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Abstract
The common refinement of all the Bruhat decompositions of the

Grassmannian is generally regarded as pathological; while the strata can be
loosely indexed by matroids, they can have arbitrary singularity type (or
be empty). Inspired by considerations of total nonnegativity, A. Postnikov
discovered that the common refinement of only the cyclic shifts of the Bruhat
decomposition is much better behaved, and gave many ways to index the
strata.

I’ll explain a new indexing of the strata, by “bounded juggling patterns”.
This suggests a connection to the affine Weyl group (of unbounded juggling
patterns), and indeed, I’ll show how to trace Postnikov’s stratification to the
(finite-codimensional) Bruhat decomposition on the affine flag manifold. Then
I’ll discuss the geometry of the closed strata.



The (awful) matroid decomposition of the complex Grassmannian.

Consider k × n complex matrices M, k ≤ n, and for any k-tuple λ ⊆ {1, . . . , n} let
pλ(M) denote the determinant of the maximal minor that uses the columns λ.

Let C(M) = {λ : pλ(M) 6= 0}. Then C(M) is automatically a matroid, meaning that
any π·C(M), π ∈ Sn has a unique Bruhat minimum (considering C ⊆ Sn/(Sk×Sn−k)).
Let {row-span(M) ∈ Grk(C

n) : C(M) = C} be thematroid stratum of the matroid C.

Q. What is the geometry of the matroid stratum for a fixed matroid C?
How about its closure?

A. Any singularity over Z can arise in the open stratum [N. Mnëv, 1988].

Q. For which matroids C is the matroid stratum even nonempty?

A. “The missing axiom of matroid theory is lost forever” [P. Vámos, 1978].

Equivalently, let B be the Bruhat decomposition, and consider
⋂

π∈Sn
(π · B), the

Gel ′fand-Serganova decomposition. What if we look at
⋂

π∈P(π · B), for P ( Sn?

• P = {1}: the Bruhat cells are indexed by partitions, and their closures (Schubert
varieties) are nice; e.g. irreducible, normal, Cohen-Macaulay (and nonempty!).

• P = {1, w0}: the strata are indexed by pairs (λ, µ) of partitions, nonempty iff
λ ⊆ µ, and their closures, Richardson varieties, are similarly nice.
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The (beautiful) matroid decomposition of

the totally nonnegative real Grassmannian.

In [math.CO/0609764], A. Postnikov suggested restricting the question:
Consider only real matrices M, and assume pλ(M) ≥ 0 ∀λ, a total nonnegativity
condition. (If the left k columns of M are an identity matrix, this reduces to saying
that every minor in the remaining k × (n − k) matrix is nonnegative.)
Then which C can arise?

Already in the k = 2 case one sees that the possibilities are much more restricted,
because p13p24 = p12p34 + p14p23.

So e.g. if p13 = 0, then p12p34 = p14p23 = 0, which isn’t true for general M.

Define the cyclic Bruhat decomposition as
⋂

π∈P(π · B),
where P =

{
powers of the cyclic rotation χ = (12 . . . n)

}
. It is a coarsening of the

matroid decomposition, and (nonobviously) a refinement of the Richardson one.

Theorems (presented ahistorically).

1. [KLS, using work of Marsh-Rietsch] Each stratum in the cyclic Bruhat
decomposition is irreducible, hence contains a unique dense matroid stratum.

2. [Postnikov] A matroid C arises as C(·) of a totally nonnegative real matrix iff
its matroid stratum is dense in a cyclic Bruhat stratum. In this case, the totally
nonnegative matroid stratum is homeomorphic to an open ball.
Call such matroids positroids. Postnikov gives many ways to index them.
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Bounded juggling patterns.

Call a k-element subset S ⊆ N a juggling state, interpreted as the future times that
the k balls being juggled are scheduled to next be caught. (N ∋ 0 = the present.)

If S ∋ 0 but S 6∋ m, we throw anm by creating the new juggling state
S ′ = {s − 1 : s ∈ S \ 0 ∪ m}. Note that we can reconstruct m from (S, S ′).
If S 6∋ 0 (we are not catching a ball right now), then we allow the same recipe only
for m = 0, called throwing a 0 or an empty hand.

