What do puzzles really compute?

Allen Knutson (Cornell)

IMPANGA 20, July 2021

Abstract

Among other things (these all since 2017),

- K_T(2-step flag manifolds) and K(3-step) [K–Paul Zinn-Justin]
- the restriction $H_{T^n}(Gr(k, 2n)) \rightarrow H_{T^n}(SpGr(k, 2n))$ [K–ZJ–Iva Halacheva]
- a bijective proof of associativity of the Grassmannian puzzle product, using 3-d puzzle pieces [H–ZJ–Hannah Perry]
- the "separated descents" restriction map, generalizing Kogan's cases $K_T(Fl(1, \dots, k; n)) \times K_T(Fl(k+1, \dots, n; n)) \rightarrow K_T(Fl(n))$ [K–ZJ]
- the Euler characteristic of the \bigcap of three Bruhat cells [K–ZJ]

Most of these extend to formulæ for pullbacks of *motivic Segre classes*, which naturally live on the cotangent bundle and generalize to K*-theoretic stable classes* on Nakajima quiver varieties. I'll explain the geometry of this extension.

Graph-theoretic duals of equivariant puzzles.

Recall from [K-Tao '03] the **equivariant puzzle rule** for computing the $H_T^* \cong \mathbb{Z}[y_1, \dots, y_n]$ structure constants of Schubert classes in $Gr(k, \mathbb{C}^n)$:

The n Δ s on the bottom of a puzzle shape are different from the others: they can't occur in equivariant pieces. Let's pair up the other triangles into vertical rhombi. Now, let's look at the graph-theory dual of an equivariant puzzle, an overlay of n Ys.

This one is worth $(y_1 - y_2)(y_2 - y_4)$:

The Yang-Baxter equation and algebraic sources thereof.

Let $U_q(\mathfrak{g}[z^{\pm}])$ be the **quantized loop algebra**; it comes with many "evaluation representations" ($V_{\delta}, c \in \mathbb{C}^{\times}$) taking $z \mapsto c$ then using the usual irrep V_{δ} of \mathfrak{g} . Drinfel'd and Jimbo observed that (V_{γ}, \mathfrak{a}) \otimes (V_{δ}, \mathfrak{b}) is irreducible for generic $\mathfrak{a}/\mathfrak{b}$,

but \cong to $(V_{\delta}, b) \otimes (V_{\gamma}, a)$, and these isos are "R-matrices" (solution to YBE).

Theorem [K-ZJ]. 1. The d = 1 puzzle R-matrix, acting on the \otimes^2 of the 3-space with basis $\{\vec{0}, \vec{1}, \vec{10}\}$, is a q $\rightarrow \infty$ limit of the R-matrix for $\mathfrak{sl}_3 \odot \mathbb{C}^3 \otimes \mathbb{C}^3$. 2. For the d = 2 case and its 8 edge labels $\vec{0}, \vec{1}, \vec{2}, \vec{10}, \vec{20}, \vec{21}, 2(\vec{10}), (\vec{21})0$, we need a q $\rightarrow \infty$ limit of the R-matrix for $\mathfrak{d}_4 \circlearrowright \operatorname{spin}_+ \otimes \operatorname{spin}_-$. 3. For the d = 3 case and its 27 edge labels, we need a q $\rightarrow \infty$ limit of the R-matrix for $\mathfrak{e}_6 \circlearrowright \mathbb{C}^{27} \otimes \mathbb{C}^{27}$ (which one can find in the 1990s physics literature).

4. For d = 4, the same tech gave a **nonpositive** rule based on $\mathfrak{e}_8 \oplus \mathbb{C})^{\otimes 2}$.

In each case, the Yang-Baxter equation (and similar "bootstrap" equation to deal with trivalent vertices) is used in a quick proof [K-ZJ '17] of the puzzle rule, and the nonzero matrix entries in the $q \rightarrow \infty$ limit tell us the valid puzzle pieces.

Nakajima's geometry of some $U_q(\mathfrak{g}[z^{\pm}])$ representations.

But why *should* such representations come up in studying $Fl(n_1, n_2, ..., n_d; \mathbb{C}^n)$?

Given an oriented graph (Q_0, Q_1) , with some vertices declared "gauged" and the others "framed", double it by adding a backwards arrow for every arrow. Attach a vector space W_i to each framed vertex and V_j to each gauged vertex.

