sense, that all intersections of unions are reduced.

Example: the only compatibly split subschemes w.r.t. the standard splitting p
√

are the Stanley-Reisner subschemes, the unions of coördinate subspaces.
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Three criteria for splitting hypersurfaces.

Let f ∈ Fp[z1, . . . , zn], and define ϕf := Tr(fp−1•) a near-splitting.

Theorem. If any of the following hold,

1. f is of degree n, and z1z2 · · · zn is a leading term w.r.t. some term order

2. f is of degree n, and the number of Fp-points in {f 6= 0} is not a multiple of p

3. [LMP := Lakshmibai-Mehta-Parameswaran ’98] f’s lexicographically leading
term is z1z2 · · · zn

then ϕf is a splitting (or a scalar multiple of one, in case #2), and compatibly
splits 〈f〉 (and hence all the strata it generates). Moreover, #1 =⇒ #2.

Example: consider n × n matrices, and let f be the (homogeneous) product of
all NW and SE principal minors. If we lex-order the variables from NE to SW,
then f satisfies #3, hence #1 and #2.

Example: if f is homogeneous and n = 3, then f defines an elliptic curve.
#2 says it’s not supersingular. #1 implies it’s nodal, and generically has only one
node. Note that the node will be compatibly split, but is not in the stratification
(naı̈vely) generated by {f = 0}.
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Degeneration and simplicial complexes.

If I ≤ F[z1, . . . , zn] is an ideal, let lex(I) be a specific Gröbner degeneration of I,
the ideal spanned over F by the lex-leading monomials of the elements of I.

Theorem [K]. If f is an LMP polynomial, and I, J are compatibly split w.r.t. ϕf,
then lex(I), lex(J) are Stanley-Reisner, and lex(I ∩ J) = lex(I) ∩ lex(J).

Proof sketch. Consider the Gröbner family (ft) taking f1 = f to f0 =
∏

i zi,
which simultaneously takes I1 = I to I0 = lex(I). Being compatible is a closed
condition, i.e. It is compatible with ϕft, so lex(I) is with ϕ∏

i zi
, hence is S-R.

Let Y be the stratification generated by {f = 0}. Define a map Df : 2
[n] → Yirr of

posets taking S 7→ min {Y ∈ Yirr : lex(Y) ⊇ AS}. (This requires the second half
of the theorem.) Interpret it as giving a decomposition of the (n − 1)-simplex.
Taking leading forms in between f and lex(f) refines the decomposition.

f = xyz+ y3 + z3 f = y(xz+ y2) f = xyz

Given a weighting w : zi 7→ ziz
wi
n+1 of the variables, if

∏
i zi gets the lowest

power P, then fRees := w(f)/zP−1
n+1 is again LMP and melds the decompositions.
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Bott-Samelson coördinates on Xw
◦ .

To apply the LMP criterion we need to coördinatize Xw
◦ , which we do by picking

a reduced word Q in W’s generators, with
∏

Q = w.

To any word Q of length n, define the Bott-Samelson manifold and map

BSQ := Pq1 ×B Pq2 ×B · · · ×B Pqn ×B B

/
B → G/B

[p1, . . . , pn] 7→ p1 · · ·pnB/B

and the parametrization of the open set BSQ◦ := BSQ \
⋃

q∈QBSQ\q

An → BSQ◦ , (z1, . . . , zn) 7→
[
eq1(z1)ṡq1, . . . , eqn(zn)ṡqn

]

Let mQ : An → BSQ◦ →֒ BSQ → G/B be the composite.

Theorem [K]. For any Q, the hypersurface m−1
Q (

⋃
αXrα) ⊆ An is defined by an

LMP polynomial fQ. The stratification it generates has Yirr =
{
m−1

Q (Xw)
}

, and

these are exactly the subvarieties compatibly split w.r.t. ϕfQ.

More specifically, the lex-leading term of m−1
Q (Xrα)’s equation is

∏
i: qi=α zi.

The map D : 2Q → W takes S ⊆ Q to the nil Hecke product of its complement.
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Subword complexes ∆(Q,w).

Theorem [K-Miller ’05]. Let Q be a word in W’s generators, fQ its polynomial,
and D : 2Q → W the S 7→ nilHecke(Sc) just obtained geometrically.

1. The preimage D−1(w), considered as a union of open simplices, is an open
ball (or very rarely a sphere).

2. Its closure is the subword complex ∆(Q,w) :=
⋃

v≥wD−1(v), and is a

(shellable) closed ball or sphere, whose boundary is
⋃

v>wD−1(v).

This gives a Bruhat
decomposition of the
simplex, from which
one can derive typical
results about Bruhat
order like, w ≥ v iff
some reduced word for
w contains one for v iff
every reduced word for
w contains one for v.

