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Abstract
“How many lines in space pass through four, given, generic lines?”

(answer: two) is a counting problem admitting many generalizations,
to chains of subspaces, isotropic or Lagrangian subspaces; or, beyond
counting to answers living in exotic cohomology theories (K, equivariant,
quantum). In all these cases we have alternating-sum formulae
for the manifestly nonnegative answers, admitting much computer
experimentation in the search for manifesly nonnegative formulae.

I’ll review the history, and talk about recent work (joint with Paul Zinn-
Justin) that uses input from quantum integrable systems to give positive
answers to more of these questions. Quiver varieties, cluster varieties, E8,
and triality will all make appearances.
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Conditions on subspaces.

Let Gr(k, n) := {V ≤ C
n : dimV = k} be the Grassmannian. To specify a point

V ∈ Gr(k, n), we pick a basis of V (here, row vectors), assemble its vectors into
a k× n matrix, and (for uniqueness) pass to reduced row-echelon form.

[

1 0 ∗ ∗

0 1 ∗ ∗

] [

1 ∗ 0 ∗

0 0 1 ∗

]

[

0 1 0 ∗

0 0 1 ∗

]

[

1 ∗ ∗ 0

0 0 0 1

]

[

0 1 ∗ 0

0 0 0 1

] [

0 0 1 0

0 0 0 1

]

Index these
(

n
k

)

cases by bit strings λ, with 0s in the k pivot columns, and denote

the corresponding subsets X◦
λ, the Bruhat cells. So X◦

λ
∼= C

#pivot left of non-pivot,
and this even-real-dimensional cell decomposition gives bases of H∗(Gr(k, n)),
H∗(Gr(k, n)), and more exotic cohomology theories (equivariant, K-theory,
quantum — and combinations thereof).

“Which cell X◦
λ contains my V?” We can answer this question geometrically:

∀i = 0, . . . , n, dim (V ∩ {[0 · · · 0 ∗ · · · ∗] ∈ C
n, i stars}) = i−

∑
(last i bits in λ)

i.e. “our k-plane intersects the standard i-plane so-and-so much.”
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Turning this-AND-this-condition into this-OR-this-condition.

Let A,B,C be general points in projective 3-space CP
3, and consider

X :=
{
L ∈ Gr(1,CP3) ∼= Gr(2, 4) : L meets AB and L meets AC

}
⊆ Gr(2, 4)

=
{
L ∋ A

}
∪
{
L ⊂ the plane ABC

}
glued along

{
L ∋ A and L ⊂ ABC

}

These give us equations in cohomology and K-theory:

[X0101]
2 = [X1001] + [X0110] as classes in H∗(Gr(2, 4))

[X0101]
2 = [X1001] + [X0110] − [X1010] as classes in K(Gr(2, 4))

In general, a product expansion [Xλ][Xµ] =
∑

ν c
ν
λµ[Xν] in the Schubert basis is

about replacing (g · Xλ)∩ (h · Xµ), homologically, with a union of various k · Xν.

Theorem. [Lesieur ’47, Kleiman ’73]
In H∗(Gr(k, n)), and an analogous question for H∗(G/P), each cνλµ ≥ 0.

[Buch ’02, Brion ’02]
In K(Gr(k, n)), and analogously for K(G/P), each (−1)ℓ(ν)−(ℓ(λ)+ℓ(µ))cνλµ ≥ 0.
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The (planar dual of the) puzzle formula for cνλµ.

The first positive formula for cνλµ in H∗ is the Littlewood-Richardson rule, stated
in the ’30s, proved by Schützenberger in the ’70s. Many other rules have been
given, but we’ll focus on the puzzle rule, due to Terry Tao and me.

Consider honeycomb graphs with three edge labels 0, 1, 10, and the following
allowed vertices (which may be rotated 180◦, with orientations flipped):

0 0

0

1 1

1

1 0

10

10 1

0

0 10

1

except don’t rotate

this “K-vertex” 180◦:

10 10

10

Theorem. ±cνλµ is
the number of such
graphs with λ, µ, ν

as the boundary
labels on NW,NE,S,
all left-to-right.
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0

0

0

1

1
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0

0

0

1

1

10
10

1
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1 0

0

0

0

1

1
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1
0 1

10 1 0
0 1011

0
0100

1
0

10
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1 0 0 1
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1
0 0

1 10 1
0

0 0
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1

1 10 0
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1
1

0 0

10 10
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0

0

1
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Many flavors of Schubert calculus.

