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Part 1. Equivariant Schubert classes

1. EQUIVARIANT K-THEORY OF VARIETIES

Given a commutative ring R, define K• (aka K-homology, or even “G-theory”) using
formal differences of finitely generated modules, modulo relations derived from short
exact sequences. Then if R → S and S is R-finite, we get a map K•(S) → K•(R) just by
restriction of the action.

Date: December, 2017.
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Note that ⊗R doesn’t descend to K•; it doesn’t respect SES. So define K• using only
finitely generated projective modules. Now K•(R) becomes a commutative algebra, acting
on K•(R) as a module. Also, given R→ Swe get K•(R)→ K•(S),M 7→ S⊗RM.

Note that K•(R) has a “fundamental class” [R] even though Spec R is typically noncom-
pact; it will be most analogous to Borel-Moore homology, while K• is analogous to ordi-
nary cohomology. Acting on this fundamental class, we get a “Poincaré map” K• → K•

(“forget that the module’s projective”), which is typically neither 1 : 1 nor onto.
Taking Spec , both become functors on affine schemes – now the placement of the •

correctly reflects covariance. For general schemes X, instead of modules we use coherent
OX-modules. Pleasantly, we can now define pushforwards in K• along proper maps, not
just finite maps, using sheaf cohomology. For example, under the map P1 → pt, we have
[O(k)] 7→ k+ 1 ∈ K(pt) ∼= Z.

IfG acts on R, even trivially, we can ask forG to act compatibly on modules, and define
KG• (R), K•G(R). First example: if G acts trivially on a point Spec C, then KG(pt) = Rep(G).
More specifically, KT(pt) ∼= Fun(T), a Laurent polynomial ring. Note that any X maps to
a point, making KG(X) a KG(pt)-algebra; each pullback KG(Y) → KG(X) is a KG-algebra
morphism; and, each pushforward KG(X)→ KG(Y) is a KG-module morphism. For λ ∈ T ∗
which we think of additively, let exp(λ) denote the corresponding element of KT just so
that we can think of it multiplicatively.

Example: let G = T act on X = C with weight λ ∈ T ∗ (the weight lattice). Then the
structure sheaf O~0 of the origin fits into an equivariant SES

0→ OX[−λ] z·−→ OX → O~0 → 0

giving the formula

1− exp(−λ) ∈ KT(X) 7→ [~0] := [O~0] ∈ K
T
•(X)

More generally, the class of a subspaceU ≤ V with weights λi on V/U is
∏

i(1−exp(−λi)).
To “first order in {λi}” this is

∏
i λi.

Theorem 1. KG(X) = KT(X)W , a sort of splitting principle, so we usually reduce to G = T .

2. EQUIVARIANT LOCALIZATION

Let G be a connected Lie group. Then KG(pt) = Rep(G) = Rep(T)W is a domain, so has
a fraction field frac KG. Localizing (in the commutative algebra sense) by tensoring with
frac KG is called equivariant localization. It fits nicely with the map KG(X)→ KG(X

G) ∼=
K(XG)⊗KG:

Theorem 2. Let G = T , a torus.

(1) After equivariant localization, this map is an isomorphism.
(2) If X is smooth projective, this map is injective, even before localizing. Projectivity isn’t nec-

essary – it’s enough that T possess a cocharacter Gm ↪→ T that gives a B-B decomposition
(e.g. X’s affinization is a cone and X is proper over it).

(3) Still assuming that, the natural map KT(X)⊗KTZ→ K(X), taking each exp(λ) 7→ 1, is an
isomorphism.
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There’s a nice theorem (still assuming, say, smooth projective) that gives the image, but
we won’t care. (It says: Let X1 be the union of the 0- and 1-dimensional orbits. Then if a
class extends from XT across the components of X1, it extends to X.)

One useful formula, that we will abuse later, comes from (1). Assuming XT finite, every
α can be written as

∑
f∈XT

α|f
[f]|f

[f] (proof: their restrictions to each g ∈ XT match). Hence the

pushforward p∗α of α to a point (which we will just denote
∫
α) is

∑
f∈XT

α|f
[f]|f

. This is the
Atiyah-Bott ’65 “Woods Hole Theorem”, which to Fulton’s recollection was first proved
by Verdier.

We won’t take time to deal with equivariant ordinary cohomology separately, in part
because its definition is much less pleasant than equivariant K-theory’s. Also, (2) and (3)
only hold if one tensors with Q.