Definition. A point in the **quiver variety** $\mathcal{M}(Q_0, Q_1, W, V)$ is a choice of linear transformation for every edge,

- such that $\sum \pm$ (go out) \circ (come back in) is zero at each gauged vertex;
- every \vec{v} in each V_i can leak into some W_j via *some* path;
- all is considered up to $\prod_i GL(V_i)$ change-of-bases at the gauged vertices.

Let $\mathcal{M}(Q_0, Q_1, W) := \coprod_W \mathcal{M}(Q_0, Q_1, W, V)$ be the **quiver scheme**.

Theorem [Nakajima '01]. If Q is ADE, then $U_q(\text{its } \mathfrak{g}[z^{\pm}]) \circlearrowright K(\mathcal{M}(Q_0, Q_1, W))$.

$$Main example. \quad \mathcal{M}\begin{pmatrix} \boxed{n} \\ \uparrow \\ n_d & \leftarrow & n_{d-1} & \leftarrow & n_1 \end{pmatrix} \cong \mathsf{T}^*\mathsf{Fl}(n_1, \dots, n_d; \ \mathbb{C}^n).$$

For this framing the $U_q(\mathfrak{sl}_{d+1}[z^{\pm}])$ -action appears already in [Ginzburg-Vasserot 1993], and the rep is $K(\mathcal{M}(Q_0, Q_1, n\omega_1)) \cong (\mathbb{C}^{d+1})^{\otimes n}$, whose weight multiplicities are (d + 1)-nomial coefficients.

Some Lagrangian relations of quiver varieties.

On $\mathbb{C}^n \oplus \mathbb{C}^n$ we put a \mathbb{C}^{\times} -action with weights 0, 1, extending to an action on $\mathcal{M}\begin{pmatrix} \boxed{n+n}\\ n+k \end{pmatrix}$; then $\mathcal{M}\begin{pmatrix} \boxed{n}\\ k \end{pmatrix} \times \mathcal{M}\begin{pmatrix} \boxed{n}\\ n \end{pmatrix}$ is a fixed-point component. Let attr be the **(closed!)** attracting set, the Morse/Białynicki-Birula stratum. Now let $\Phi_N^{-1}(1) := \{$ the composite $(\mathbb{C}^n \oplus 0) \searrow \mathbb{C}^{n+k} \nearrow (0 \oplus \mathbb{C}^n)$ is the identity $\}$. Points (reps) in that set enjoy splittings of \mathbb{C}^{n+k} , plus coordinates on the \mathbb{C}^n . **Imprecisely stated theorem [K-ZJ].** The Lagrangian relations

$$\mathcal{M}\begin{pmatrix} \boxed{n} \\ k & 0 \end{pmatrix} \times \mathcal{M}\begin{pmatrix} \boxed{n} \\ n & k \end{pmatrix} \xrightarrow{attr} \mathcal{M}\begin{pmatrix} \boxed{n+n} \\ n+k & k \end{pmatrix} \xrightarrow{\Phi_N^{-1}(1)} \mathcal{M}\begin{pmatrix} \boxed{n} \\ k & k \end{pmatrix}$$

induce the usual multiplication map on $H^*_{T \times \mathbb{C}^{\times}}(T^*Gr(k, \mathbb{C}^n))$, up to a scale, and by following the natural (analogues of Schubert) bases (and taking q, or really \hbar , to ∞) we recover Grassmannian puzzles. Specifically, the rhombus pieces compute a change-of-basis in $H^*_{T \times \mathbb{C}^{\times}}$ (the middle space).

In the d = 2, 3, 4 cases, the quiver is D_4, E_6, E_8 respectively, and the quiver variety used in the middle is not a cotangent bundle.

Z_2 fixed points give the restriction to SpGr(k, 2n).

