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1. INTERVAL POSITROID VARIETIES

In my first lecture I’ll present a family of varieties interpolating between Schubert and
Richardson, called “interval positroid varieties”.

1.1. Schubert varieties. Definitions:

• Mk×n := k× n matrices over C.
• the Stiefel manifold Mrank k

k×n is the open subset in which the rows are linearly in-
dependent.

• theGrassmannian Grk(C
n) ∼= GL(k)\Mrank k

k×n is the space of k-planes in Cn.

Two matrices in Mrank k
k×n give the same k-plane if they’re related by row operations. To

kill that ambiguity, put things in reduced row-echelon form. From there we can associate
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a discrete invariant, a bit string like 0010101101with 0s in the k pivot positions and 1s in
the remaining n− k (careful: not the reverse!). Let

(

n
k

)

denote the set of such bit strings.

Examples:

(1) Most matrices inMrank k
k×n give 000 . . . 11111.

(2) If all the columns are zero except the last k, the bit string is 111 . . . 00000.
(3) If the kth column is in the span of the first k− 1, but there are no other dependen-

cies, the bit string is 00 . . . 0101 . . . 1111.

Proposition 1.1. (1) There is a decomposition of the Grassmannian indexed by
(

λ∈n
k

)

, into
complex cells. The codimension ℓ(λ) of the λ cell is the number of inversions in λ, where
a 1 occurs somewhere left of a 0.

(2) These cells give bases for homology and cohomology.
(3) To figure out which cell a matrix is in, look at rank [1, i] := the rank of the first i columns,

for each i ∈ [1, n].
(4) The closure of a cell (or, its preimage in the Stiefel manifold) satisfies a bunch of determi-

nantal conditions.
(5) Fix λ. Let Pλ ⊂ Mk×n be the vector space of matrices where the ith row has 0s left of the

ith 0 in λ. Then Pλ ∩Mrank k
k×n → Grk(C

n) has image Xλ.

The closures of these Bruhat cells in the Grassmannian are called Schubert varieties
and denoted Xλ, λ ∈

(

n
k

)

. Hodge proved that the determinantal equations (vanishing of
the Plücker coordinates on the affine cone over the Grassmannian) give prime ideals, i.e.
define these as schemes.

Exercise 1.2. (1) Fix λ ∈
(

n
k

)

. Show that the rank conditions on those initial intervals [1, i]
for which 10 occur in positions i, i+ 1 of λ imply all of λ’s other rank conditions.

(2) Let B ≤ GL(n) denote the upper triangular matrices. Show that the Bruhat cells are
exactly the B-orbits (acting on Mk×n on the right).

(3) Show the same remains true if we replace B byN = B ′, the upper triangular matrices with
1s on the diagonal.

1.2. Schubert calculus. Let [Xλ] always denote the element of cohomology. Since we have
a basis, we know [Xλ][Xµ] =

∑
ν c

ν
λµ[Xν]. The study of these Schubert structure constants

(and generalizations thereof) is Schubert calculus.

Theorem 1.3 (e.g. Kleiman 1973). Xλ and w0 · Xµ intersect transversely, where w0 ∈ Sn ≤
GL(n) reversesMk×n left/right.

Let Xµ := w0 · Xw0·µ be the opposite Schubert variety, where w0 · µ again means re-
verse left/right. Since w0 lies in the connected group GL(n), we have [Xµ] = [Xw0·µ], so
[Xλ][Xµ] = [Xλ][X

w0·µ] = [Xλ ∩ Xw0·µ] (the last by Kleiman transversality).

First example: let λ = µ = 010, each defining the space of matrices {[0 ∗ ∗]}, so those
points in the projective plane Gr1(C

3) that lie on the yz line. Then Xλ = Xµ so they don’t
intersect transversely. But Xλ ∩w0 ·Xµ = {[0 ∗ 0]}, the y point. Which is homologous to the
Schubert point {[00∗]}.
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An intersection Xµ
λ := Xλ ∩ Xµ of a Schubert and opposite Schubert variety is called

a Richardson variety1. Schubert calculus then becomes the question of computing the
cohomology classes Poincaré dual to the Xµ

λ , in the Schubert basis. To determine the
smallest Richardson variety containing a matrix, look at {rank [1, i]} and {rank [j, n]}.

Proposition 1.4. Define the Bruhat order λ ≤ µ on
(

n
k

)

by requring the ith 1 in λ to occur left
of the ith 1 in µ, i = 1, . . . , n− k.

(1) If λ ≤ µ, then dimXµ
λ is nonempty of dimension ℓ(µ) − ℓ(λ).

(2) Xλ
λ is a point.

(3) If λ 6≤ µ, then Xµ
λ = ∅.

(4) Let Pµ
λ ⊂ Mk×n denote the vector space of matrices in which the ith row is supported

between the ith 0 in λ and the ith 0 in µ. Then Pµ
λ ∩Mrank k

k×n → Grk(C
n) has image Xµ

λ .

E.g. λ = 1100110111, µ = 1101110101, Pµ
λ =





0 0 ∗ 0 0 0 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ 0





Corollary 1.5.
∫
Grk(Cn)

[Xλ][X
µ] = δλµ. In particular, if we define the more symmetric Schubert

intersection numbers

cλµν :=

∫

Grk(Cn)

[Xλ][Xµ][X
ν],

then cνλµ = cλ µ w0·ν.