3. COMPUTING WITH PICTURES

An extra bonus of being projective, or anyway having a T -equivariant ample line bun-
dle L, is that we can define a “moment map” ΦT : X

T → T ∗, f 7→ wt(L|f), and a “moment
polytope” ΦT(X) := hull(ΦT(X

T)) ⊆ T ∗⊗R (this definition isn’t quite right for X not pro-
jective – we need to include some directions toward infinity). Also, each component of X1
has its own moment subpolytope.

Things are especially felicitous if XT is finite, and easy to draw if ΦT is injective on XT
(both are true e.g. for ample line bundles on flag manifolds, but only the first is true for
HilbnC2). Then we can draw elements of KT(X) directly on ΦT(X), and make use of the
dual appearance of T ∗.

Example: let X = P2, with T 2 acting with weights (0, 0), (1, 0), (0, 1); these are also the
corners of the moment polytope. The three subvarieties P0,P1,P2 (or really their structure
sheaves) give a basis of KT(P2). Restricted to fixed points, we get

0
| \

(1− e↓)(1− e→) − 0

0
| \

(1− e↓) − (1− eSE)

1
| \

1 − 1

Since it’s a basis, we can e.g. compute [P1]2. Since restricting to fixed points is a KT -algebra
homomorphism, we can do all computations at the fixed points: 0

| \

(1− e↓) − (1− eSE)

2

=
0
| \

(1− e↓)2 − (1− eSE)2

= (1− eSE)

 0
| \

(1− e↓) − (1− eSE)

+ eSE

 0
| \

(1− e↓)(1− e←) − 0


Passing to nonequivariant (setting each eλ 7→ 1), we get [P1]2 = [P0] – two lines intersect
in a single point.
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4. SCHUBERT CLASSES ON P−\GLn

Let n =
∑d

i=0 ni be a composition (possibly with 0s), and consider the space of d-step
partial flags 0 ≤ Vn1 ≤ Vn1+n2 ≤ . . . ≤ V

∑
ni = Cn, where the latter is row vectors and

so has a right action of GLn. The T = Tn =diagonal matrices acts with isolated fixed
points, namely where each V i is coordinate. There are

(
n

no,...,nd

)
of those, which we index

by permutations of 0n01n1 · · ·dnd . Warning: this is backwards from most of the literature;
we will explain later why we break this convention.

The stabilizer of (each Vk = span of first k coordinates) is block lower triangular ma-
trices P−. For π a permutation (matrix), let X◦π := P−\P−πB+, a Bruhat cell (where B+ is
upper triangular matrices). Then Xπ = Xwπ forw ∈WP, so we should really think of these
as indexed by WP\W, or again permutations of 0n01n1 · · ·dnd . In this case they partition
P−\G. The codimension of Xπ := X◦π is the number `(π) of inversions in the word π.

Since is T -invariant (right action), it defines an element [Xπ] of KT(P−\GLn). How can
we compute the restriction [Xπ]|ρ to a T -fixed point?

If one composition refines another, then r : P−\GLn � Q−\GLn, and by B+-invariance
we know r(Xπ) = Xπ ′ for some π ′, likewise r−1(Xρ) = Xρ ′ for some ρ ′. Specifically, π ′
comes from identifying values in π (possibly losing inversions), whereas ρ ′ comes from
breaking ties without introducing inversions. Consequently, it’s enough to treat the full-
flag case P− = B−.

Often one wants to think about a Schubert variety Xπ geometrically, as those partial
flags intersecting the B+-fixed flag in at least some dimensions. For this it helps to notice
that Xπ is “boxy”1 w.r.t. the projections P−\GLn � Gr(k, n); it’s the intersection of preim-
ages of Schubert varieties in Grassmannians, i.e. the different k-planes are constrained
separately. To understand those constraints, coarsen the values in π down to {≤ k,> k},
and look for descents to see which subspaces in the B+-flag are relevant.

5. Ř-MATRICES APPEAR

We compute [Xwrα] in the Schubert basis.
First observe that if w < wrα, then Xwrα = xw.
Otherwise w > wrα. Let Y := B−\B−wB+ ×B+ Pα, where the ×B+ means we divide2 by

the internal diagonal action of B+. Then we have two Pα-equivariant maps from Y

Y
m−→ Xwrα↓

P1 ∼= B+\Pα

In particular they are 〈T, rα〉-equivariant. It is an important fact thatm∗(OY) has no higher
direct images (the target has “rational singularities”), som∗[Y] = [m(Y)] = [Xwrα ].

1One of the big theorems in flag matroids is that a subset M ⊆ Sn with the Coxeter matroid property
“each π ·M has a unique Bruhat minimum” is similarly boxy for the matroid projections Sn �

(
n
k

)
.

