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Abstract
Schubert calculus begins with the study of incidence conditions on k-

planes. I’ll recall its utility in eigenvalue inequalities, and describe many
natural generalizations, most of which are unsolved.

I’ll run down the progress that has been made in the 21st century,
and then give combinatorial rules for many of these problems, in terms
of counting “puzzles” made from various puzzle pieces.
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Morse theory on the space of projections.

Let Grk(C
n) = {k-planes in C

n}

∼= Hermitian matrices unitarily equivalent to
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be the Grassmannian, bearing the functions ρH : Grk(C
n) → R, π 7→ Tr(πH).

Question 1. What does the Morse decomposition using ρH look like,
for H = diag(n,n− 1, n− 2, . . . , 1)?

(Here’s the standard picture of the Morse
decomposition of a torus, where the function
used is the height function. The four critical
points from top to bottom have a point, R1,
R

1, and R
2 gradient-flowing down into them,

respectively.)
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The Bruhat cells X◦
λ, and the Schubert varieties Xλ.

Question 1. What does the Morse decomposition of Grk(C
n) using ρH look like,

for H = diag(n,n− 1, n− 2, . . . , 1)?

Answer. There are
(

n
k

)

critical points,
the diagonal matrices diag(λ) where λ has k 1s and n− k 0s,
and for each λ the stratum X◦

λ(H) flowing down into λ is a cell:

X◦
λ(H) ∼= C

#{0s before 1s in λ} ∼= C
k(n−k) − ℓ(λ)

Which stratum is a projection π in? If V = image(π), take

V 7→ (V ∩ C
0, V ∩ C

1, V ∩ C
2, . . . , V ∩ C

n)
jumps
7→

(

[n]

k

)

.

So H doesn’t matter, just its associated flag of partial sums of eigenspaces does.

Corollary [Hersch-Zwahlen, 1962]. If π ∈ Xλ(He) = X◦
λ(He),

where e1 ≥ e2 ≥ . . . ≥ en are He’s eigenvalues, then ρH(π) ≥ eλ1 + . . .+ eλk,
with equality iff image(π) is a sum of those eigenlines.
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Inequalities on spectra of sums of Hermitian matrices.

Question 2 3. For which λ, µ, ν ∈
(

[n]
k

)

is Xλ(He) ∩ Xµ(Hf) ∩ Xν(Hg) 6= ∅
for all He, Hf, Hg?

If π is in that intersection, and −Hg = He +Hf, then

0 = Tr(π(He +Hf +Hg)) = Tr(πHe) + Tr(πHf) + Tr(πHg)

= ρHe(π) + ρHf
(π) + ρHg(π)

≥ eλ1 + . . .+ eλk + fµ1 + . . .+ fµk + gν1 + . . .+ gνk

with equality iff He, Hf, Hg all commute with π, so, can be simultaneously block
diagonalized [Totaro 1994, Helmke-Rosenthal 1995, Klyachko 1998].

Moreover, if the intersection is positive-dimensional one can tighten up λ, µ,
ν (move 1s back, 0s forward) to get a stronger inequality. The inequalities
constructed this way give the only conditions on ~g [Klyachko 1998]; one only
needs the ones for which the intersection is a single point [Belkale 1999]; and
one does indeed need all of those [Knutson-Tao-Woodward 2004].

So when is the intersection a nonempty set of points (where each point
corresponds to a k-plane)? We expect points when ℓ(λ)+ ℓ(µ)+ ℓ(ν) = k(n−k).
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Puzzles.

Consider the following three puzzle
pieces, with edges labeled by 0s and 1s.
They may be rotated but not reflected
(unless 0 and 1 are exchanged).
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Theorem [K-Tao-Woodward 2004]. If ℓ(λ) + ℓ(µ) + ℓ(λ) = k(n− k),
and Xλ(He)∩Xµ(Hf)∩Xν(Hg) has dimension 0 (as expected), then its cardinality
(counted with multiplicities) is the number of puzzles with λ, µ, ν clockwise
around the outside. Otherwise there are no such puzzles.
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Fun fact:

appear inside!
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The cohomology ring of the Grassmannian.

Question 3 2. What does Xλ(H) ∩ Xµ(H
′) look like?

Example. Let λ = µ = 0101, so Xλ(H) is the space of CP1s touching the projective
line L made from the top two eigenlines of H. Likewise define L ′ from H ′.

• If L = L ′, then Xλ(H) = Xµ(H
′) is 3-dimensional.

• If L ∩ L ′ = ∅, then Xλ(H) ∩ Xµ(H
′) ∼= L× L ′, so 2-dimensional.

• If L ∩ L ′ = p, then

X0101(H) ∩ X0101(H
′) = X1001(H

′′) ∪ X0110(H
′′′), union along X1010(H

′′′′).