1.3. First positivity result.

Proposition 1.6. (1) (Borel) Let B act on a nonempty projective scheme (or more generally, a
complete one). Then there is a B-fixed point.

(2) Any complete scheme overC has a natural fundamental class in homology: theN-combination
of the classes of its top-dimensional (geometric) components, where the coefficients are the
lengths of the local rings at the generic points.

(3) (Grothendieck, Mumford) Let Y be a projective scheme (in a moment, the Grassmannian)
and X a subscheme. There is a functorially associated “Hilbert scheme” parametrizing a
family of subschemes of Y, all of whom have the same homology class (and more specifically,
the same “K-class”, discussed later), and this moduli space is projective.

(4) Hence every subscheme X of the Grassmannian is homologous to a schemy union X ′ of
Schubert varieties.

(5) Hence each cνλµ ≥ 0.

Proof. (1) Filter B by normal subgroups, so that the subquotients are 1-dimensional
(most groups can’t do this). Prove the theorem for those two groups, (C,+) and
(C×, ·). Then use induction.

(2) As stated, this is a definition, reducing to the case of X a variety (reduced and ir-
reducible). Then we punt, appealing either to the statement that complex varieties
are triangulable (1930s), or have resolutions of their singularities (1960s).

(3) Beyond our scope.

1Warning: Richardson also studied nice nilpotent orbits in Lie algebras, and non-cognoscenti often guess
incorrectly that “Richardson variety” refers to the closure of a Richardson orbit. It doesn’t seem to have been
used that way in the literature, or at least I prefer to believe that.
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(4) By the functoriality, since B acts on Grk(C
n) it acts on X’s Hilbert scheme. Let X ′

be a B-fixed point on there. Then X ′’s support must be a union of B-orbits, which
are the Schubert varieties.

(5) Given a component of a scheme, we define its length to be the length of the local
ring at the generic point. Then the homology class one associates is the homology
class of the reduced scheme, times the length, a nonnegative integer.

�

Examples:

(1) Let X be a conic in the plane. Then the Hilbert scheme is the P5 of all conics. The
B-invariant one is the double line x2 = 0.

(2) Let X be a disjoint union of two lines in P3. First let them cross, giving a union of
two lines with an extra point embedded at the intersection (reduced everywhere
else). Then let those lines fall atop one another, giving a double (Schubert) linewith
an extra embedded (Schubert) point, which doesn’t contribute to the homology
class (but will contribute to the K-class).
This hints at some other related subschemes in P3: plane conics union a disjoint

point. Indeed, this Hilbert scheme has two components, one consisting of pairs
of lines and the other of conics plus points. (It’s connected, which is true for all
Hilbert schemes of projective space, a theorem of Hartshorne.)

(3) A Schubert calculus example: X1010
0101 ⊂ Gr2(C

4) ∼= Gr1(CP
3), which interpreted

projectively is the P1 × P1 worth of lines that touch the xy line and zw line. Move
the latter continuously to xz, and we get lines that touch xy and xz. That’s the
(reduced) scheme X1001 ∪ X0110, with class 1[X1001] + 1[X0110].

So any construction of subvarieties of a Grassmannian (or more generally, a space with
an action of a unipotent groupNwith finitely many orbits) leads naturally to a “Schubert
calculus” problem with nonnegative integer answers.

The real game, then: how to calculate these natural numbers in a manifestly positive
way, i.e. by counting some combinatorial objects? There are many known ways (and
sometimes-tricky bijections between them); the one we’ll give is to use puzzles [KnTao03,
KnTaoWood04].

The following three shapes, with edges labeled 0 or 1, are the puzzle pieces. They may
be rotated but not reflected.

0 0
0

1 1
1

1

1

0

0

A puzzle is a size n triangle made of puzzle pieces, glued so as to have the edge labels
match. The two possible puzzles with NW,NE sides labeled 0101.
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1

1

0

00 0
0

1 1
1

1 1
1

00
0

1

1

0

0 1 1
1

0 0
0

1 1
1

1 1
1

0 0
0

0 0
0

1 1
1

1

1

0

0

0
0

0

1 1

1
0

0

1

0
1

01

1

0

0

Theorem 1.7. [KnTao03, KnTaoWood04] cνλµ = #{puzzles with λ, µ, ν on their NW,NE,S
sides respectively, all read left-to-right}. Equivalently, cλµν = #{puzzles with λ, µ, ν on their
NW,NE,S sides respectively, all read clockwise}.

So these two puzzles compute the example (3) above.

In the remainder we’ll indicate a geometric proof of this theorem, following [K1], and
discuss harder problems requiring more puzzle pieces.

Note that in addition to the obvious Z3 rotational symmetry of puzzles, which matches
half of the S3 symmetry of Schubert intersection numbers, one can flip a puzzle over while
exchanging 0s and 1s, which matches the symmetry coming from Grassmannian duality.
However, it is hard to see directly that the puzzle product is commutative. (The nicest
self-contained combinatorial proof of this is in [P08].)

1.4. Interval rank varieties. Before giving an answer to this, we generalize the problem
just a little, beyond Richardson varieties to interval rank varieties.

Given a matrix M ∈ Mk×n, let’s compute all {rank [i, j]}i≤j. These numbers are weakly
increasing in j and −i, by 0 or 1 only, with the additional restriction that one doesn’t see
the pattern

r r+1
r r

anywhere in the matrix r.

