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Abstract
Among other things (these all since 2017),

o Ki(2-step flag manifolds) and K(3-step) [K-Paul Zinn-Justin]
e the restriction Hm(Gr(k,2n)) — Hm(SpGr(k, 2n)) [K-Z]-Iva Halacheva]
e a bijective proof of associativity of the Grassmannian puzzle product,
using 3-d puzzle pieces [H-Z]-Hannah Perry]
o the “separated descents” restriction map, generalizing Kogan's cases
Kr(FL(1, ...,k n)) x K¢(FU(k+T1,...,n; n)) = Ky(Fl(n)) [K-Z]]
e the Euler characteristic of the () of three Bruhat cells [K-Z]]

Most of these extend to formulee for pullbacks of motivic Segre classes,
which naturally live on the cotangent bundle and generalize to K-theoretic
stable classes on Nakajima quiver varieties. I'll explain the geometry of
this extension.

These transparencies are available at http://math.cornell.edu/~allenk/



Graph-theoretic duals of equivariant puzzles.

Recall from [K-Tao '03] the equivariant puzzle rule for computing the
HY = Zly, . . ., yn] structure constants of Schubert classes in Gr(k, C™):

Hagng
SERRE

+ So110 + (Y2 —y3)Sotor

The n As on the bottom of a puzzle shape are different
from the others: they can’t occur in equivariant pieces.
Let’s pair up the other triangles into vertical rhombi.
Now, let’s look at the graph-theory dual of an
equivariant puzzle, an overlay of n Ys.

This one is worth (y; —yz2)(y2 — ya4):
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The Yang-Baxter equation and algebraic sources thereof.

, , , (V,a) (V,b) (V,0) (V,a) (V,b) (V,0)
Observation [Zinn-Justin "05].
Rotating the nonrotatable equivariant pieces
appropriately (!?), the equivariant puzzle -
R-matrix satisfies the Yang-Baxter equation:
(V,0) (V,b) (V,a) (V,0) (V,b) (V,a)

Let U,(glz*]) be the quantized loop algebra; it comes with many “evaluation
representations” (Vs,c € C*) taking z — c then using the usual irrep V; of g.

Drinfel’d and Jimbo observed that (V,, a)®(Vs, b) is irreducible for generic a/b,
but = to (Vs, b)®(Vy, a), and these isos are “R-matrices” (solution to YBE).

Theorem [K-Z]J]. 1. The d = 1 puzzle R-matrix, acting on the ®* of the 3-space
with basis {5, T, TO}, is a q — oo limit of the R-matrix for sl3 O C3®C?.

2. For the d = 2 case and its 8 edge labels 0,1,2,10,20,21, Z(TO), (ZT)O,

we need a ¢ — oo limit of the R-matrix for 94 O spin,®spin _.

3. For the d = 3 case and its 27 edge labels, we need a q — oo limit of the
R-matrix for ¢ ) C¥®@C? (which one can find in the 1990s physics literature).
4. For d = 4, the same tech gave a nonpositive rule based on eg O (es & C)®-2.

In each case, the Yang-Baxter equation (and similar “bootstrap” equation to deal
with trivalent vertices) is used in a quick proof [K-Z] "17] of the puzzle rule, and
the nonzero matrix entries in the ¢ — oo limit tell us the valid puzzle pieces.
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Nakajima’s geometry of some U,(g[z*]) representations.

But why should such representations come up in studying Fl(ny, ny,...,ng; C")?

Given an oriented graph (Qo, Q1), with some vertices declared “gauged” and
the others “framed”, double it by adding a backwards arrow for every arrow.
Attach a vector space W; to each framed vertex and V; to each gauged vertex.

Definition. A point in the quiver variety M(Qo, Q1, W, V) is a choice of linear
transformation for every edge,

e such that )+ (go out) o (come back in) is zero at each gauged vertex;
e every Vin each V; can leak into some Wj via some path;
e all is considered up to ] [ GL(V change -of-bases at the gauged vertices.

Let M(Qo, Q1, W) := ][\, M(Qo, Q1 , W, V) be the quiver scheme.
Theorem [Nakajlma '01]. If Q is ADE, then Uy(its g[z*]) O K(M(Qo, Q1, W)).

n
Main example. M | 7 = T*Fl(nyg,...,ng; C").
Ng & Mg ... T4y

For this framing the Ug(sly1[zF])-action appears already in [Ginzburg-
Vasserot 1993], and the rep is K(M(Qo, Q1,nw;)) = (CHN®" whose weight
multiplicities are (d + 1)-nomial coefficients.
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Some Lagrangian relations of quiver varieties.

On C" @ C" we put a C*-action with weights 0, 1, extending to an action on

+ . : .
o s then M | L2 « M| L2 1, || B8 fixed-point component.

n+k k k O n
Let attr be the (closed!) attracting set, the Morse/Bialynicki-Birula stratum.

Now let @'(1) := {the composite (C™ @ 0) \, C*** » (0 @ C") is the identity}.
Points (reps) in that set enjoy splittings of C***, plus coordinates on the C".

Imprecisely stated theorem [K-Z]J]. The Lagrangian relations

1
k 0 n k n+k k k k

induce the usual multiplication map on H, .. (T*Gr(k,C")), up to a scale, and
by following the natural (analogues of Schubert) bases (and taking q, or really
h, to co) we recover Grassmannian puzzles. Specifically, the rhombus pieces

compute a change-of-basis in H}, . (the middle space).

In the d = 2,3,4 cases, the quiver is Dy, Eg, Eg respectively, and the quiver
variety used in the middle is not a cotangent bundle.
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Z, fixed points give the restriction to SpGr(k, 2n).

