What do puzzles really compute?

Allen Knutson (Cornell)

IMPANGA 20, July 2021

Abstract

Among other things (these all since 2017),

- $\mathrm{K}_{\mathrm{T}}(2$-step flag manifolds) and $\mathrm{K}(3$-step) [K-Paul Zinn-Justin]
- the restriction $H_{T n}(\operatorname{Gr}(k, 2 n)) \rightarrow H_{T^{n}}(S p G r(k, 2 n))[K-Z J-I v a$ Halacheva]
- a bijective proof of associativity of the Grassmannian puzzle product, using 3-d puzzle pieces [H-ZJ-Hannah Perry]
- the "separated descents" restriction map, generalizing Kogan's cases

$$
\mathrm{K}_{\mathrm{T}}(\mathrm{Fl}(1, \ldots, k ; \mathfrak{n})) \times \mathrm{K}_{\mathrm{T}}(\mathrm{Fl}(\mathrm{k}+1, \ldots, n ; \mathfrak{n})) \rightarrow \mathrm{K}_{\mathrm{T}}(\mathrm{Fl}(\mathfrak{n})) \quad[\mathrm{K}-\mathrm{Z}]
$$

- the Euler characteristic of the \cap of three Bruhat cells [K-ZJ]

Most of these extend to formulæ for pullbacks of motivic Segre classes, which naturally live on the cotangent bundle and generalize to K -theoretic stable classes on Nakajima quiver varieties. I'll explain the geometry of this extension.

These transparencies are available at http://math. cornell.edu/~allenk/

Graph-theoretic duals of equivariant puzzles.

Recall from [K-Tao '03] the equivariant puzzle rule for computing the $H_{\mathrm{T}}^{*} \cong \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ structure constants of Schubert classes in $\operatorname{Gr}\left(\mathrm{k}, \mathbb{C}^{n}\right)$:

The $n \Delta s$ on the bottom of a puzzle shape are different from the others: they can't occur in equivariant pieces. Let's pair up the other triangles into vertical rhombi. Now, let's look at the graph-theory dual of an equivariant puzzle, an overlay of n Ys.

$$
\text { This one is worth }\left(y_{1}-y_{2}\right)\left(y_{2}-y_{4}\right) \text { : }
$$

The Yang-Baxter equation and algebraic sources thereof.

Observation [Zinn-Justin '05].
Rotating the nonrotatable equivariant pieces appropriately (!?), the equivariant puzzle R-matrix satisfies the Yang-Baxter equation:

Let $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g}\left[z^{ \pm}\right]\right)$be the quantized loop algebra; it comes with many "evaluation representations" ($\mathrm{V}_{\delta}, \mathrm{c} \in \mathbb{C}^{\times}$) taking $z \mapsto \mathrm{c}$ then using the usual irrep V_{δ} of \mathfrak{g}.
Drinfel'd and Jimbo observed that $\left(V_{\gamma}, a\right) \otimes\left(V_{\delta}, b\right)$ is irreducible for generic a / b, but \cong to $\left(\mathrm{V}_{\delta}, \mathrm{b}\right) \otimes\left(\mathrm{V}_{\gamma}, \mathrm{a}\right)$, and these isos are "R-matrices" (solution to YBE).
Theorem [K-Z]]. 1. The $d=1$ puzzle R-matrix, acting on the \otimes^{2} of the 3 -space with basis $\{\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{1} 0\}$, is a $q \rightarrow \infty$ limit of the R-matrix for $\mathfrak{s l}_{3} \circlearrowright \mathbb{C}^{3} \otimes \mathbb{C}^{3}$.
2. For the $d=2$ case and its 8 edge labels $\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{2}, \overrightarrow{10}, \overrightarrow{20}, 2 \overrightarrow{21}, 2(\overrightarrow{10}),(2 \overrightarrow{1}) 0$, we need a $q \rightarrow \infty$ limit of the R-matrix for $\mathfrak{d}_{4} \circlearrowright \operatorname{spin}_{+} \otimes$ spin $_{-}$.
3. For the $\mathrm{d}=3$ case and its 27 edge labels, we need a $\mathrm{q} \rightarrow \infty$ limit of the R-matrix for $\mathfrak{e}_{6} \circlearrowright \mathbb{C}^{27} \otimes \mathbb{C}^{27}$ (which one can find in the 1990s physics literature). 4. For $d=4$, the same tech gave a nonpositive rule based on $\mathfrak{e}_{8} \circlearrowright\left(\mathfrak{e}_{8} \oplus \mathbb{C}\right)^{\otimes 2}$. In each case, the Yang-Baxter equation (and similar "bootstrap" equation to deal with trivalent vertices) is used in a quick proof [K-ZJ '17] of the puzzle rule, and the nonzero matrix entries in the $\mathrm{q} \rightarrow \infty$ limit tell us the valid puzzle pieces.