2Fiber products, which are subsets, are denoted by ×S; this is rather a quotient so we use ×S.
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On this P1 we have a single relation between [P1], [0], [∞] which we can compute from
their restrictions to fixed points:

[P1] [0] [∞]

restriction to 0 1 1− exp(α) 0
restriction to∞ 1 0 1− exp(−α)

∴ [∞] = (1− exp(−α))[P1] + exp(−α)[0]

Sanity check: nonequivariantly this become [∞] = [0].
Pull back this equation along the vertical map to Y:

[Xw]rα = (1− exp(−α))[Y] + exp(−α)[Xw] ∈ KT(Y)

Push forward alongm:

[Xw]rα = (1− exp(−α))[Xwrα] + exp(−α)[Xw]

Let’s write this down for the 22 Schubert classes onGr(C2) = Gr0(C2)
∐
Gr1(C2)

∐
Gr2C2),

where α = y1 − y2 in T 2-coordinates:
1 0 0 0

0 exp(y1 − y2) 1− exp(y1 − y2) 0
0 0 1 0

0 0 0 1


a 5-vertex model. R-matrix people will tell you that you should seek instead a 6-vertex
model, and we’ll hear more about that.

6. SUBWORD COMPLEXES AND THE AJS/BILLEY AND GRAHAM/WILLEMS FORMULÆ

Let Q be a word in Sn’s generators, and ∆|Q|−1 the simplex whose vertices are indexed
by the letters inQ – or better yet, the subwords ofQmissing a single letter. Then the other
faces also correspond to subwords, by intersecting. Define m : 2Q → W by F ⊆ Q maps
to the Demazure product of Q \ F, the unique Bruhat-largest

∏
G, G ∩ F = ∅. Then

Theorem 3. (1) Eachm−1(w) is homeomorphic to an open ball (or very rarely a sphere), as a
locally closed subcomplex of ∆|Q|−1.

(2) Its closure ∆(Q,w), the subword complex, is homeomorphic to a ball or sphere.
(3) ∂∆(Q,w) =

⋃
w ′mw∆(Q,w

′).
(4) Consequently, the Möbius function on ∆(Q,w) is ±1 on those faces F that enjoy

m(Q \ F) = w on the nose. (In general simplicial complexes, µ(F) = 1− χ(link(F)).)

I like to express this asm defines a “Bruhat decomposition of ∆|Q|−1”.
Stanley-Reisner theory is largely the observation that simplicial complexes are equiva-

lent data to unions of coordinate subspaces in CQ. If we let T act on CQ by with weight∏
j<i rqj · αqi on the ith coordinate,3 then we can state the Graham/Willems formula for

3These roots are all positive roots if Q is a reduced word.
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the restriction:

[Xπ]|ρ ↔ ∑
F∈∆(Q,π)◦

(−1)codim[CF] ∈ KT(CQ) ∼= KT

where Q is any reduced word for ρ. It’s easy to derive from the Ř-matrix result from the
last section.

In view of (4), though, I observed that the RHS is just [SR(∆(Q,π))].
It may seem sad to have to choose a wordQ for σ given that the answer doesn’t depend

on it. Certainly commuting moves on Q do not really change the formula, only braid
moves. In lucky “fully commutative” cases of σ, such as σ 321-avoiding (in type A), only
commuting moves are possible and hence the formula is essentially unique. This is nearly
the context of the Ikeda-Naruse “excited diagrams” formula.

The Graham/Willems formula simplifies, to an older formula of AJS/Billey, if we limit
from KT to HT . Then (1) only the facets (maximal faces) of the subword complex con-
tribute, and (2) the individual terms

∏
(1− e−β) ∈ KT limit to

∏
β ∈ HT .

7. GRÖBNER GEOMETRY OF THE GRAHAM/WILLEMS FORMULA

Towards explaining the [SR(∆(Q,π))] simplification, defineXρ◦ := B−\B−ρB−, and factor
{ρ} ↪→ B−\GLn as

Xρ◦ ∩ Xπ ↪→ Xπ↓ ↓
{ρ} → Xρ◦ → B−\GLn↑ ↑ m
~0 → A`(ρ)

This helps because the intersection is transverse, so the K-cohomological pullback of
[Xπ] ∈ KT(B−\GLn)→ K(Xρ◦) is just the class [Xπ∩Xσ◦ ]. Then the second pullback KT(Xσ◦)→
KT({µ}) is trivial, as both KT -algebras are just KT .