Lemma. Let M be a k × n matrix of rank k, and greedily construct a basis of the
column space starting from the left; call the columns used S ⊆ {0, . . . , n − 1}.
Rotate the leftmost column to the right end, and let the new greedy basis use
columns S ′. (Multiplying that column by (−1)k−1 preserves total nonnegativity!)
Then there is a (unique) throw taking the juggling state S to the juggling state S ′.

Define a (bounded) juggling pattern as a cyclic list (. . . , S0, S1, . . . , Sn−1, Sn =

S0, . . .) of juggling states such that each Si can be reached from Si−1 by a throw
(resp. a throw of height ≤ n). Using the lemma, we can associate one to any matrix.
Theorems (juggling interpretation in KLS).
1. [Postnikov] For any matroid C, the periodic sequence (λi = Bruhat minimum of
χ−i · C) is a bounded juggling pattern. (The lemma shows this for C = C(M).)
2. [P] The map from positroids to their bounded juggling patterns is bijective.
3. [Oh] A positroid C can be recovered from its (λi) as C =

⋂
i

(
χi · {µ : µ ≥ λi}

)
.
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Example: bounded juggling patterns for Gr2(C
4).

Mathematical juggling, in terms of cyclic lists of throws, dates from 1985. Jack Boyce
and I independently invented juggling states in 1988, and denoted them as strings
of x (catch) and - (empty hand), e.g. {0, 3, 4} = x--xx------... or just x--xx .

Some juggling theorems.
1. The states in a pattern can be reconstructed from the (cyclic) list of throws.
2. The average of the throws is the number of balls, k.
3. [Buhler-Eisenbud-Graham-Wright 1994; much simpler proof by Thurston]
The number of juggling patterns of length n with at most k balls is (k + 1)n.
It is much harder to count bounded juggling patterns, alas! [L. Williams 2005]

At left are all the states and throws for 2 balls, maximum throw 4. At right are the
patterns (as lists of throws) indexing the positroid strata on Gr2(C

4), up to cyclic
rotation.

dim
4
3
2
1
0

patterns
2222
3122

4112, 3302, 3131
4202, 4130, 4013

4400, 4040

3
1

0

1
4

0 3
4

0
4

x−x−

−xx−

−−xx

x−−x

−x−xxx−−2  
2
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Juggling patterns and affine permutations.

The Weyl group of affine GL(n) can be identified with periodic permutations of Z:

Ŵ := {f ∈ Sym(Z) : ∀i ∈ Z, f(i + n) = f(i) + n}.

Call f ∈ Ŵ a juggling permutation if ∀i, f(i) ≥ i.

Theorem. If f is a juggling permutation, the periodic sequence (f(i) − i) forms the
throws of a juggling pattern. Every juggling pattern arises uniquely this way.

The condition f(i) ≥ i means balls land after they are thrown.
Feynman taught us that balls that travel backwards in time look like antimatter.

The Bruhat order on Ŵ has components indexed by π1(GL(n)) ∼= Z;

the kth one consists of {f ∈ Ŵ : avg(f(i) − i) = k}.

Theorem [KLS]. The inclusion of bounded juggling patterns of length n with k

balls into the kth component of Ŵ takes Postnikov’s cyclic Bruhat order (the cyclic
Bruhat strata ordered by closure) to an order ideal in the affine Bruhat order.

This simplifies descriptions of the cyclic Bruhat order given by Postnikov and by
Williams.

5



Positroid varieties and their properties, I.

Let f : Z → Z be a bounded juggling pattern of period n with k balls.
For each (i, j) with i ≤ j ≤ i + n, let rij = #{k ∈ Z : i ≤ k ≤ f(k) ≤ j}.

Then the open cyclic Bruhat stratum is defined by

X◦
f :=

{
V ∈ Grk(C

n) : ∀i ≤ j ≤ i + n, dim(V ∩ C[i,j]) = rij

}

where C[i,j] denotes the coordinate subspace using the coordinates in the cyclic
interval i, i + 1, i + 2, . . . , j mod n.

Define the positroid variety Xf by the same intersection, but with the closed
conditions dim(V ∩ C[i,j]) ≥ rij.