121−−3−

1213−−1

12−3−31 121−−31

121−23−

1213−31

1213−3−1213−−−

12132−−

12−3−−1

12−32−1

12132−1 121323−

121−231

12−−−31

12−3231 12−−231
−21−231

−213231

−21−23−

−21323−

1−13231

−−1−231
1−−−231

1−−3231 1−1−231

−−13231
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Geometric and cohomological consequences

for Schubert varieties.

1. Shellable balls and spheres have Cohen-Macaulay Stanley-Reisner schemes,
and Cohen-Macaulayness is open in families, hence m−1

Q (Xw) is C-M.
([Conca-Varbaro ’20] prove a sort of converse to this semicontinuity:
if Y is C-M and lex(Y) is Stanley-Reisner, then lex(Y) is still C-M!)

2. The singularities of m−1
Q (Xw) (if any) lie inside m−1

Q

(⋃
v>wXv

)
, which

degenerate to the spherical boundary of lex(m−1
Q (Xw)). But lex(m−1

Q (Xw))

is generically regular along that boundary, hence, lex(m−1
Q (Xw)) is R1 (again

an open condition in families). Cohen-Macaulayness makes it S2, so together,
m−1

Q (Xw) is normal.

3. As Q varies over reduced words for v ≥ w, these affine varieties give local
pictures of the singularities on Xw, hence, Xw is normal and Cohen-Macaulay.

4. The degeneration of m−1
Q (Xw) to its lex is TG-equivariant, so we can compute

the class [Xw]|
∏

Q ∈ KT(pt) as an alternating sum over interior faces of
∆(Q,w), recovering the (AJS/Billey)/Graham/Willems formula.
(The requisite Möbius function calculation µ(F) = 1− χ(link(F)) here is easy
only because the links are hemispheres or spheres, giving µ = 0,±1.)
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Recognizing stratified vector spaces as Bruhat cells.

Given a stratification Y on An, when is that An isomorphic to some Xw
◦ ?

Let f be the equation of the union of divisor strata. If lex(f) is not squarefree,
then these coördinates aren’t going to work. If it is squarefree but not all of∏

i zi, we will need to add some divisors.

Example: let f ∈ F[m11, . . . ,mdd] be the product of the coefficients of the
characteristic polynomial. If we order the variables NE to SW by columns, the
leading term is squarefree but only of degree

(
d+1
2

)
. We can throw in the NW

k× k minors, k = 1, . . . , d− 1 to fix that.

For fQ from Q, we have the inequality

codim(Newton polytope of fQ) ≥ #{factors of fQ}

those being the dimension of the effective torus action (rank of G) vs.
the number of distinct letters in Q (taken from G’s Dynkin diagram).
In the example these are d 6≥ 2d− 1, so that one cannot be ∼= Xw

◦ .

From a pair (An, f =
∏

fi), we can guess G’s Coxeter diagram by looking at the
stratification generated by pairs of divisors, and obtain Q from (lex(fi)).
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Degenerations of fQ: conjectures.

Let D be G’s Dynkin diagram, Q a word in D of length n, and fQ ∈ F[z1, . . . , zn]
the polynomial associated with (D,Q). We state some conjectures about its
leading forms:

1. Around the vertex (1, 1, . . . , 1) the Newton polytope of fQ is an orthant, i.e.
defined by the intersection of n equations and inequalities.

2. The equations and inequalities are in correspondence with positions in Q. A
position in Q gives an equation iff it is the last occurrence of that simple root.

3. The facet of Newton(fQ) corresponding to position i defines a leading form
fiQ, which is again LMP. Let D ′ be D with an extra copy α ′ of αi attached
(where αi attaches), and Q ′ be Q with every later occurrence of αi replaced
with α ′. Then fiQ is the polynomial associated with (D ′, Q ′).

Example: D = A2, Q = 1221, fQ = (z1z4 − z2z3 + 1)(z2z3 − 1).
Its LMP initial forms are z1z4(z2z3 − 1) = f1221 ′ and (z1z4 − z2z3)z2z3 = f122 ′1.

If we partially order LMP polynomials by “is a leading form of”, then this
conjecture implies that the set of fQ polynomials forms an order ideal inside
this poset of LMP polynomials.
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Bruhat atlases: definition.

What about stratified varieties that aren’t just vector spaces?

Definition [X. He–K–J. H. Lu]. A Bruhat atlas on a stratified manifold (M,Y)

is the data

1. a Kac-Moody group H (with Bruhat cells Xv
◦ ⊆ H/BH, etc.)

2. a poset injection v : Yirr
op →֒ WH, with image an order ideal

⋃
p∈Ymin

[1, v(p)]

3. an open cover {Up : p ∈ Ymin} with Up ∋ p, so, M =
⋃

p∈Ymin
Up

4. stratified chart maps cp : Up
∼→ X

v(p)
◦ , i.e. c−1

p (Xv(Y)) = Up∩Y for each Y ∈ Yirr.

What (M,Y) could be a candidate for this structure? How to choose H etc.?