The reduced word for ρ enters in actually putting coordinates on Xρ◦, via the open Bott-
Samelson map

m : (z1, . . . , z|Q|) 7→ P−\P−

|Q|∏
i=1



1
. . .

1
zi 1
−1 0

1
. . .

1


in position qi ∈ [1, n)

Theorem 4. Replace each of the equations defining m−1(Xπ) by their lexicographic initial terms
(this “Gröbner degeneration” doesn’t change the KT -class). Then the result is the Stanley-Reisner
ideal of ∆(Q,w). This degeneration commutes with taking unions and intersections of {Xπ}, as
well.
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8. A GLOBAL VIEW IN TYPE A: GROTHENDIECK POLYNOMIALS

Let P− ≤ GL(2n) be n+ n block lower triangulars. Fulton ’92 considers the maps

Mn×n
graph−−−→ Gr(n, 2n)← P−\GL(2n)← X

w0w
P
0

◦

and observes that the resulting isomorphism, when fit into

B−\GLn ← GLn ↪→Mn
∼= X

w0w
P
0

◦ ,

lets one see the Schubert strata Xπ, π ∈ Sn of B−\GLn using the strata Xπ⊕1n ∩ X
w0w

P
0

◦ .
Specifically, define the double Grothendieck (Laurent) polynomial

Gπ(x, y) := [Xπ⊕1n ]|w0wP0

which one can compute from the Graham-Willems formula. The choice of reduced word
Q forw0wP0 is essentially unique (w0wP0 is “fully commutative”), and the Graham/Willem
summands correspond to “nonreduced pipe dreams” for π.

One can compute point restrictions using these: [Xπ]|ρ = Gπ(ρ · y, y). To see this, first
restrict the Tn×Tn acting onMn×n to the ρ-twisted diagonal (accounting for the specializa-
tion), then restrict to Tσ, and follow under the isomorphisms KT(B−\GLn) = KT(T\GLn) =
KT×T(GLn).

Part 2. Schubert calculus

Now that we have the classes {Sλ := [Xλ]}, in principle we can compute the multiplica-
tion of two Schubert classes and re-expand in the basis, with coefficients from KT .

SλSµ =
∑
ν

cνλµSν

Since Sλ|ν = 0 unless ν ≥ λ, we can straightaway learn that cνλµ = 0 unless ν ≥ λ, µ.
Remember for later the ν = identity case: cIdλµ 6= 0 =⇒ λ = µ = Id and cIdλµ = 1.

In particular, it is very easy to find cνλµ by computer for small examples. If we want to
compute in nonequivariant K-theory, set all yi = 1; if we want to compute in ordinary
equivariant cohomology, expand to first order in yi and only consider terms of the correct
y-degree `(ν)− `(λ)− `(µ). (One can do this with the classes first, and only go to structure
constants afterward.)

n = 1 : S20 = S0 S21 = S1

n = 2 : S200 = S00 S201 = S01 S01S10 = S10 S210 = (1− y2/y1)S10 S211 = S11

In general if a word λwith content 0n01n1 · · ·dnd is the weakly increasing one,
then Sλ|µ = 1 ∀µ, so Sλ = [P−\GLn] is the identity for multiplication.
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9. THE ORACLE SPEAKS

A puzzle piece will be a size 1 equilateral triangle (oriented either ∆ or∇) with edges4
labeled, from some fixed label set. A size n puzzle will, at first, be a size n triangle built
from n2 pieces (

(
n+1
2

)
∆s and

(
n
2

)
∇s) glued so that edge labels agree. Later another shape

will be added.

Oracle: there is an edge label set [0, d] plus others, and a finite set of allowed puzzle
pieces, such that nonequivariant ordinary cohomology cνλµ is the number of size n
puzzles with labels λ, µ, ν on the NW, NE, S sides (read left to right). In particular,
the extra labels only appear in the interior.

Why should there be this Z3 rotational symmetry?

cνλµ =

∫
P−\GLn

SλSµS
ν =

∫
P−\GLn

SλSµSν backwards

The fact that the dual basis {Sν} (with respect to the multiply-then-integrate pairing) is a
reordering of the original basis is special to ordinary cohomology, not K- or equivariant.

In fact the oracle only told me this5 for d = 1, and I incorrectly generalized to all d; it
turns out to only hold like this for d = 1, 2, 3.

From S20 = S0 and S21 = S1, we learn that there must be a (0, 0, 0)-triangle and (1, 1, 1)-
triangle. From S=01S01 we want a puzzle with labels

1/\0
0/−−\1
01

We know pieces that fit in the SW and SE corners, so let’s try putting them in; what
remains is

1/\0
0\/1

so if we invent a new label “(10)” to go on that middle edge, and create this new piece
(and its rotation), then we’ve accounted for that coefficient.