Nakajima's geometry of some $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g}\left[z^{ \pm}\right]\right)$representations.

But why should such representations come up in studying $\mathrm{Fl}\left(\mathfrak{n}_{1}, n_{2}, \ldots, \mathfrak{n}_{\mathrm{d}} ; \mathbb{C}^{n}\right)$? Given an oriented graph $\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}\right)$, with some vertices declared "gauged" and the others "framed", double it by adding a backwards arrow for every arrow. Attach a vector space W_{i} to each framed vertex and V_{j} to each gauged vertex.
Definition. A point in the quiver variety $\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{~W}, \mathrm{~V}\right)$ is a choice of linear transformation for every edge,

- such that $\sum \pm$ (go out) \circ (come back in) is zero at each gauged vertex;
- every \vec{v} in each V_{i} can leak into some W_{j} via some path;
- all is considered up to $\prod_{i} G L\left(V_{i}\right)$ change-of-bases at the gauged vertices.

Let $\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W\right):=\coprod_{W} \mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W, \mathrm{~V}\right)$ be the quiver scheme.
Theorem [Nakajima '01]. If Q is ADE , then $\mathrm{U}_{\mathrm{q}}\left(\right.$ its $\left.\mathfrak{g}\left[z^{ \pm}\right]\right) \circlearrowright K\left(\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W\right)\right)$.
Main example. $\mathcal{M}\left(\begin{array}{lllll}\boxed{n} & & \\ \begin{array}{l}\uparrow \\ n_{d}\end{array} & \leftarrow & n_{d-1} & \leftarrow \ldots \leftarrow & n_{1}\end{array}\right) \cong \mathrm{T}^{*} \operatorname{Fl}\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)$.
For this framing the $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l}_{\mathrm{d}+1}\left[z^{ \pm}\right]\right)$-action appears already in [GinzburgVasserot 1993], and the rep is $K\left(\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, n \omega_{1}\right)\right) \cong\left(\mathbb{C}^{\mathrm{d}+1}\right)^{\otimes n}$, whose weight multiplicities are $(\mathrm{d}+1)$-nomial coefficients.

Some Lagrangian relations of quiver varieties.

On $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ we put a \mathbb{C}^{\times}-action with weights 0,1 , extending to an action on

Let attr be the (closed!) attracting set, the Morse/Białynicki-Birula stratum.
Now let $\Phi_{N}^{-1}(\mathbf{1}):=\left\{\right.$ the composite $\left(\mathbb{C}^{n} \oplus 0\right) \searrow \mathbb{C}^{n+k} \nearrow\left(0 \oplus \mathbb{C}^{n}\right)$ is the identity $\}$. Points (reps) in that set enjoy splittings of \mathbb{C}^{n+k}, plus coordinates on the \mathbb{C}^{n}.
Imprecisely stated theorem [K-Z]]. The Lagrangian relations
induce the usual multiplication map on $\mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \mathrm{Gr}\left(\mathrm{k}, \mathbb{C}^{n}\right)\right)$, up to a scale, and by following the natural (analogues of Schubert) bases (and taking q, or really \hbar, to ∞) we recover Grassmannian puzzles. Specifically, the rhombus pieces compute a change-of-basis in $\mathrm{H}_{\mathrm{T}_{\times \times \times}}^{*}$ (the middle space).
In the $\mathrm{d}=2,3,4$ cases, the quiver is $\mathrm{D}_{4}, \mathrm{E}_{6}, \mathrm{E}_{8}$ respectively, and the quiver variety used in the middle is not a cotangent bundle.

Z_{2} fixed points give the restriction to $\operatorname{SpGr}(\mathrm{k}, 2 \mathrm{n})$.

For a first variant on the quiver varieties above, consider

$$
\mathcal{M}\left(\begin{array}{cc}
\boxed{N} & \\
\hline j & 0
\end{array}\right) \times \mathcal{M}\left(\begin{array}{ll}
\boxed{N} & \\
\hline \mathrm{~N} & k
\end{array}\right) \xrightarrow{\operatorname{attr}} \mathcal{M}\left(\begin{array}{ll}
\boxed{\mathrm{N}+\mathrm{N}} & \\
\mathrm{~N}+\mathrm{j} & k
\end{array}\right) \xrightarrow{\Phi_{\mathrm{N}}^{-1}(1)} \mathcal{M}\left(\begin{array}{cc}
\begin{array}{|c}
\mathrm{N} \\
j
\end{array} & k
\end{array}\right)
$$