Make a Coxeter diagram D whose vertices are the divisors in
Y , since they map to length 1 elements of WH. If divisors Y1, Y2
generate a rank 2 Bruhat poset, use that knowledge to connect
them in D for H; e.g. finding the poset on the right would tell
us to connect the Y1, Y2 vertices into an A2 subdiagram. Then let
H be the corresponding Kac-Moody group.
Next is to extend the definition of v into higher codimensions.
By far the hardest part is writing down (cp).

M

/ \

Y1 Y2
| × |

C C ′

\ /

C ′′
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Bruhat atlases: examples.

Known (H, v, and (cp)):

1. M = G/B (finite dim) with the Richardson stratification [K-Woo-Yong ’12].

H = G×G and cw : X◦
w × Xw

◦

∼→ wB−B/B, extending [Kazhdan-Lusztig ’79].

2. M = Gr(k, n) with the positroid stratification [M. Snider ’11]. H = ĜL(n).

3. M = PSO(2n)/SO(2n− 1) stratified by B-orbits plus extra [D. Huang ’19].
H = SO(2n+ 2).

Known combinatorially (H and v):

1. M = G/P (finite dim). The diagram D is two copies of G’s, glued together
along P’s, but using −wP

0 to make the identification. [He-K-Lu]

2. M = Gad. The diagram D is two Nakajima diagrams (G’s diagram plus
framing vertices) glued together along their framing vertices. [He-K-Lu]

Baseless conjecture (H only):

1. M = T∗GLn/B, Y defined by [Mehta-van der Kallen]. D is a sort of broom.
[K-S. Sam]
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Bruhat atlases, and,

degenerations of multiplicity-free subvarieties of H/BH.

If (M,Y, H, v, (cp)) is a stratified manifold with a Bruhat atlas,
define M0 :=

⋃
p∈Ymin

Xv(p), a subscheme of H/BH. What is its relation to M?

Example: M = G/B. Let Mt := (1, ρ̌(t)) · (G/B)∆ ⊆ (G/B)2.
Then the flat limit limt→0Mt is

⋃
w(Xw × Xw), isomorphic to M0.

Example: M = Gr(k, n). Following [Görtz ’01], let

Mt :=





(V1, V2, . . . , Vn) ∈ Gr(k, n)n : Vi ≥




0 1

0 1
. . . 1

t 0


 · Vi−1 mod n






For t 6= 0 the ≥ is = and Mt
∼= Gr(k, n), but M0 is ∼= the union described above.

One can fit this inside Gaitsgory’s degeneration of GrG ×G/B to Ĝ/B̂.

Theorem [Brion, ’03]. If Z ⊆ G/B irreducible is homologous to a union M0 of
distinct Schubert varieties, then Z has a flat degeneration F to M0, and is C-M.

What extra structure lets one extend the open sets X
v(p)
◦ ⊆ M0 to open sets in F,

thereby to F1 = Z?
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Kazhdan-Lusztig atlases.

If (M,Y, H, v, (cp)) is a stratified manifold with a Bruhat atlas, then Y ∈ Yirr

doesn’t naturally inherit one, even if smooth. So we generalize the definition:

Definition [HKL]. A Kazhdan-Lusztig atlas on (Z,Y) is again the data H, v,
(Up)p∈Ymin

, but now

1. the ranked poset injection v : Yirr
op →֒ WH has image

⋃
p∈Ymin

[v(Z), v(p)]

2. the chart maps cp are to X
v(p)
◦ ∩ Xv(Z) i.e. c−1

p (Xv(Y)) = Up ∩ Y for each Y ∈ Yirr.

Examples:

1. The Zelevinsky isomorphism Rep(An,~d) ∼= X
w0w

P
0

◦ ∩ Xv of the (non-moduli)
space of quiver representations with (a coarsening of) the RHS.
Extended in [Kinser-Rajchgot ’15] to the non-equioriented case

2. Z = G/P with the projected Richardson stratification, H = Ĝ.
The combinatorics v is in [He-Lam ’15], the maps (cp) in [Huang ’20],
[Galashin-Karp-Lam ’20] (not quite the same though!).

It seems very hard to guess H, v(Z) ∈ WH from (Z,Y). But as these examples
show, doing so can allow for the use of much tamer H.
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Kazhdan-Lusztig atlases on smooth toric surfaces.

[Elek ’16] classified toric surfaces M with simply-laced K-L atlases, under the
additional assumption that M has a toric degeneration to M0. This required

1. classifying Richardson surfaces in all H/BH, of which there are 10 plus an
infinite family, the “pizza slices”, with associated elements of SL2(Z)

2. gluing those together into polygons, the “pizzas”

3. making sure the pizzas only wrap around the center once, an S̃L2(Z)
calculation, whose abelianization is Z/12. Each pizza slice thereby obtains
a “nutritive value” ν in 1

12
Z, with

∑
ν = 1. All ν > 0 except one in G2.

4. developing a theory of “pizza toppings”, one for each simple root of a
candidate Kac-Moody H, and finding ranked poset injections v : Y → WH.
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