Theorem 5 (KTW ’03). The oracle was right, with these three labels 0, 1, (10) and these three
puzzle pieces (up to rotation).

Our proof went via bijection to a known rule (Berenstein-Zelevinsky triangles).
The d = 2 case is easy to explore experimentally. Since it includes the d = 1 case we’ll

need the labels 0, 1, 2, (21), (20), (10), and these suffice for n ≤ 2 (where we can only fit
d = 1 anyway). At n = 3we’re forced to have two new labels 2(10), (21)0 still on triangles
Y, X, (YX) clockwise, for a total of 8. (For example, S021S102 is about flags L1 < P2 such that
P ≥ C1 and L ≤ C2. Hence either L = C1, or P ≥ L+ C1 = C2, giving S201 + S120; check for
yourself that these two puzzles suggest one introduce (21)0, 2(10) respectively.)

I conjectured in ’99 that those 8 labels and pieces compute nonequivariant ordinary
Schubert calculus on 2-step flag manifolds; this was proven in [BKPT14].

4It is tempting, when drawing just one of them, to put the edge labels outside the triangle; this should
be avoided since it becomes impossible when the pieces are glued together.

5Terry Tao and I invented puzzles to solve Weyl’s 1912 Hermitian sum problem. Klyachko solved it with
Grassmannian Schubert calculus. So we wondered, are they directly related?
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Again, since 3-step includes 2-step, we’ll need (ji), k(ji), (kj)i labels for k > j > i. I
conjectured that any binary tree with strictly decreasing leaves (like (32)(10)) should give
a label and piece, but these 23 such define a noncommutative multiplication. Buch found
the four missing labels, e.g. 3(((32)1)0), in which a weak decrease is allowed if separated
by three parentheses (!?!).

Paul Zinn-Justin and I proved this 3-step, 27 label rule this year, using E6’s R-matrix
acting on 27⊗27.

10. Ř-MATRICES REAPPEAR

The equivariant ordinary cohomology cνλµ have to be polynomials in yi − yj, and again
it is easy to compute them for small n via equivariant localization:

S210 = (y2 − y1)S10

Note that there is no longer any Z3-symmetry6 , so we shouldn’t need to insist that every-
thing be triangles. Since our answer has yi − yj factors in it, we aren’t just counting any
more; some pieces may be worth a factor, depending on their location.

For d = 1, it turns out (KT ’03) to be enough to invent an “equivariant rhombus” 0/\1
1\/0

worth yi − yj if it’s in the ith NW/SE diagonal and jth NE/SW diagonal. For d = 2,
there are a couple more equivariant rhombi [Buch 2015]. For d = 3, subject to some
assumptions, there is no equivariant extension of the 27-label rule from before.

Because of the rhombi, it’s no longer natural to think of the puzzle as made of n2 trian-
gles, but rather

(
n
2

)
vertical rhombi and n ∆s along the bottom. It will be more convenient

to work with the dual graph picture, a superposition of n Y-vertices laid left to right. We
think of every edge as oriented downward, and the n Ys as colored y1, . . . , yn from left to
right. In fact we’ll actually color them too: green from NW, red from NE, blue South.

If we think of the edge labels (say 0, 1, (10)) as indexing bases of green and red vector
spaces Vg, Vr (over frac HT ), then we can think of a tetravalent vertex as giving a map
Vg⊗Vr → Vr⊗Vg. In fact for d = 1, 3, 4we’ll have Vg ∼= Vr.

In ZJ’06 Paul observed that these d = 1 tetravalent vertices satisfy the Yang-Baxter
equation, i.e. this matrix Vg⊗Vr → Vr⊗Vg is an Ř-matrix. I don’t know any reasonable
way to retrodict this, since (recast in terms of rhombi) it involves equivariant rhombi
placed in two illegal directions.

11. MIXING THE TWO Ř-MATRICES

To prove that puzzles are indeed computing (cνλµ), i.e. that SλSµ =
∑

ν c
ν
λµ Sν, it suffices

to prove
Sλ|σSµ|σ =

∑
ν

cνλµSν|σ

for each T -fixed point σ. Recall that we have a nice formula for Sν|σ using a reduced
word for σ, which we can now interpret in the dual graph picture as a vertical wiring

6Very strangely, nonequivariant K-theory of Grassmannians or other minuscule (not cominuscule)
flag manifolds does enjoy this Z3-symmetry, because Xν = Xν backwards(1 − X�), so cνλµ =

∫
SλSµS

ν =∫
SλSµSν backwards(1− S�).
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diagram with ν across the top and the identity sort(ν) across the bottom. In particular,
the Ř-matrix from §10 reappears as an endomorphism of Vb⊗Vb.