inducing $\mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \mathrm{Fl}\left(\mathrm{j}, \mathrm{k} ; \mathbb{C}^{\mathrm{N}}\right)\right) \rightarrow \mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \operatorname{Gr}\left(\mathrm{j}, \mathbb{C}^{\mathrm{N}}\right)\right) \times \mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \operatorname{Gr}\left(\mathrm{k}, \mathbb{C}^{\mathrm{N}}\right)\right)$.
Theorem [Halacheva-K-ZJ]. Index the Schubert classes on $\mathrm{Fl}\left(\mathrm{j}, \mathrm{k} ; \mathbb{C}^{\mathrm{N}}\right)$ by strings with content $0^{j}(10)^{k-j} 1^{\mathrm{N}-\mathrm{k}}$. Then puzzles with Grassmannian puzzle pieces, but allowing $k-j$ 10-labels on the South edge, compute this pullback.
Now take $N=2 n, j=2 n-k$. Then there are compatible Z_{2} actions on these spaces with fixed points

$$
\mathrm{T}^{*} \operatorname{Gr}\left(\mathrm{k}, \mathbb{C}^{2 n}\right) \xrightarrow{\text { attr }} \mathrm{T}^{*} \mathrm{OGr}\left(2 n-k, \mathbb{C}^{4 n}\right) \xrightarrow{\text { attr }} \mathrm{T}^{*} \operatorname{SpGr}\left(\mathrm{k}, \mathbb{C}^{2 n}\right)
$$

Theorem [H-K-ZJ]. Consider puzzles like the above, but "self-dual" in being invariant under left-right flip plus exchange $0 \leftrightarrow 1$. These puzzles compute the equivariant pullback from $\operatorname{Gr}\left(k, \mathbb{C}^{2 n}\right)$ to $\operatorname{SpGr}\left(k, \mathbb{C}^{2 n}\right)$, extending work of [Pragacz '98] and [Coşkun '14].

A pipe dream picture of puzzles.

$\operatorname{In} \mathcal{M}\left(\begin{array}{ll}\boxed{n} & \\ \mathrm{k} & 0\end{array}\right) \times \mathcal{M}\left(\begin{array}{ll}\boxed{n} & \\ \frac{n}{n} & k\end{array}\right) \rightarrow \mathcal{M}\left(\begin{array}{ll}\mathrm{n} \\ \mathrm{n} & \mathrm{k}\end{array}\right)$ the different appearances of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ are best studied from the weights in $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \rightarrow A l t^{2} \mathbb{C}^{3} \cong\left(\mathbb{C}^{3}\right)^{*}$.
This leads to a superior labeling, in which the T-equivariance of that map gives a weight conservation which one can interpret with pipes:

(Alternately one can label the horizontal edges by the missing number $0,1,2$ instead of the pairs $1 \wedge 2,0 \wedge 2,0 \wedge 1$.)

Associativity via 3-d puzzles.

Go beyond $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \rightarrow A l t^{2} \mathbb{C}^{3} \cong\left(\mathbb{C}^{3}\right)^{*}$ to $\mathbb{C}^{4} \otimes \mathbb{C}^{4} \otimes \mathbb{C}^{4} \rightarrow A l t^{3} \mathbb{C}^{4} \cong\left(\mathbb{C}^{4}\right)^{*}$:

$$
\begin{aligned}
& \xrightarrow{\text { attr }} \mathcal{M}\left(\begin{array}{cc}
\begin{array}{|cc|}
\hline n+\mathrm{n}+\mathrm{n} \\
2 n+k & n+k
\end{array} & k
\end{array}\right) \xrightarrow{\Phi_{\mathrm{N}}^{-1}(\mathbf{1})} \mathcal{M}\left(\begin{array}{lll}
& \begin{array}{|c}
\mathrm{n} \\
k
\end{array} & k \\
k
\end{array}\right)
\end{aligned}
$$

Associativity says that the coefficients of S_{0} in $\left(S_{\lambda} S_{\mu}\right) S_{v}$ and $S_{\lambda}\left(S_{\mu} S_{\nu}\right)$ are the same. In puzzle terms, we label the front or back of a tetrahedron with bipuzzles, and should be able to biject them:

Theorem [Henriques $\left.\sim^{\prime} 04\right]$. One can compute $c_{\lambda \mu \nu}^{0}$ using any lattice surface Σ in the tetrahedron with $\partial \Sigma$ this same (λ, μ, ν, o) boundary.
Proof: $\exists 3$-d puzzle pieces giving correspondences between Σ - and Σ^{\prime}-puzzles.
His very unpleasant $0,10,1$ pieces were lost, but essentially rediscovered by [H-Perry-ZJ] in the A_{3} formulation above.

The newest Schubert calculus: separated descents.