Define a partial permutation matrix π to be one with at most one 1 in any row/column.
To avoid confusion we refer to and draw the 1s as dots •.

Proposition 1.8. Such rank matrices r correspond 1:1 to upper triangular partial permutation
matrices π under the correspondence

rij =
∣

∣[i, j]
∣

∣−#
{
dots in π weakly SW of box [i, j]

}
, ∀ 1 ≤ i ≤ j ≤ n.

If M has rank k, then π will have n− k dots.

As before, many of these rank conditions imply others. Define the diagram2 of π by
crossing out strictly South and West (but not Southwest) of each dot, and any rows or
columns without dots, and taking the remaining boxes. (So each box with a dot is in the
diagram.) Define the essential set3 as the Northeast corners of the diagram boxes.

2This is closely related to the Rothe diagram used e.g. in Fulton’s essential set definition [Fu92], but not
the same, both for being flipped East/West and for the “strictly”.

3It’s actually possible to cut this down further, but we’re using this name in analogy to [Fu92].
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For example,

π =















. . . • . .
. • . . .

. . . .
. . •

. .
.















has diagram















+ + − e | e
+ e | |

+ + + −

+ + e
+ +

+















with −, |,+ to indicate the crossing-out, and es to indicate the essential boxes.

Proposition 1.9. The rank conditions rank [i, j] ≤ rij in the essential set imply all the other rank
conditions.

(More specifically, any other rank condition is implied by some single essential condition; one
doesn’t have to cleverly combine them.)

Exercise 1.10. (1) Show that π has a unique essential rank condition, at (i, j), iff its dots are
the diagonal of some square with NE corner (i, j).

(2) Find a π for n = 4 with three “essential” rank conditions, one of which is actually implied
by the other two taken together.

(3) Show that the following are equivalent:
• All the essential rank conditions are in the first row.
• The dots are NW/SE, and in the first n− k rows.
• Πr is a Schubert variety.

Theorem 1.11. Let π be an upper triangular partial permutation with n − k dots. Then the
scheme Ππ defined by the rank conditions in proposition 1.8 is reduced and irreducible. Moreover,
any intersection of such schemes is reduced.

I hoped we would have time to prove this later, but we didn’t. The quickest proof I
know is in [Kn, §7.3], combined with [K1, ].

If we simply imposed random rank conditions, with somematrix r, what different schemes
could we get? Different rs can give the same scheme: anywhere rij > ri,j+1, we can cut
down rij to ri,j+1 without changing the scheme, and anywhere rij + 1 < ri,j+1, we can cut
down ri,j+1 to rij + 1 without changing the scheme, and similarly for j instead of i. So it’s
enough to consider matrices r that only increase by 0, 1 as one goes North or East.

That leaves the forbidden pattern from before.

Proposition 1.12. Let
m m+1
m m

occur in the middle of a rank matrix, and Πr be the associated scheme. Then Πr = Πr1 ∪Πr12
Πr2 ,

where

r1 =
m m
m m

, r2 =
m m+1

m− 1 m
, r12 =

m m
m− 1 m

in those spots.

Proof. Set-theoretically this is obvious. There is also a boring proof with determinants
that lets one establish the scheme-theoretic statement. (The “quick proof” referred to four
paragraphs above also gives a short proof of this.) �

6



2. VAKIL’S LITTLEWOOD-RICHARDSON RULE

2.1. Combinatorial shifting. Define the shift shi→j in the following contexts:

• When applied to a number k, give k back unless k = i, in which case it becomes j.
• When applied to a set S ⊆ [1, n], just apply shi→j to every element k ∈ S, but don’t
shift i to j if j is “in the way”, i.e. j ∈ S already.

• When applied to a collection P ⊆ 2[1,n], just apply shi→j to every set S ∈ P , but
don’t shift S to shi→jS if shi→jS is “in the way”, i.e. shi→jS ∈ P already.

In particular the shift of a set or collection is always the same size as the original. Shift-
ing was invented by Erdős-Ko-Rado [EKR61] to study extremal combinatorics of highly
intersecting collections, and nowadays is also used to study simplicial complexes.

Exercise 2.1. (1) Let P ⊆
(

n
k

)

be a collection where every pair S1, S2 ∈ P intersects nontriv-
ially. Show that shi→jP has the same property. Replace P by shi→nP for each i, to force

n ∈ S, ∀S ∈ P . Hence |P | ≤
(

n−1
k−1

)

.

(2) Let P ′ =
(

n
k

)

\ P . Show shi→jP
′ =

(

n
k

)

\ shj→jP , i.e. backwards.

2.2. Geometric shifting. Let X ⊆ Grk(C
n), and define

shi→jX := lim
t→∞

















1
1 t

1
. . .

1
1

















· X

where the t is in position (i, j). More specifically, define F◦ ⊆ P1 ×Grk(C
n) as

F◦ :=
⋃

t∈A1

{t}×

















1
1 t

1
. . .

1
1

















· X,

then F as its closure (adding the t =∞ fiber), and shi→jX := F ∩ ({∞}×Grk(C
n)).