This has the intriguing benefit that the RHS can now be interpreted as the amplitude of
a single graph (with boundary labeled λ, µ,identity), no external sum over ν necessary. (A
priori we might worry that the ν edges in the graph might admit labels other than [0, d];
one must prove separately that this doesn’t happen.)

Not only Ř-matrices are here; the trivalent vertices are maps Vg⊗Vr → Vb. So the entire
diagram gives a map V⊗ng ⊗V⊗nr → V⊗nb , and λ, µ, ν indicate which matrix entry to look at.

12. INGREDIENTS OF THE PROOF

The YBE that Paul checked lets us manipulate diagrams like these; assume that all such
isotopies give similar tensor identities. (These are identities between 273×273 matrices of
rational functions, so this is not a trivial step! We will come back to it in the next section.)

Then we can move the blue/blue crossings in σ’s reduced word up through the puzzle
region, to become red/red crossings and green/green crossings (they’re not conserved).

Now the puzzle region has the identity across the South side. If one believes the puzzle
rule, then one expects that the only filling of the puzzle region is identity * identity = 1 ·
identity. But at this point in the proof, one must give a separate argument for this.

Now the puzzle region can be completely ripped out of the diagram, leaving a green/green
σ-crossing diagram going from λ to the identity, similarly a red/red, giving exactly the
LHS of the identity we wanted.

13. AN ORIGIN OF THE YBE AND BOOTSTRAP EQUATIONS

The quantized loop algebra Uq(g[z, z−1]) has many finite-dimensional representations
Vλ,c indexed by a dominant weight λ and a complex parameter c (and many others too!).
If λ is minuscule, then as reps of the subalgebra Uqg, these are just the irrep Vλ.

For generic values c, c ′, the tensor product Vλ,c⊗Vµ,c ′ is again irreducible, and nonob-
viously isomorphic to Vµ,c ′⊗Vλ,c; the Schur’s lemma isomorphism depends on c/c ′ and
gives a trigonometric Ř-matrix.

However, we need the trivalent vertex Vg⊗Vr → Vb, so the parameters must not be
generic. Specifically, we need the n parameters y ′i on the red edges to be q2 times the n
parameters yi on the green edges.
d = 1. g = sl3 = A2, Vg = Vr = C3, Vb = Alt2C3. The g-decomposition of Vg⊗Vr is

Alt2C3 ⊕ Sym2C3. At the special value of c/c ′, the Sym2C3 becomes a subrepresentation
and Alt2C3 becomes a quotient. (At the reciprocal value the reverse is true.)

Note that if one pursues this, one ends up with the 6-vertex model, not the 5-vertex we
needed, so we still need to do some degeneration.
d = 2. g = spin8 = D4, Vg = spin+, Vr = spin−, Vb = C8. Here the Z3-invariance

involves the triality of D4.
d = 3. g = E6, Vg = Vr = 27, Vb = 27∗.
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The degeneration involved essentially multiplies some columns of the Ř-matrix by
powers of q and rows by the opposite powers, then takes q → 0. For d = 1, 2 every-
thing works beautifully and we recover puzzle rules in KT . For d = 3 some terms go to
infinity, and we can only get a limit if we first give up equivariance, resulting in a K-rule
(hence H-rule) but no KT - or HT -rules.
d = 4. Here we know the correct analogues are g = E8, Vg = Vr = Vb = e8 ⊕ C. Much

goes wrong in this nonminuscule situation.

Part 3. Ad quiver varieties

If we don’t want to take q→ 0 (as we sort of don’t for d = 3 and really don’t for d = 4)
then we have to move beyond d-step flag manifolds to Nakajima quiver varieties.

14. DEFINITION AND (OUR) MAIN EXAMPLE

Take a simply-laced Dynkin diagram (soon to beAd, d vertices in a linear graph), attach
an extra “framed” vertex to each of the old “gauged” vertices, and put arrows both ways
along each edge; this is a Nakajima quiver.

Label the framed vertices with finite-dim vector spaces, and consider that dimension
vector as giving a linear combination λ of Ad fundamental weights {(1, . . . , 1, 0, . . . , 0)}
(length d+ 1, and not all 0 or 1). Equivalently, this is a choice of dominant weight.