The basic, very solved, problem is to compute the product in H∗(Gr(k, n)).
There are at least 5 avenues of generalization:

K: to K-theory

T: to equivariant cohomology (now cνλµ ∈ H∗
T(pt)

∼= Z[y1, . . . , yn])

Q: to quantum cohomology

G: to other “cominuscule flag manifolds” G/P (not defined here)

Fd: to flag manifolds Fl(k1, k2, . . . , kd; n) := {V1 ≤ . . . ≤ Vd ≤ C
n : dimVi = ki}

In all cases, we have formulæ for the product and for most, geometric proofs of
abstract positivity. But we have combinatorial, manifestly positive formulæ in
only some cases:

• K [Buch ’02]

• T [K-Tao ’03]

• Q ⊂ F2, QT ⊂ TF2 [Buch-Kresch-Tamvakis ’03]

• G [Thomas-Yong ’09], some KG [Clifford-T-Y ’12]

• F2 [Buch-Kresch-Purbhoo-Tamvakis ’16]

• TF2 [Buch ’15]

• KT [Pechenik-Yong ’17,

Wheeler–Zinn-Justin ’17]

• KF2, KTF2 [K–Zinn-Justin, preprint]

• F3, KF3 [K–Zinn-Justin, preprint]

The rest of this talk is about the ingredients in my recent advances with PZ-J.
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The “equivariant cohomology ring” H∗
T(M) and its product.

Given X, Y ⊂ M cycles in a manifold (all compact complex, say), we have
a “cohomology ring” H∗(M) containing “the classes [X], [Y] of X, Y”, and the
product [X] ∪ [Y] measures our inability to make X, Y disjoint in M.

Another source of classes in H∗(M) is from Euler classes: if V → M is an
oriented R

n-bundle, then the Euler class e(V) ∈ Hn(V) ∼= Hn(M) measures our
inability to make the zero section M →֒ V disjoint from itself.

Now let T ∼= (S1)n be the n-dimensional torus group, and assume X, Y,M,V all

carry compatible T -actions. Then we want [X], [Y], e(V) ∈ H∗
T(M), some ring

I won’t fully define.
Main example: any complex representation V of T is a direct sum

⊕n
i=1Cλi, over

some “weights” λi ∈ T∗ := Hom(T,C×) ∼= Z
n. Then V → pt is a T -equivariant

vector bundle, with an equivariant Euler class e(V → pt) ∈ H2n
T (pt) which

should vanish iff some λi = 0.

No surprise, then, that H∗
T(pt) = Sym(T∗) and e(V → pt) =

∏n
i=1 λi.

For any T -space M, the stupid map M → pt is T -equivariant; ergo every H∗
T(M)

is an algebra over the pleasantly large base ring H∗
T(pt)

∼= Z[y1, . . . , ydim T ].
Because the Bruhat cells are T -invariant, they are again a basis of H∗

T(Gr(k, n)),
but with coefficients H∗

T(pt).
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The (planar dual of the) puzzle formula for equivariant cνλµ.

Let T ≤ GLn(C) hereafter be the diagonal matrices, with H∗
T(pt)

∼= Z[y1, . . . , yn].
If we try to move the point X100 off of the line X010 ⊆ Gr(1, 3) ∼= CP

2, we get

[X100][X010] = (y1 − y3) [X100]

because the T -action on Normal
X100=

{
[00∗]

}
(

X010 =
{
[0 ∗ ∗]

})
has weight y1−y3.

Theorem [KT ’03, stated dually]. Introduce a tetravalent green-through-red
vertex, either made of a Y atop

Y

, hiding the vertical blue edge, or with 1
crossing through 0. Now there are only n green and n red edges, which we each
adorn with equivariant parameters y1, . . . , yn. Then cνλµ is a sum over scattering
diagrams with boundary λ, µ, ν, each contributing

∏
new crossings(yi − yj).

1
10

0 0

0
1 0 0

01 0

0
0

0
0 0

1
1

1

1

0
000101

10
0 0

0
1 0 0

01
1
0 0

10 0
110

0

In the example above, c100100,010 = (y1 − y2) + (y2 − y3) = c100010,100 = y1 − y3.
In the pictures, there are •s to point out the “equivariant” vertices.
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How equivariant cohomology is easier; or, exploiting symmetry.

Each coördinate k-plane C
µ ∈ Gr(k, n) is T -fixed, so we can define

[Xλ]|µ :=

∫

Gr(k,n)

[Xλ]
[

{Cλ}
]

= ι∗ ([Xλ]) ∈ H∗
T(pt)

∼= Z[y1, . . . , yn]

where ι : {Cµ} →֒ Gr(k, n) is the (T -equivariant!)
inclusion. There is a formula I won’t give (due to
Andersen-Jantzen-Soergel/Billey) for [Xλ]|µ that can
again be phrased as a sum over scattering diagrams,
but now there are only 0, 1 labels, no 10s.
To help remember the difference between these
AJS/Billey tetravalent vertices and the equivariant
puzzle vertices from before, we color those
red/green and these blue/blue (or later, red/red or
green/green).

R
R

R
R R

R

R

O l l lO O

O O O l l l l

µ

λ

λ sorted

shape
R

R

l

Equivariant localization to fixed points: To check a formula for equivariant cνλµ,
it’s enough to confirm [Xλ]|σ [Xµ]|σ =

∑
ν c

ν
λµ [Xν]|σ for every σ!

These are just
(

n
k

)

equations in H∗
T(pt)

∼= Z[y1, . . . , yn].
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Keys to the proof: The Yang-Baxter and bootstrap equations.