Examples:

(1) Let X be a single point, the coordinate k-plane CS that uses the k coordinates
S ⊆ {1, . . . , n}. Then shi→j{C

S} = {Cshi→jS}, a first link of the two notions.
(2) Let X be the divisor pS = 0, given by the vanishing of the Plücker coordinate.

Then shi→jX = {pshj→iS = 0}, backwards. One should think of X as corresponding to
(

n
k

)

\ {S}, the set of coordinate subspaces lying in X.

(3) Generalizing both examples, let C ⊆ 2(
n
k) be a collection of k-element subsets, and

defineWC ⊆ Grk(C
n) as the vanishing set {pS = 0, S /∈ C}. Then shi→jWC = Wshi→jC.

(W is for Neil White, who first considered these schemes.)
(4) Let X = C01

∐
C10 ⊆ Gr1(C

2), defined by the equation p01p10 = 0. Then moving
it by t as in the definition, it becomes (p01 + tp10)p10 = 0, so as t → ∞ we get the
double point (p10)

2 = 0.
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By construction, F is a flat family over P1, with the effect that all of its fibers have the
same Hilbert polynomial (as subvarieties of the Grassmannian, hence of projective space
under the Plücker embedding). One way to determine F∞ is to give an upper bound
(F∞)+ on it by determining (what are a priori) some of the equations that hold on it, and
then to show that that upper bound has the same Hilbert polynomial as F0 = X.

Proposition 2.2. LetX = Y∩{pS = 0}, where Y is a shi→j-invariant variety, and Y ⊇ {CS,Cshj→iS}

(remember, backwards). Then shi→jX = Y ∩ {pshj→iS = 0}.

Proof. By the condition, both pS = 0 and pshj→iS = 0 define nonzero elements of Y’s co-
ordinate ring. Since Y is a variety, they both define non-zerodivisors. Modding out a
non-zerodivisor of degree 1 replaces the Hilbert polynomial h(d) by its difference h(d) −
h(d− 1), so the two have the same Hilbert polynomial.

Following the equations gives the containment ⊆, so by the equality of Hilbert polyno-
mials they are equal. �

Corollary 2.3. Let r be a rank matrix defining some Πr, and let a < b. Assume that for

• one of the essential rank conditions is on [a+ 1, b], and
• for the others [i, j], shb→a[i, j] = [i, j].

Then sha→bΠr is a union of various Πr ′ , which can be determined through repeated use of propo-
sition 1.12.

We can always ensure these hypotheses hold, assuming Πr is not a Schubert variety;
let [a + 1, b] be the essential box with maximum a, then maximum b. (The not-Schubert
condition says that a + 1 ≥ 2.) Consequently, we have a combinatorial algorithm with
which to degenerate any interval rank variety in the Grassmannian towards a union of
Schubert varieties, and can thereby determines its homology class!

To spell this out further, we introduce also the combinatorial and geometric sweep-
ing operations. The combinatorial sweep Ψi→jC of a collection C is just C ∪ shi→jC.
The geometric sweep Ψi→jX is the image of the projection to Grk(C

n) of the family F,
so Ψi→jX ⊇ X ∪ shi→jX.

Proposition 2.4. • If X is irreducible, then so too are F and Ψi→jX.
• If any two of X, shi→jX,Ψi→jX are equal, so is the third.
• If not, then dimΨi→jX = dimX+ 1.

Theorem 2.5. Assume the setup of corollary 2.3. There is necessarily a dot in column b, which
we’ll call the wandering dot.

Then Ψa→bΠπ = Πσ, where σ is constructed from π by moving the wandering dot up from
whatever row k to row a, and the dot (if any) in row a down to that row k.

The π ′ are constructed from this σ. If there is no dot in column b−1, one π ′ comes from moving
the wandering dot in σ left one square to column b− 1.

For the other π ′, consider the dots in σ that are minimally NW of the wandering dot (nobody
else is in between). Each π ′ comes from moving the wandering dot West, while one of them moves
East, ending in the same two columns. (If this causes the wandering dot to end up in the lower
triangle, discard this misbegotten π ′.)
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For example, let

π =















. . . • . .
. • . . .

. . . .
. . •

. .
.















with diagram















+ + − e | e
+ e | |

+ + + −

+ + e
+ +

+















.

where the es are essential boxes. Let (a, b) = (3, 6), above the SErnmost. Then

σ =















. . . • . .
. • . . .

. . . W
. . ↑

. .
.















, π ′ =















. . . • . .
. • . . .

. . W ←
. . .

. .
.















,















. . . • . .
. → . . •

W . . ←
. . .

. .
.















,















. . . → . •
. • . . .

. W . ←
. . .

. .
.















where the W indicates the wandering dot, and the arrows are only to show where dots
have most recently moved from.

We won’t hack through the combinatorics to prove this from corollary 2.3. A differ-
ent approach is taken in [K1], where this is related to Lascoux’s “transition formula” for
Schubert polynomials.

Exercise 2.6. (1) Check the theorem in this example, using the algorithm from corollary 2.3.
(2) Do the same for all n = 3 examples.
(3) Do the same for all n = 4, k = 2 examples.

2.3. Vakil’s degeneration order. Geometric shifts were introduced4 in [Va06], where he
considers the following degeneration order of shifts:

n− 1→ n,

n− 2→ n, n− 2→ n− 1,

n− 3→ n, n− 3→ n− 1, n− 3→ n− 2,
...