Then label the gauged vertices, but consider this as determining µ = λ minus a linear
combination of simple roots {(0, . . . , 0, 1,−1, 0, . . . , 0)}. In particular, if µ is a weight in the
irrep Vλ, then it is of this form.

Now we want the quiver representations (choice of linear map, for each arrow) satisfy-
ing the “moment map condition” that at each gauged vertex,

∑
±“go out, then come back

in”= 0. (The largely unimportant signs are determined by an orientation of the singly-
oriented Nakajima quiver.) When λ = 0 these are called “preprojective” conditions.

After having imposed those conditions, pass to a certain “stable” open set I won’t de-
scribe, then divide by

∏
GL(the gauged vector spaces), to obtain the smooth irreducible

holomorphic symplectic quiver varietyM(λ, µ). LetM(λ) :=
∐

µM(λ, µ) which I will
call a quiver scheme just because it’s reducible.

To name points in such a quotient, one has to work in the framed vertices, looking at
paths from one framed vertex to another, images of paths from gauged vertices to framed,
or kernels of paths from framed vertices to gauged.

Our main example: λ = nω1 for Ad. Let E ∈ End(Cn) be the composite Cn → Cµ1 →
Cn.

E2 = (Cn → Cµ1 → Cn → Cµ1 → Cn)
= −(Cn → Cµ1 → Cµ2 → Cµ1 → Cn)

Continuing this way,
Ed = ±(Cn → · · ·→ Cµd → · · ·→ Cn)

and Ed+1 = 0. Moreover, if we define Vi = image(Cµd+1−i → Cn), then the (Vi) are a partial
flag satisfying EVi ≤ Vi−1. The undescribed stability condition turns out to be that Vµi →

11



Cn is injective, so the data (E, V•) is an element of a well-defined Springer resolution T ∗Fl.
Finally, one need argue that this mapM(nω1, µ)→ T ∗Fl is an isomorphism.

15. APPLICATIONS OF QUIVER VARIETIES

Why make these?

Theorem 6. (1) (Kronheimer)M(highest root, 0) ∼= C̃2/Γ .
(2) (Nakajima) Htop(M(λ)) supports a Ug-rep (defined using convolutions) making it Vλ.
(3) (Varagnolo) H∗(M(λ)) supports a Uq(g[z])-rep.
(4) (Nakajima) K(M(λ)) supports a Uq(g[z±])-rep.
(5) (Yaping et al., unifying those two) E(M(λ)) supports a Uq(g⊗EC×(pt))-rep.

Recall that Jimbo et al. made R-matrices using Uq(g[z±])-reps. Taking the pushout
of that with Nakajima’s second result above, we expect to see R-matrices in K(quiver
schemes), which Andrei will talk more about.

Consider two dimension vectors λ and λ ′, and the “direct sum” map

⊕ : M(λ)×M(λ ′)→M(λ+ λ ′).

“Being a direct sum” is the same data as “having a circle action with weights 0 and 1”, so
the target quiver variety has such an action, and indeed the image of the above map is the
inclusion of fixed points. It turns out to be reasonable to expect H(M(λ) ×M(λ ′)) and
H(M(λ+ λ ′)) to be isomorphic, and part of Andrei and Davesh Maulik’s stable envelope
construction is to set up an Uq(g[z])-equivariant isomorphism.

Consider the example of the quiver schemeM(nω1). Each component is a cotangent
bundle, hence its Htop is one-dimensional, as befits the the weight spaces of the irrep
Vnω1 = Symn(Cd+1). Whereas the total homology is (Cd+1)⊗n; regarding it as an n-fold
tensor product corresponds to breaking λ as a sum of n terms (each ω1), allowing us
to compute Tn-equivariant homology ofM(nω1). The resulting equivariant parameters
then serve as the (generic) parameters of the Uq(g[z])-irrep tensor factors. Finally note
that this (d + 1)n breaks as a sum of multinomial coefficients, which are the dimensions
of homology of the individual quiver varieties.

16. DEFORMATIONS OF QUIVER VARIETIES, AND A FIRST APPROACH TO
MAULIK-OKOUNKOV STABLE CLASSES

There are three7 avenues of deformation, which we spell out in theM(nω1, µ) case.

(1) Instead of imposingΦ∏GL = 0 (the moment map condition), we could impose that
Φ∏GL = (τi1), an independent scalar at each vertex. This corresponds to taking
a Springer resolution of another principal orbit closure (one Jordan block for each
eigenvalue).

(2) We could change the (still undescribed) stability condition. For example, instead
of taking the Springer resolution, we could just get the (singular) nilpotent cone.