Theorem [K-Z]]. Consider the puzzle pieces at right, and their 180° rotations. Make size n puzzles with $1, \ldots, k$ and $n-k$ blanks on NE side, $k+1, \ldots, n$ and k blanks on NW side. Then these compute the structure constants of $H^{*}\left(\mathrm{Fl}\left(\mathrm{k}, \ldots, n ; \mathbb{C}^{n}\right)\right) \otimes \mathrm{H}^{*}\left(\mathrm{Fl}\left(1, \ldots, k ; \mathbb{C}^{n}\right)\right) \rightarrow \mathrm{H}^{*}\left(\mathrm{Fl}\left(\mathbb{C}^{n}\right)\right)$, and with two more pieces we get the K_{T}-version.

[Kogan '01], the previous state-of-the-art for general $\mathrm{H}^{*}\left(\mathrm{Fl}\left(\mathbb{C}^{n}\right)\right)$ calculations (extended to K-theory in [K-Yong '04]), assumed that one of the two factors was a Grassmannian (and was algorithmic, and nonequivariant).
"Proof".

$$
\begin{aligned}
& \stackrel{\operatorname{attr}}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{|ccccccc}
\left.\begin{array}{|c|c|ccc}
n+n \\
2 n-1 & 2 n-2 & \ldots & n+k & k \\
k & k-1 & \ldots & 1
\end{array}\right) \\
\stackrel{\Phi_{N}^{-1}(1)}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{cccccc}
n-1 & 2 n-2 & \ldots & n+k & k & k-1
\end{array} \ldots\right. & 1
\end{array}\right) \cong T^{*} F l\left(\mathbb{C}^{n}\right)
\end{aligned}
$$

Example. A separated-descents puzzle.

Finite \hbar application: Euler characteristics of triple intersections.

The elements of the natural basis of $\mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \mathrm{GL}_{n} / \mathrm{P}\right)$ arise in three essentially different ways:

- by following B_wL/L under Grothendieck-Springer's $\mathrm{GL}_{n} / \mathrm{L} \rightsquigarrow \mathrm{T}^{*} \mathrm{GL}_{n} / P$
- as characteristic cycles of the $\mathcal{D}_{\mathrm{G} / \mathrm{p}}$-modules associated to Bruhat cells
- as Chern-Schwartz-MacPherson classes associated to Bruhat cells

The latter's connection to Chern classes and Euler characteristics gives rise to the following theorem, statable without explicit reference to cotangent bundles:
Theorem $[K-Z]]$. Take $g, h \in G L_{n}$ generic, and $M:=X_{\lambda}^{\circ} \cap\left(g \cdot X_{\mu}^{\circ}\right) \cap\left(h \cdot X_{\nu}^{\circ}\right)$. Then $(-1)^{\operatorname{dim} M} \chi_{c}(M)$ is nonnegative, counted by ordinary puzzles in which one also allows 10-10-10 pieces (both $\Delta \mathrm{s}$ and $\nabla \mathrm{s}$).
For single and double intersections these numbers are 1 and 0 (unless $\lambda=\mu^{c}$).
We have similar results for $2,3,4$-step (though the 4 -step isn't positive), prompting the question:

$$
\text { Is }(-1)^{\operatorname{dim} M} \chi_{c}(M) \geq 0 \text { for triple intersections } M \text { inside general } G / P \text { ? }
$$

The puzzle calculation naturally extends to K-theory, where the 10-10-10 pieces are worth $\mathrm{q}, \mathrm{q}^{-1}$ for Δ, ∇ respectively. Do these (times some power of q) have a point-counting-over- \mathbb{F}_{q} interpretation?

Other people's results, unrelated (so far) to quiver varieties.

Consider usual Grassmannian puzzle pieces, but in a parallelogram, with boundary strings $\lambda, \alpha, \mu, \beta$ clockwise from NW.
Then it's easy to show that λ, μ have the same content, and likewise α, β.
Call the number of these puzzles $c_{\lambda \alpha \mu \beta}$.

Obviously $c_{\lambda \alpha \mu \beta}=c_{\mu \beta \lambda \alpha}$, by rotating the puzzles 180°. But more is true:
Theorem [P. Anderson]. $c_{\lambda \alpha \mu \beta}=c_{\lambda \beta \mu \alpha}$, as each can be interpreted as the same integral over a product of two Grassmannians.

Consider $\mathrm{K}_{*}(\operatorname{Gr}(\mathrm{a}, \mathrm{a}+\mathrm{b}) \times \operatorname{Gr}(\mathrm{c}, \mathrm{c}+\mathrm{d}) \rightarrow \operatorname{Gr}(\mathrm{a}+\mathrm{c}, \mathrm{a}+\mathrm{c}+\mathrm{b}+\mathrm{d}))$, inducing a bigraded ring structure on $\bigoplus_{a, b} K_{*}(\operatorname{Gr}(a, a+b))$.
Theorem [Pylyavskyy-Yang]. This K-homology product can be computed by puzzles with one extra hexagonal piece.
We don't know a Yang-Baxter equation interpretation of this rule. Of course a first step would be an equivariant extension.