For a first variant on the quiver varieties above, consider

$$\mathcal{M}\begin{pmatrix} \boxed{N} \\ j & 0 \end{pmatrix} \times \mathcal{M}\begin{pmatrix} \boxed{N} \\ N & k \end{pmatrix} \xrightarrow{attr} \mathcal{M}\begin{pmatrix} \boxed{N+N} \\ N+j & k \end{pmatrix} \xrightarrow{\Phi_{N}^{-1}(1)} \mathcal{M}\begin{pmatrix} & \boxed{N} \\ j & k \end{pmatrix}$$

inducing $H_{T\times\mathbb{C}^{\times}}^{*}(T^{*}Fl(j,k;\mathbb{C}^{N})) \rightarrow H_{T\times\mathbb{C}^{\times}}^{*}(T^{*}Gr(j,\mathbb{C}^{N})) \times H_{T\times\mathbb{C}^{\times}}^{*}(T^{*}Gr(k,\mathbb{C}^{N}))$. **Theorem [Halacheva-K-ZJ].** Index the Schubert classes on $Fl(j,k;\mathbb{C}^{N})$ by strings with content $0^{j}(10)^{k-j}1^{N-k}$. Then puzzles with Grassmannian puzzle pieces, but allowing k - j 10-labels on the South edge, compute this pullback. Now take N = 2n, j = 2n - k. Then there are compatible Z_{2} actions on these spaces with fixed points

$$T^*Gr(k, \mathbb{C}^{2n}) \xrightarrow{attr} T^*OGr(2n-k, \mathbb{C}^{4n}) \xrightarrow{attr} T^*SpGr(k, \mathbb{C}^{2n})$$

Theorem [H-K-ZJ]. Consider puzzles like the above, but "self-dual" in being invariant under left-right flip plus exchange $0 \leftrightarrow 1$. These puzzles compute the equivariant pullback from $Gr(k, \mathbb{C}^{2n})$ to $SpGr(k, \mathbb{C}^{2n})$, extending work of [Pragacz '98] and [Coşkun '14].

A pipe dream picture of puzzles.

In $\mathcal{M}\begin{pmatrix} n \\ k & 0 \end{pmatrix} \times \mathcal{M}\begin{pmatrix} n \\ n & k \end{pmatrix} \to \mathcal{M}\begin{pmatrix} n \\ k & k \end{pmatrix}$ the different appearances of $Gr(k, \mathbb{C}^n)$ are best studied from the weights in $\mathbb{C}^3 \otimes \mathbb{C}^3 \to Alt^2 \mathbb{C}^3 \cong (\mathbb{C}^3)^*$. This leads to a superior labeling, in which the T-equivariance of that map gives a weight conservation which one can interpret with pipes: 10 10 0 0 10 0 10 0

(Alternately one can label the horizontal edges by the missing number 0, 1, 2 instead of the pairs $1 \land 2, 0 \land 2, 0 \land 1$.)

Associativity via 3-d puzzles.

Go beyond $\mathbb{C}^3 \otimes \mathbb{C}^3 \to \operatorname{Alt}^2 \mathbb{C}^3 \cong (\mathbb{C}^3)^*$ to $\mathbb{C}^4 \otimes \mathbb{C}^4 \to \operatorname{Alt}^3 \mathbb{C}^4 \cong (\mathbb{C}^4)^*$:

$$\mathcal{M}\begin{pmatrix} \boxed{n} & \\ k & 0 & 0 \end{pmatrix} \times \mathcal{M}\begin{pmatrix} \boxed{n} & \\ n & k & 0 \end{pmatrix} \mathcal{M}\begin{pmatrix} \boxed{n} & \\ n & n & k \end{pmatrix}$$

$$\xrightarrow{\text{attr}} \mathcal{M} \begin{pmatrix} \boxed{n+n+n} & & \\ 2n+k & n+k & k \end{pmatrix} \xrightarrow{\Phi_N^{-1}(1)} \mathcal{M} \begin{pmatrix} & & \boxed{n} \\ k & k & k \end{pmatrix}$$

Associativity says that the coefficients of S_o in $(S_\lambda S_\mu)S_\nu$ and $S_\lambda(S_\mu S_\nu)$ are the same. In puzzle terms, we label the front or back of a tetrahedron with bipuzzles, and should be able to biject them:

Theorem [Henriques ~'04]. One can compute $c_{\lambda\mu\nu}^{o}$ using any lattice surface Σ in the tetrahedron with $\partial \Sigma$ this same (λ, μ, ν, o) boundary. Proof: \exists 3-d puzzle pieces giving correspondences between Σ- and Σ'-puzzles. His very unpleasant 0, 10, 1 pieces were lost, but essentially rediscovered by [H-Perry-ZJ] in the A₃ formulation above.

The newest Schubert calculus: separated descents.