Theorem. [KLS]
1. The positroid variety Xf is the closure of X◦

f , and is irreducible.
2. There is a Frobenius splitting of Grk(C

n) with respect to which all the {Xf} are
compatibly split.
3. Therefore, the equations above (vanishing of Plücker coordinates) define each Xf

as a scheme. (Hodge-Pedoe proved this for Schubert varieties, hence for their cyclic
shifts; hence for intersections thereof by the Frobenius splitting.)
4. Any irreducible variety of k-planes defined by intersection conditions with
cyclic-interval coordinate subspaces is a positroid variety.
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Examples of positroid varieties.

To repeat: any irreducible variety in Grk(C
n) defined by intersection conditions

with cyclic-interval coordinate subspaces is a positroid variety.

Schubert varieties. Here the cyclic intervals are initial intervals [0, j].

Richardson varieties. Here the cyclic intervals are either initial intervals [0, j] or
terminal intervals [i, n − 1].

Graph Schubert varieties. For π ∈ Sn, thematrix Schubert variety Xπ is the closure
in Mn of B−πB+, where B± are the usual Borel subgroups of GL(n). The inclusion

graph : Mn →֒ Grn(C2n), M 7→
{
(~v, M~v) ∈ C2n : ~v ∈ Cn

}

of the big cell lets us define the graph Schubert variety Xπ := graph(Xπ).

Theorem [K] Xπ is a permuted Schubert variety iff π is a vexillary permutation.

Theorem [KLS] For π ∈ Sym({0, . . . , n − 1}), the graph Schubert variety Xπ is
the positroid variety for the n-ball juggling pattern of length 2n with throws
(n + π(0), n + π(1), . . . , n + π(n − 1), n, n, n, . . . , n).
The relevant cyclic intervals [i, j] are certain honest intervals with i < n ≤ j.
More generally, Fomin-Zelevinsky’s double Bruhat cell B−πB+ ∩ B+ρB− is an open
set in the positroid variety for (n+π(0), . . . , n+π(n−1), n+ρ(0), . . . , n+ρ(n−1)).
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Juggling antimatter on the affine Grassmannian.

To see why the cyclic Bruhat order embeds in affine Bruhat order, we evidently need
to allow for antimatter. This forces consideration of a Dirac sea of antiballs.

Let Past ≤ C[[z−1]][z] denote z−1C[[z−1]], and consider the space of “lattices” L

AGrk :=

{

L ≤ C[[z−1]][z]

∣∣∣∣ L ≥ z−nL, dimL/(L ∩ Past) − dimPast/(L ∩ Past) = k

}

,

the kth component of the affine Grassmannian. Both dims should be finite.

The Bruhat decomposition of AGrk is naturally indexed by virtual juggling states
S ⊆ Z, where |S ∩ N| (electrons) minus |Z<0 \ S| (positrons) equals k (both | · | finite).
Any honest juggling state S ⊆ {0, . . . , n−1} with |S| = k balls gives a virtual juggling
state S ∪ Z<0.

For L ∈ AGrk, automatically dim(L∩C[z]) ≥ k. Define the openMorse-Bott stratum

AGr◦k := {L ∈ AGrk : dim(L ∩ C[z]) = k,dim(L ∩ znC[z]) = 0}

and its collapsingAGr◦k ։ Grk(C
n), L 7→ (L∩C[z])/(L∩znC[z]) ≤ C[z]/znC[z] ∼= Cn.

This open set is the union of the finite-codimensional Bruhat cells corresponding to
the

(
n
k

)
juggling states S ⊆ {0, . . . , n − 1}, |S| = k.
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The cyclic Bruhat decomposition of Grk(C
n) from

the affine Bruhat decomposition of AFlag◦
k.

The periodic lists of lattices

AFlagk :=
{
(. . . , L0, L1, . . . , Ln−1, Ln = L0, . . .) : Li ∈ AGrk, Li ≥ z−1Li−1

}
→֒

n−1∏

i=0

AGrk

form the kth component of the affine flag manifold for GL(n).

Its finite-codimensional Bruhat cells are indexed by {f ∈ Ŵ : avg(f(i) − i) = k}.