1→ n, 1→ n− 1, . . . 1→ 4, 1→ 3, 1→ 2.

Proposition 2.7 (essentially in Vakil). Let π be an upper triangular partial permutation matrix,
and a < b. Assume

• the dots in rows [1, a] are NW/SE,
• the dots in rows [a+ 1, n] are NW/SE, and
• the j dots in rows [a+ 1, n] are in the first such rows, [a+ 1, a+ j].

If (a+ 1, b) is not an essential box of π, then sha→bΠπ = Ππ, so the unique π
′ is just π.

Otherwise sha→bΠπ 6= Ππ, and we compute its components Ππ ′ with theorem 2.5. There are at
most two π ′.

Let (a, b) ′ be the next shift after (a, b), i.e. (a, b) ′ = (a, b − 1) unless a = b − 1, in which
case (a, b) ′ = (a− 1, n). Then each π ′ satisfies the conditions of the first paragraph, for (a, b) ′.

4Though not under that name – he didn’t connect them with Erdős-Ko-Rado shifting theory.
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Vakil only shows that the components of the shift have length 1, i.e. that the shift is
generically reduced, whereas the above says that it’s actually reduced. We’ll need this
actual reducedness later in order to compute in K-theory.

Example. Start with

π =









. • . .
. . .

. •
.









, diagram









− e | e
+ + −

+ e
+









, (a, b) = (2, 4), σ =









. • . .
. . W

. .
.









.

Then the two π ′ are








. • . .
. W ←

. .
.









which is Schubert, and









. → . •
W . ←

. .
.









with diagram









+ − + e
e + +

+ +

+









.

For the latter one take (a, b) = (1, 2), and get

σ =









. W . .
↑ . •

. .
.









, π ′ =









W ← . .
. . •

. .
.









.

The final result is thus






















Π













. • . .
. . .

. •
.





































=























Π













. • . .
. • .

. .
.





































+























Π













• . . .
. . •

. .
.





































or
[X1010

0101] = [X1001] + [X0110].

2.4. Partial puzzles. Imagine a would-be puzzle with µ on NE and ν on South, both read
left-right, but no other edge labels. Shear this to fit into the upper triangle where πs live,
so the ν ends up on the diagonal and the µ on the upper right. For the rest of this section
we’ll draw puzzles in this way.

Nowwe can think about Vakil’s order as specifying a sequence of squares in the matrix
upper triangle, or rhombi in the puzzle triangle. Note that once one gets to the (a, a)
triangles, they are uniquely fillable, so it’s harmless to add them as (a, a) at the end of
each line of the degeneration order.

Define an (a, b)-partial puzzle to be a filling of the puzzle triangle with puzzle pieces,
but only through positions (a, b) as indexed in the above paragraph. Its puzzle path is
the labels along its top, whose shape

• starts at (0, 0) in matrix coordinates (row,column),
• goes SE to (a, a),
• goes E to (a, b),
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• has a kink up to (a− 1, b),
• goes E to (a− 1, n),
• finally up to (0, n).

Note that in this correspondence, the edges of the matrix boxes may cut puzzle rhombi
in half. As such, we have to ditch our rhombus puzzle piece in favor of a triangle with
labels 1, 0, R clockwise, and declare that a puzzle can’t have any Rs on its boundary.5

The main idea: we’ll associate an interval rank variety to each puzzle path, such that the
components of sha→b correspond to the ways to fill in one more square in the matrix. The
partial permutation matrix should have the properties in proposition 2.7, in particular
being NW/SE in each half of the triangle (above/below the path).

The construction, in the upper half: first draw little rays inside the puzzle

• left from each
∣

∣0

• up from each
∖

0 and −R−

• left from the kink if it’s
∣

∣R, in which case also make the next −1− to its left get an
upward pointing ray.

We require there be the same number of up and left rays for the puzzle path to be viable. If there
are, put the dots on the intersections of these rays, in the only NW/SE way possible.

In the lower half, draw rays down from each −0−. If the kink is ⊢ 1, and there is a −0− to
its right, the −0− gets a downward ray, and these two rays meet at a dot. Put dots on all
remaining downward rays NW/SE, as N as possible (à la proposition 2.7).

Write this association puzzle path 7→ partial permutation matrix as γ 7→ π(γ).

Theorem 2.8. Let γ be a puzzle path.

If the labels on the kink and the edge just leftward are not −0−

∣

∣1, then

(1) there is a unique way to put in two puzzle pieces,
(2) the new path γ ′ has the same π(), and
(3) Ππ(γ) is sha→b-invariant.

If those labels are indeed −0−

∣

∣1, then there are either one or two ways to fill two triangles and remain
viable. The corresponding {γ ′} correspond to the components of sha→bΠπ(γ) 6= Ππ(γ).

In this way, filling in the puzzle corresponds to keeping track of the components en-
countered during Vakil’s degeneration.

The proof of this is a several-page case check [K1], quite straightforward yet somehow
miraculous. The hard work was really in theorem 2.5.