Theorem [K-ZJ]. Consider the puzzle pieces at right, and their 180° rotations. Make size n puzzles with 1,..., k and n - k blanks on NE side, k + 1, ..., n and k blanks on NW side. Then these compute the structure constants of $H^*(Fl(k,...,n;\mathbb{C}^n)) \otimes H^*(Fl(1,...,k;\mathbb{C}^n)) \rightarrow H^*(Fl(\mathbb{C}^n))$, and with two more pieces we get the K_T -version.

[Kogan '01], the previous state-of-the-art for general $H^*(Fl(\mathbb{C}^n))$ calculations (extended to K-theory in [K-Yong '04]), assumed that one of the two factors was a Grassmannian (and was algorithmic, and nonequivariant). "**Proof**".

$$\mathcal{M}\left(\begin{array}{c}n\\n&n\ldots n&k&k-1&\ldots&1\end{array}\right)\times\mathcal{M}\left(\begin{array}{c}n\\n-1&n-2\ldots k&0&0&\ldots&0\end{array}\right)$$

$$\stackrel{\text{attr}}{\longleftrightarrow} \mathcal{M} \begin{pmatrix} \boxed{n+n} \\ 2n-1 & 2n-2 & \dots & n+k & k & k-1 & \dots & 1 \end{pmatrix}$$

$$\stackrel{\Phi_N^{-1}(1)}{\longleftrightarrow} \mathcal{M} \begin{pmatrix} \boxed{n} \\ n-1 & 2n-2 & \dots & n+k & k & k-1 & \dots & 1 \end{pmatrix} \cong T^* Fl(\mathbb{C}^n)$$

Example. A separated-descents puzzle.

Finite \hbar application: Euler characteristics of triple intersections.

The elements of the natural basis of $H^*_{T \times \mathbb{C}^{\times}}(T^*GL_n/P)$ arise in three essentially different ways:

- by following B_wL/L under Grothendieck-Springer's $GL_n/L \rightsquigarrow T^*GL_n/P$
- as characteristic cycles of the $\mathcal{D}_{G/P}$ -modules associated to Bruhat cells
- as Chern-Schwartz-MacPherson classes associated to Bruhat cells

The latter's connection to Chern classes and Euler characteristics gives rise to the following theorem, statable without explicit reference to cotangent bundles:

Theorem [K-ZJ]. Take $g, h \in GL_n$ generic, and $M := X_{\lambda}^{\circ} \cap (g \cdot X_{\mu}^{\circ}) \cap (h \cdot X_{\nu}^{\circ})$. Then $(-1)^{\dim M} \chi_c(M)$ is nonnegative, counted by ordinary puzzles in which one also allows 10-10-10 pieces (both Δs and ∇s).

For single and double intersections these numbers are 1 and 0 (unless $\lambda = \mu^c$). We have similar results for 2,3,4-step (though the 4-step isn't positive), prompting the question:

Is $(-1)^{\dim M} \chi_c(M) \ge 0$ for triple intersections M inside general G/P?

The puzzle calculation naturally extends to K-theory, where the 10-10-10 pieces are worth q, q^{-1} for Δ , ∇ respectively. Do these (times some power of q) have a point-counting-over- \mathbb{F}_q interpretation?

Other people's results, unrelated (so far) to quiver varieties.

Consider usual Grassmannian puzzle pieces, but in a parallelogram, with boundary strings λ , α , μ , β clockwise from NW. Then it's easy to show that λ , μ have the same content, and likewise α , β . Call the number of these puzzles $c_{\lambda\alpha\mu\beta}$.

Obviously $c_{\lambda\alpha\mu\beta} = c_{\mu\beta\lambda\alpha}$, by rotating the puzzles 180°. But more is true:

Theorem [P. Anderson]. $c_{\lambda\alpha\mu\beta} = c_{\lambda\beta\mu\alpha}$, as each can be interpreted as the same integral over a *product* of two Grassmannians.

Consider $K_*(Gr(a, a + b) \times Gr(c, c + d) \rightarrow Gr(a + c, a + c + b + d))$, inducing a bigraded ring structure on $\bigoplus_{a,b} K_*(Gr(a, a + b))$.

Theorem [Pylyavskyy-Yang]. This K-homology product can be computed by puzzles with one extra hexagonal piece.

We don't know a Yang-Baxter equation interpretation of this rule. Of course a first step would be an equivariant extension.