Let AFlag◦
k := {(Li) ∈ AFlagk : ∀i, Li ∈ AGr◦k}.

Easy theorem: AFlag◦
k =

⋃
Bruhat cells associated to bounded juggling patterns.

Define the locally closed subset of
∏n−1

i=0 Grk(C
n)

Jugg := {(V0, V1, . . . , Vn = V0) : ∀i, Vi ∈ Grk(C
n); Vi ≥ shift(Vi−1)}

where shift is the principal nilpotent operator taking ~en 7→ ~en−1 7→ . . . 7→ ~e1 7→ ~0.

Theorem [KLS]. The Bruhat decompositions relate via Jugg:

1. The composite map AFlag◦
k →֒

∏n−1
i=0 AGr◦k ։

∏n−1
i=0 Grk(C

n) has image Jugg, so
induces a stratification of it.
2. The map Grk(C

n) →֒
∏n−1

i=0 Grk(C
n), V 7→ (V, χ ·V, . . . , χn−1 ·V) lands inside Jugg.

3. The cyclic Bruhat stratification on Grk(C
n) is the pullback of the one on Jugg.
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Positroid varieties and their properties, II.

Hodge-Pedoe constructed a degeneration of Grk(C
n) to a union of projective spaces,

one for each maximal chain in the lattice of partitions {λ ⊆ k × (n − k)}.

Given any subvariety X ⊆ Grk(C
n), we can follow it under this degeneration and

ask whether it, too, becomes a union of Pms glued together along subspaces, like
simplices in some simplicial complex. If so, call that the Hodge complex ∆(X) of X.

Theorems. (#1-2 historic, #3-4 technical lemmas, #5-6 payoff)
1. [Hodge-Pedoe] The Schubert variety Xλ has a Hodge complex, whose faces
correspond to chains of partitions containing λ.
2. [Björner-Wachs] These Hodge complexes are homeomorphic to balls. Hence the
degenerations are Cohen-Macaulay, hence each Xλ is too by semicontinuity.
(#1 and #2 hold for Richardson varieties too, with facets indexed by skew-tableaux.)
3. [Marsh-Rietsch]
Each X◦

f is the isomorphic image of an open Richardson stratum in GLn/B.
4. [KLS] Hence by irreducibility, each Xf is the birational image of a Richardson
variety in GLn/B. Using [Brion-Lakshmibai, prop. 1] we show this map is crepant.
5. [KLS] Each positroid variety has a Hodge complex, whose facets correspond
to saturated chains in Bergeron-Sottile’s k-Bruhat order. These complexes are
homeomorphic to balls, so positroid varieties are Cohen-Macaulay.
6. [KLS] If Xf ( Xg is a containment of positroid varieties, then ∆(Xf) ⊆ ∂∆(Xg).
As a corollary, each positroid variety Xg is normal.
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Positroid varieties and their properties, III.

Given any subvariety X ⊆ Grk(C
n), we can look at the coefficients of [X] =

∑
λ cλ[Xλ]

from expansion of its Chow (or homology) class into Schubert classes. They are
automatically in N. Under the natural map Symm ։ A∗(Grk(C

n)) taking Schur
functions to Schubert classes, we can ask what symmetric functions map to [X].

Theorem [KLS]. The Chow class of a positroid variety Xf is represented by the affine
Stanley symmetric function (introduced in [Lam 2006]) corresponding to the affine
permutation f.

Corollary [conjectured by K around 2003]. The Chow class of a graph Schubert

variety Xπ, π ∈ Sn, is represented by the ordinary Stanley symmetric function of π.

Additional results:

1. We have a combinatorial description of ∆(Xf) in terms of “increasing skew-
tableaux”, generalizing the case that Xf is a Richardson variety in Grk(C

n).

2. We have a formula for the multiplicity of each T -fixed point on a positroid variety,
as a sum of reciprocals of integers. (Multiplicities are 1 exactly at smooth points.)
This extends to a formula for the Hilbert series of the tangent cone.

3. Many results extend to arbitrary projections G/B ։ G/P of Richardson varieties,
using Chirivı̀’s extension of the Hodge-Pedoe degeneration.
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