3. EQUIVARIANT AND K- EXTENSIONS

3.1. K-homology. To begin with, let A be a commutative ring, and consider its finitely
generated modules, under direct sum. The K-homology group K•(A) is freely generated
by the set of isomorphism classes [M] of finitely generated A-modulesM, “modulo exact
sequences”, meaning [M2] = [M1] + [M3] for any exact sequence 0→M1 →M2 →M3 →

5Exercise: prove that if a “puzzle” without this new condition has the same number of 1s on the NW and
NE sides, and no Rs there, then it has no Rs on the S side either.
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0. In particular, [M1 ⊕M3] = [M1] + [M3]. If A→ B is a ring homomorphism making B a
finitely generated A-module, we get a map K•(B)→ K•(A), contravariantly.

One can easily soup this up by assuming A is graded and only using graded modules,
or a group G acts on A and its modules, etc., in which case we’d write KG

• (A).

We can reinterpret this ring-theoretic construction in terms of affine schemes, where
the statement becomes “Given an affine scheme X, define its K-homology using coherent
sheaves, and this gives a covariant functor for finite maps (proper with finite fibers).” At
that point one can leave out the word “affine” and obtain a K-homology theory for all
schemes and finite maps. (Using higher sheaf cohomology, one can extend this to proper
maps.)

The most important example to understand will be the following. Let A = C[x, y],
considered as a bigraded ring. Then we have an exact sequence of bigraded modules and
maps

0→ A/〈xy〉→ (A/〈x〉)⊕ (A/〈y〉)→ A/〈x, y〉→ 0.

Hence [A/〈xy〉] = [A/〈x〉] + [A/〈y〉] − [A/〈x, y〉].

3.1.1. Comparison with ordinary homology. Given a (closed) subscheme X ⊆ Y, we can as-
sociate a K-class [X] ∈ K•(Y), really shorthand for [OX] where OX is the structure sheaf of
X. In the example above, we have the equation

[union of axes] = [x-axis] + [y-axis] − [origin]

in KT2

• (C2). This differs from what we would expect in ordinary homology, where we
wouldn’t have the last term.

One can make this precise; filter K•(Y) according to the dimension of the support of
the sheaf. Then there is a map from the associated graded ring to H∗(Y) (or really, to the
Chow group).

In the example from before, we computed the homology class of X1010
0101 by degenerating

it to X1001 ∪ X0110, glued along X1010. Therefore we get the equation on K-classes,

[X1010
0101] = [X1001] + [X0110] − [X1010].

3.2. K-cohomology. Not only can we ⊕ sheaves, we can ⊗ them, suggesting we make
K•(Y) into a ring. But it turns out that ⊗ is not well-defined on K-equivalence classes, i.e.
tensoring withM is not exact.

Of course, tensoring with a free module is just repeated direct sum, so that’d be okay.
More generally tensoring with projective modules is fine; in scheme-theoretic language,
use (finite-dimensional) vector bundles instead of all coherent sheaves. So define the K-
cohomology K•(Y) in the same way as K•(Y), but only using exact sequences of vector
bundles over Y.

Proposition 3.1. (1) K• is a contravariant functor from schemes to rings.
(2) K•(Y) acts on K•(Y), a “cap product” in K-theory.
(3) K•(Y) comes with a “fundamental class” [Y].
(4) There is a “Poincaré map” K•(Y) → K•(Y), taking a vector bundle [V] to its sheaf of

sections, i.e. to [V] ∩ [Y].
(5) If Y is smooth and proper, this is an isomorphism (“Poincaré duality”).

12



(6) The Schubert varieties on the Grassmannian (or any otherG/P) give bases for K-homology
and K-cohomology.

(The ontoness of the Poincaré map is not hard to see; it is based on Hilbert’s theorem
that modules over polynomial rings have free resolutions of finite length.)

So now we have K-theoretic Schubert calculus to compute: what is the cup product
[Xλ][Xµ], where these denote the elements of K-cohomology constructed using Poincaré
duality?

For the geometry, we need to soup up Vakil’s proposition 2.7 using proposition 1.12:
when shi→jΠπ has two components, their intersection is another interval rank variety,
whose class must therefore be subtracted, as in the example [X1010

0101] = [X1001] + [X0110] −

[X1010].

3.2.1. Second positivity result. The minuses may seem to kill the positivity statement cνλµ ≥
0 from before, but this can be fixed:

Theorem 3.2. [Buc02, Bri02] In K•(Grk(C
n)), (−1)|ν|−|λ|−|µ|cνλµ ≥ 0.

The history is a little weird – Anders Buch gave an explicit combinatorial formula for
(−1)|ν|−|λ|−|µ|cνλµ (in terms of tableaux, later bijected toK-puzzles, onlymuch later explained
geometrically), after which Michel Brion gave an abstract geometric proof that holds for
general flag manifolds. Usually the geometry comes first (as, in this very story told, it has
for all G/P other than Grassmannians).

The cleanest way to puzzlify this is with the K-piece, which is twice the size of other
pieces (4x the area), and cannot be rotated. Try it out in the [X0101]

2 case.

0

1
01

0

1

Theorem 3.3. In K•(Grk(C
n)), (−1)|ν|−|λ|−|µ|cνλµ is the number of puzzles using the usual three

pieces and now the K-piece, with λ, µ, ν on the NW, NE and S sides respectively, each left-to-right.