Theorem. If the codimensions add, the
homology class of the result is well-defined.
The Poincaré dual classes [Xλ] give a basis
of cohomology, and puzzles compute the
structure constants in that basis: [Xλ][Xµ] =∑

(#puzzles with ν on bottom)[Xν].
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Even before actually computing these structure constants, one can prove using
algebraic geometry that they must be positive. (This uses the homogeneity of
the Grassmannian – it’s not true for the blowup of CP2, for example.)
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Schubert calculus and 25 generalizations.

We’ve turned the question into computing the cohomology ring of the
Grassmannian, in the Schubert basis. The Schubert varieties {Xλ} give bases
of other cohomology theories, and for other homogeneous spaces, suggesting
many generalizations:

• K: K-theory, where [X0101]
2 = [X1001] + [X0110] − [X1010].

• T: Torus-equivariant cohomology, where [X10]
2 = (y2 − y1)[X10].

This has coefficients in Z[y1, . . . , yn].
• Q: Quantum cohomology, where [X10]

2 = q[X01], with coefficients in Z[q].
• F: Larger flag manifolds GLn(C)/P, isomorphic to spaces

of Hermitian matrices with more different eigenvalues.
• G: (Co)minuscule flag manifolds for other groups,

like the Lagrangian Grassmannian.

For each and every combination, we can ask to prove Abstract positivity or a
Computational rule. (As the K-example shows, even defining what positivity
to expect can be subtle.)

Note that non-manifestly-positive computational rules are known for every one
of these problems, so checking conjectures in small examples is easy.
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Recent progress on Abstract and Computational positivity

in Schubert calculus.

H∗(Grk(C
n)) C

[Littlewood-Richardson 1934,

Thomas 1974, Schützenberger 1977]

K-theory

C [Buch 2002]

T-equivariant

A see TFG

C [K-Tao 2003]

Quantum

A [Mihalcea 2006]

C reduces† to FC

[Buch-Kresch-

Tamvakis 2003]

Flag

A see FG

C [Coşkun ?]

Groups

A see FG

C [Thomas-Yong 2009]

(extending [Pragacz 1991,

Worley 1984]
QG

C reduces† to FGC

[Chaput-Manivel-

Perrin 2008]

FG

A [Kleiman 1973]

KFG

A [Brion 2002]

TFG

A [Graham 2001]
KTQG

C reduces to KTFGC

[Buch-Mihalcea 2011]

KTFG

A [Anderson-Griffeth-Miller 2011]

† The [BKT] result says that quantum cohomology of Grassmannians can be
positively computed inside ordinary cohomology of 2-step flag manifolds.

Work by [Belkale-Kumar 2006] and [Ressayre 2010] shows that for eigenvalue
inequalities, what is really relevant is a subproblem of FG called the Belkale-
Kumar product, in which many coefficients of the actual product are set to 0.
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Puzzle rules for many of these.

We already gave the three puzzle pieces used to compute H∗(Grk(C
n)).

For K-theory, one new piece is needed. It increases
ℓ(ν) − (ℓ(λ) + ℓ(µ)) by 1, and contributes a factor of −1.
It may not be rotated.
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T , a backwards

vertical rhombus called the
“equivariant piece” is needed.
It decreases ℓ(ν) − (ℓ(λ) + ℓ(µ))

by 1, and contributes a factor
of yi − yj that depends on its
location.
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Equivariant K-theory is unsolved, but I’ll be talking about a closely related
puzzle-solvable problem tomorrow.
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Puzzle rules for many of these, ][.

The Belkale-Kumar product on a d-step flag manifold
needs puzzle pieces with edge labels 0, . . . , d, that
otherwise look like the three used in H∗(Grk(C

n)).
Interestingly, one can correspond such a puzzle to a
tuple of

(

d+1
2

)

ordinary puzzles. [K-Purbhoo]
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There is no (living) conjecture for puzzles to compute
H∗ of flags in general, but there is one for 2-step flag
manifolds, which I gave in 1999 and expect to be proven
soon. In addition to the 3 +

(

3
2

)

pieces above, there are
two extensible kinds shown at right.
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This rule was checked by Buch, Kresch, and Tamvakis up to n = 16, which
is especially impressive in that the nonpositive rules are only calculable by
computer up to about n = 9 in practice.

Recall that 2-step flag manifold Schubert calculus includes quantum Schubert
calculus of Grassmannians, itself equivalent to tensor products of Uq(gln)-
representations at q a root of unity, or fusion products of affine GLn reps.

These transparencies are available at http://math.cornell.edu/~allenk/ 9

http://math.cornell.edu/~allenk/