(3) We could deform in a noncommutative direction, which in the case of a cotangent
bundle would move to differential operators on the base.

7At least three. There also exist “multiplicative quiver varieties”, for example, which we won’t touch
here.
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In particular, consider the following sheaves of (noncommutative) algebras over G/B+.
Let µ be a general element of t∗, thought of (using the Killing form) as a subset of g∗.

Dµ 99K D = D0↓ degenerations, all ↓
OG·µ∼=G/T 99K OT∗G/B

The most general isDµ, µ-twisted differential operators, whose modules (under Beilinson-
Bernstein equivalence) match with category O at central character given by µ. That has
|W| Verma modules, which are irreducible and have no Exts. Defining “Verma” already
involves making a choice of Borel, and relating two choices involves R-matrices.

When we go commutative (down), we get the smooth space G/T , with |W| T -fixed
points. The choice of Borel determines a dominant cocharacter of T , with which to define
a Białynicki-Birula decomposition of... only part of G/T . The BB strata, {BwT/T }, all are
closed and Lagrangian (and don’t come close to covering G/T ).

If we instead went to µ = 0, we’d get category O at dominant integral (zero) weight,
where the Vermas have a complicated Kazhdan-Lusztig relation to the irreducibles, plus
lots of Exts.

Now finally we go to T ∗G/B, where the Lagrangians {BwT/T } have become cotangent-
dilation-invariant, so defining classes in H∗T×C×(T

∗G/B) ∼= H∗T×C×(G/B)
∼= H∗T(G/B)[h̄].

These are the Maulik-Okounkov8 “stable” classes. They give a basis for H∗G(G/B)[h̄],
once one inverts h̄.

One hint that these are better than usual Schubert classes is that they are related by the
operators rα+ h̄∂α, which square to 1 instead of to 0; eventually this will say that if we did
the calculation from §10 with these, we’d get the (rational) 6-vertex model not 5-vertex.

Changjian Su gave a formula for the point restrictions of M-O stable classes, which
implies the following one with complicated multiplicities:

[MOλ]|µ = (factor)
∑

F∈∆(Q,λ)

#
{
I ⊇ F :

∏
(Q \ I) = w

}
[conormal variety to AF]

(Even though this is in HT , it’s a sum over all faces of the subword complex, not just
facets.) Su’s version is a clever regrouping of these terms resulting in no multiplicities, but
also no clear geometry. It would be very interesting to find an analogue of §7 explaining
this formula.

17. RETRODICTING THE d = 1 PUZZLE RULE

In linear algebra terms, we started with a basis vector in V⊗ng ⊗V⊗nr , do a bunch of Ř-
matrices to it until it was in (Vg⊗Vr)⊗n, then did n trivalent vertices to that to end up in
V⊗nb .

Both Vg, Vr were the (top=total) homology of the A2 Nakajima quiver schemeM(ω1).
However, the 0, 1, 10 basis vectors in Vg are Z3-permuted from the 0, 1, 10 basis vectors in
Vr (this is an effect of our wanting the trivalent tensor to be g-invariant, and in particular

8In the M(nω1) situation, these match the much older “Chern-Schwartz-MacPherson classes of the
Bruhat cells”.
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for the (0, 0, 0)-triangle term to have vanishing t-weight). Specifically, the 0k1n−k on the
NW and NE sides give us basis vectors with different weights, from the quiver varieties

M

n|
k − 0

 and M

n|
n − k

 .
(Note that these are A1 quiver varieties disguised as A2, which has to do with our only
using 0, 1 on the boundary not (10).)

Now we combine these to get aM

 2n
|

n+ k − k

 quiver variety, which is an honest

2-step flag manifold’s cotangent bundle. That is, we have a Maulik-Okounkov stable
Lagrangian therein.

When we’ve applied some of the R-matrices/tetravalent vertices, it’s still about the
same cotangent bundle – just about changing the cocharacter used to define the BB strata.

Then finally we have a stable class on this cotangent bundle of (0 ≤ Vk ≤ Vn+k ≤ C2n)
flags, of dimension 2(k(2n− k) + n(n− k)), but we want one in T ∗Gr(k, n) of dimension
2k(n − k); the difference is 2n2. Note too that the first space has a (framed vertex) action
of GL(2n), the second only GL(n), and finally that we expect to break the T 2n inside
that GL(2n) down to something n-dimensional (since the spectral parameters must be
related). We believe that the right move is to take the symplectic quotient by Rad(Pn+n)
(work in progress).

E-mail address: allenk@math.cornell.edu
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