K-puzzles have a very weird Z3 rotational symmetry. Why weird? The obvious ana-
logue of corollary 1.5 in K-theory is

K

∫

Grk(Cn)

[Xλ][X
µ] =

{
1 if λ ≤ µ

0 if not

where K
∫
denotes the pushforward to a point in K-homology. But there is a less obvious

analogue [Buc02, ],

K

∫

Grk(Cn)

[Xλ][X
µ](1− [Xbox]) = δλµ

with which one can interpret the number of K-puzzles with λ, µ, ν clockwise as the S3-
symmetric number

K

∫

Grk(Cn)

[Xλ][Xµ][Xν](1− [Xbox]).
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3.3. Equivariant K-theory. As we said above, the definition of K-theory of a scheme X
extends in a trivial way to G-equivariant K-theory (homology or cohomology). One ex-
treme case is X a point, in which case aG-equivariant sheaf on X is just aG-representation,
and K•(X) is the representation ring Rep(G).

The natural group to use in Schubert calculus is B. However, since each the only irreps
V of B are 1-dimensional (apply Borel’s theorem to PV), every rep is K-equivalent to a sum
of 1-d reps, which are thus really reps of B/[B,B] ∼= T . The effect is that K•

B(pt)
∼= K•

T (pt)
canonically, and it’s become traditional to use T -equivariant instead of B-equivariant K-
theory.

Proposition 3.4. The K-theoretic Schubert classes [OXλ
] are a basis of K•

T(Grk(C
n)), as a module

over K•
T (pt)

∼= Rep(T), a Laurent polynomial ring.

I like to call the elements of K•
T (pt) (and later, of H∗

T(pt)) “equivariant numbers”.

To keep track of the relation of the additively written group T ∗ := Hom(T,C×) and its
multiplicative role inside KT

∗(pt), it helps to denote the generators of KT
∗(pt) by eλ, not

λ. In the application to Schubert calculus on Grassmannians, we’ll write yi ∈ T ∗ for the
representation taking diag(t1, . . . , tn) 7→ ti.

Example: Gr1(C
2) = P1. The T -fixed points are s = [∗ 0] and n = [0 ∗], but only the

latter is Schubert. To compute the KT -class [s] as a combination of [n] and [P1], we use the
following exact sequences of equivariant sheaves on P1:

0→ OP1 → O(1)⊗ C(−1,0) → Os → 0

0→ OP1 → O(1)⊗ C(0,−1) → On → 0

In each sequence, the first map (being one from a trivial line bundle) corresponds to taking
a section of the of the vector bundle in the middle, here O(1). But these sections are not
T -invariant, so the map isn’t equivariant unless we twist the target by the trivial-but-not-
equivariantly-trivial line bundle of that weight, which is what the ⊗C(0,−1) is denoting.
Then the cokernel sheaf is the functions on the zero scheme of the section. Hence

[O(1)⊗ C(−1,0)] = [OP1 ] + [Os]

or
[O(1)]t−1

1 = [P1] + [s] and similarly [O(1)]t−1
2 = [P1] + [n]

hence
[s] = t−1

1 t2[n] + t−1
1 t2[P

1]

Fix this, with eλs too

If S→ T is a homomorphism of groups, there is an obvious map K•
T(X)→ K•

S(Y). In the
case that S is the trivial group, this factors through setting each eλ = 1, or “λ 7→ 0”.

Theorem 3.5 (see [HL]). If a torus T acts on a smooth projective variety M, then the map

K•
T(M)

/

〈

{eλ − 1}, λ ∈ T ∗
〉

→ K•(M)

is an isomorphism.

While less relevant to us, it’s also true that the natural localization map

K•
T(M)→ K•

T (M
T) ∼= K•

T(M)⊗ K•
T (pt)
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is an inclusion, as was used frequently in T. Ikeda’s and T. Lam’s lectures, where it was written
α 7→ (α|f)f∈MT for MT isolated, following [KnTao03].

On the Grassmannian and other flag manifolds G/P, an abstract positivity result was
proven in [AGriMil], and a little complicated to state. With more puzzle pieces, one can
compute the KT -class of X

µ
λ in their positive sense.

However, that is not Schubert calculus, because [Xµ] 6= [Xw0·µ] as equivariant classes. Be-
fore, we could turn Xw0·µ into Xµ by multiplying it with w0, which lives in the connected
group GL(n), so this preserved the homology and K-homology classes. (One can use a
path in GL(n) from 1 to w0 to construct the homology.)

In any case the puzzle rule for the KT -class of [Xµ
λ ] becomes intricate enough that we

won’t bother detailing it here. One very unfortunate thing is that the matching rules are
no longer completely local; one must sometimes look ahead along a row to see if a puzzle
piece is allowed.

3.4. Equivariant cohomology. First we describe some properties, then some interpreta-
tion, and finally puzzles.

(1) Equivariant cohomologyH∗
G is a functor from {G-spaces andG-equivariant maps}

to (supercommutative) rings, with a natural transformation to ordinary H∗.
(2) Since every G-space has a canonical G-equivariant map to the (G-invariant) point,

and triangles connecting these commute, we could instead say H∗
G takes values in

H∗
G(pt)-algebras.

(3) If M is compact with a G-invariant even-dimensional cell decomposition, then
H∗

G(M) is a free module over H∗
G(pt) with a basis indexed by the cells.

(4) If G is a torus T , then H∗
T (pt) is the symmetric algebra in the weight lattice T ∗ of T

(where weights are given degree 2, making it commutative).
(5) IfM is a complex projective manifold, then over Q the natural map

H∗
T (M)

/

〈λ ∈ T ∗〉→ H∗(M)

is an isomorphism, and the localization map H∗
T(M) → H∗

T(M
T ) ∼= H∗(MT ) ⊗

H∗
T(pt) is injective.