We can get the entire right side
∑

ν c
ν
λµ [Xν]|σ by gluing the puzzle picture atop

the AJS/Billey picture! We need a proposition to perform moves on the result:

Proposition.
1. With any choice of orientations, colors, and boundary conditions, we have
the first two equations on “scattering amplitudes,” implying the third:

2. If a puzzle has the identity 0 · · · 0 1 · · · 1 on the bottom, it must also have it on
the NW and NE sides, and have scattering amplitude = 1.

Hence

sort(   )       λ

sort(   )       λ sort(   )       λ

λ µ

σ

sort(   )       λ

σ σ

λ µ

σ σ

λ µ

so there’s our [Xλ]|σ [Xµ]|σ. Of course proposition #1 above is a big case check.
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Sources of “R-matrices”, solutions of the Yang-Baxter equation.

Let V be a finite-dimensional vector space (with basis “0”, “1”, “10” in our main
example), and a, b, c ∈ C parameters. Then the algebraic formulation of the
(rational) Yang-Baxter equation on R ∈ End(V⊗V)

(

u
)

is

R12(a− b)R13(a− c)R23(b− c) = R23(b− c)R13(a− c)R12(a− b)

a
b

c a
b

c

This equation arose in statistical mechanics, as the key to giving exact formulæ
for certain partition functions, establishing the field of “quantum integrable
systems”. In particular there’s an immense physics literature on its solutions.

Jimbo and Drinfel ′d exploit the “evaluation representations” (V, a) of the
quantized current algebra Uq(g[z]) to construct solutions of YBE. For generic
evaluation parameters a1, a2, the tensor product (V, a1)⊗(V, a2) of irreps is again
irreducible (!), and isomorphic to the opposite product (V, a2)⊗(V, a1). The
isomorphism, a rational function of a2 − a1, satisfies YBE.

“Geometric representation theory” gives a construction of these representations,
on the homology of Nakajima quiver varieties [Ginzburg-Vasserot, Nakajima,
Varagnolo].

More recently, [Maulik-Okounkov] have constructed the R-matrices directly
from the quiver varieties (including, cotangent bundles T∗Gr(k, n)...)
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Settling puzzle conjectures, and discovering new puzzle pieces.

Tao and I happened on puzzles in ’97, while studying Horn’s conjecture on
sums of Hermitian matrices. Klyachko used Grassmannian Schubert calculus
instead. Were puzzles and Schubert calculus directly related? They were! So I
looked into whether puzzles could compute products on d-step flag manifolds.

I came up with (what I felt was) a very beautiful puzzle rule for all d, circulated
it to a few people... and then found counterexamples at d = 3.

To specify a Schubert class in H∗(Fl(n1, n2;C
n)) requires

words in 0, 1, 2. That suggests there should be labels
10, 20, 21 internal to the puzzle. But a little experimentation
shows that one also needs 2(10) and (21)0: so eight total.

2 1

21

21 0

(21)0

Buch conjectured, beyond my 23 suggested 3-step labels (YX) with ∀Y > ∀X,
there should be four labels like 3(((32)1)0) “protected by three parentheses.”

Theorem [K-ZJ]. 1. limq→0(the Uq(sl3[z
±])

�

C
3 R-matrix) gives d = 1 puzzles.

2. A certain q → 0 limit of the Uq(so8[z
±])

�

C
8 R-matrix recovers d = 2 puzzles,

giving the K(2-step) rule (for which there’d been no conjecture), and KT(2-step).
3. A certain q → 0 limit of the Uq(e6[z

±])

�

C
27 R-matrix confirms Buch’s fix in

H∗(3-step), also giving the K(3-step) rule (for which there’d been no conjecture).
4. We can’t take q → 0 of the Uq(e8[z

±])

�

e8 ⊕ C R-matrix. End of the line?
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Epilogue: what about d ≥ 4 and/or q not to 0?

To each directed graph, up to “mutation class”, is associated a “cluster variety”.
Each finite mutation class contains exactly one Dynkin diagram (all types,
not just ADE as more common). While (the cone over) every Grassmannian
Gr(k, n) is a cluster variety, the only ones of finite mutation type are Gr(2, d+4)

of type Ad, and Gr(3, 5 ≤ n ≤ 8) of types A2, D4, E6, E8.

The Gr(3, ∗) family is telling us the internal labels of puzzles, whereas the
Gr(2, ∗) seems to correspond to the boundary labels (0, 1, . . . , d indexing a basis
of Cd+1

�Ad).

What’s the connection? Is there a story for Gr(≥ 4, ∗)?

Following Maulik-Okounkov’s geometric construction R-matrices using quiver
varieties, Zinn-Justin and I looked into their “stable basis” {[MOλ]}, an analogue
of Schubert classes living on the cotangent bundle T∗Fl(n1, . . . , nd; n).

Theorem [K-ZJ]. The right puzzles can compute the product in the basis
{[MOλ]/[zero section]}, for d ≤ 4, where the q appears as the equivariant
parameter for dilation of the cotangent fibers.

We can take q → 0 in the puzzle-provided answers to d = 4, but not the in the
rule. But something even worse is happening – the coefficients in the rule are
not all (suitably) positive. Positivity was a happy accident for d ≤ 3.
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