For a first variant on the quiver varieties above, consider

m(IN « v (LN atr, | NN oy'(1) N
i 0 N k N-+j k ik
inducing H: .. (T*FL(j, k; CV)) — Hi . (T*Gr(j,CY)) x Hx . (T*Gr(k,CN)).

Theorem [Halacheva-K-Z]J]. Index the Schubert classes on Fl(j,k; CN) by
strings with content 0'(10)* 71N~ Then puzzles with Grassmannian puzzle
pieces, but allowing k — j 10-labels on the South edge, compute this pullback.

Now take N = 2n, j = 2n — k. Then there are compatible Z, actions on these
spaces with fixed points

attr

T*Gr(k,C") 2% T*0Gr(2n — k, C*™) 25 T*SpGr(k, C2V)

Theorem [H-K-Z]J]. Consider puzzles like the above, but “self-dual” in being
invariant under left-right flip plus exchange 0 < 1. These puzzles compute
the equivariant pullback from Gr(k,C*") to SpGr(k,C*"), extending work of
[Pragacz ‘98] and [Coskun "14].
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A pipe dream picture of puzzles.

In M (L2 « M | L2 — M 1) the different appearances of
k O n k k k

Gr(k, C") are best studied from the weights in C*®C> — AU*C> = (C3)*.
This leads to a superior labeling, in which the T-equivariance of that map gives
a weight conservation which one can interpret with pipes:

(Alternately one can label the horizontal edges by the missing number 0, 1,2
instead of the pairs 1 A2,0 AN2,0 A\ 1.)
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Associativity via 3-d puzzles.
Go beyond C3@C3 — AW?C? = (C?)* to C*'@C*eC* — AU3C* = (CH*:
ML x M L2 ML
k 0 0 n k O n n k

attr M n+n-+n ./\/l
2n+k n+k k k k

-]

Associativity says that the coefficients of S, in
(SAS,)Sv and Si(S,Sy) are the same. In puzzle
terms, we label the front or back of a tetrahedron
with bipuzzles, and should be able to biject them:

Theorem [Henriques ~’04]. One can compute cjy ,, using any lattice surface X
in the tetrahedron with 0X this same (A, 1, v, 0) boundary.
Proof: 3 3-d puzzle pieces giving correspondences between Z- and X'-puzzles.

His very unpleasant 0,10, 1 pieces were lost, but essentially rediscovered by
[H-Perry-Z]] in the A3 formulation above.

\‘
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The newest Schubert calculus: separated descents.

Theorem [K-Z]]. Consider the puzzle pieces at right, and

their 180° rotations. Make size n puzzles with 1,...,k i i
and n — k blanks on NE side, k+1,...,n and k blanks on

NW side. Then these compute the structure constants of
H*(FU(k,...,n;C")) ® H*(F1(1,...,k;C")) — H*(FL(C")), ij
and with two more pieces we get the Ky-version. i>j

[Kogan "01], the previous state-of-the-art for general H*(F1(C")) calculations
(extended to K-theory in [K-Yong ‘04]), assumed that one of the two factors
was a Grassmannian (and was algorithmic, and nonequivariant).

“Proof”.

n n
M x M
(n n...n k k—1 ... 1) (n—1 n—-2...k 0 0 ... O)
attrM n+n
2n—-1 2n—2 ... n+k k k—1 ... 1
L
RNV n = T*FL(C™)
n—1 2n—2 ... n+k k k—1 ... 1
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Example. A separated-descents puzzle.
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Finite h application: Euler characteristics of triple intersections.

The elements of the natural basis of HY_ ..
different ways:

e by following B_wL/L under Grothendieck-Springer’s GL,/L ~» T*GL,,/P
e as characteristic cycles of the D¢ p-modules associated to Bruhat cells
e as Chern-Schwartz-MacPherson classes associated to Bruhat cells

(T*GL,,/P) arise in three essentially

The latter’s connection to Chern classes and Euler characteristics gives rise to
the following theorem, statable without explicit reference to cotangent bundles:
Theorem [K-Z]]. Take g,h € GL, generic, and M := X3 N (g - X7) N (h - XJ).
Then (—1)4mM~y (M) is nonnegative, counted by ordinary puzzles in which
one also allows 10-10-10 pieces (both As and Vs).

For single and double intersections these numbers are 1 and 0 (unless A = u°).

We have similar results for 2,3,4-step (though the 4-step isn’t positive),
prompting the question:

Is (—1)4mM~ (M) > 0 for triple intersections M inside general G/P?

The puzzle calculation naturally extends to K-theory, where the 10-10-10 pieces
are worth g, q~' for A, V respectively. Do these (times some power of q) have a
point-counting-over-IF, interpretation?
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Other people’s results, unrelated (so far) to quiver varieties.

Consider usual Grassmannian puzzle pieces,
but in a parallelogram, with boundary strings
0

A, &, W, p clockwise from NW.
Then it’s easy to show that A, p have the same 0 W

content, and likewise «, 3.
Call the number of these puzzles cjqyp.

Obviously caxup = Cupaas by rotating the puzzles 180°. But more is true:

Theorem [P. Anderson]. c\nup = Capua, @S each can be interpreted as the same
integral over a product of two Grassmannians.

Consider K, (Gr(a, a+b)xGr(c,c+d) - Gr(la+c,a+c+b+ d)), inducing

a bigraded ring structure on ab Ky(Gr(a,a+ b)).

Theorem [Pylyavskyy-Yang]. This K-homology product can be computed by
puzzles with one extra hexagonal piece.

We don’t know a Yang-Baxter equation interpretation of this rule. Of course a
first step would be an equivariant extension.
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