We now interpret the ring structure. What is the ordinary cohomology ring structure?
The product [X] ∪ [Y] for X, Y ⊆ Z measures the difficulty in disentangling X from Y (say,
for X, Y, Z compact oriented manifolds). A topologist would say we should perturb Y to
miss X as much as possible, i.e. become transverse, and then [X] ∪ [Y] = [X ∩ Y].

Now assume a group acts on Z, and X, Y are invariant. Then we may not be able to per-
turb Y while keeping it invariant. In keeping with not actually defining equivariant coho-
mology, we won’t derive the following result from first principles. (But just as homology
is related to the associated graded of K-theory, one should see this as the leading-order
terms as t→ 1 of the formula after proposition 3.4.)

Proposition 3.6. Let T act on 1-dimensional spaces C, V with weights 0, λ ∈ T ∗, so and n, s
denote the T -fixed points [∗ 0], [0 ∗]. Then as classes in H2

T (P(C⊕ V)),

[n] = [s] + λ [P(C⊕ V)].

Here [n] and [s] are degree 2 because the points are real codimension 2 inside the line
P(C ⊕ V)), and the third term is degree 2 because we put T ∗ into H2

T (pt). This formula
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accords with the fact that one can T -equivariantly deform n to s iff λ happens to be 0. Or,
that passing from equivariant to ordinary corresponds to imposing λ = 0.

Corollary 3.7. If we pick the shift sha→b of an interval rank variety Ππ as in corollary 2.3, then

[Ππ] = [sha→bΠπ] + (ya − yb)[Ψa→bΠπ].

Proof. Recall the total space F of the family degenerating Ππ to its shift. This has a projec-
tion to P1, and when we pull back the H∗

T equation from 3.6, we get

[{0}× Ππ] = [{∞}× sha→bΠπ] + (ya − yb)[F].

One must then check that the projection F ։ Ψa→bΠπ has degree 1, which is in [K1] and
I will skip here. Pushing the equation above forward along that projection, we get the
desired equation. �

The effect is, we should get an extra correction term with a factor of the equivariant
number ya−yb each time sha→bΠπ 6= Ππ. We knowwhen the latter happens, from theorem
2.8: the labels on the kink and efge immediately left must be −0−

∣

∣1. The equivariant puzzle
piecewe create to fit in there looks like

1

1

0

0

and may not be rotated. To determine the factor ya − yb it contributes, we drop lines
SW and SE from it, coming out of the puzzle at the South edges a, b. Then the H∗

T (pt)
structure constant is

cνλµ =
∑

P

∏

eqvt rhombi ρ in P

(ya(ρ) − yb(ρ)).

The proof of this formula in [KnTao03] worked backwards from the “most equivariant”
case cλλλ, and gaily divided by factors ya − yb throughout in its derivation. Such a deriva-
tion becomes impossible if one specializes to ordinary cohomology in advance, taking
each yi 7→ 0.

4. OTHER PARTIAL FLAG MANIFOLDS

There is a truncation of the cohomology ring of G/P in [BeKu06] that is more useful for
their applications to inequalities in linear algebra problems. (Each nonvanishing structure
constant in ordinary Schubert calculus implies a certain inequality [BS], but this list of
inequalities is very redundant. To have a less redundant list, it’s actually nice to replace
most of the structure constants by zero.)

Unlike ordinary cohomology, this Belkale-Kumar product is not functorial under pro-
jections G/P ։ G/Q, so each flag manifold must be handled separately. Let us consider
only GLn/P, where the reductive part of P is

∏m
i=1 GL(ni). Then the Schubert classes can

be indexed not by bit strings λ, µ, ν as on the Grassmannian, but bywords π, ρ, σ in 1 . . .m
where the letter i is used ni times.

Theorem 4.1. (1) [BeKu06] If the B-K structure constant dσ
πρ is nonzero, then it matches the

actual structure constant cσπρ.
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(2) [KP] dσ
πρ is the number of puzzles with boundary labels π, ρ, σ, made of (i, i, i)-triangles

and (i, j, i, j)-rhombi where i > j.
(3) [KP] It factors as

∏
i<j≤m c

σij
πijρij , where πij is π with all other letters removed (likewise

ρ, σ).

Around 2000 (so, long before [BeKu06]) I circulated among a small number of people,
a conjectural puzzle rule for actual Schubert calculus on GLn/P. I’m still very pleased
with this beautiful conjecture and quite annoyed that it’s wrong – already for 3-step flag
manifolds in 5-space, it defines a noncommutative ring. Ç’est la vie. However, for quan-
tum Schubert calculus purposes Anders Buch was interested in 2-step flag manifolds
[BuKrTam03], where this conjecture seems to be correct! One can think of it with all
triangular pieces

(0, 0, 0), (1, 1, 1), (2, 2, 2), (1, 0, 10), (2, 0, 20), (2, 1, 21), (2, (10), 2(10)), ((21), 0, (21)0)

with edge-labels 0, 1, 2, 10, 20, 21, 2(10), (21)0. As before only single numbers can appear
on the boundary of a puzzle. Examples appear in [BuKrTam03].
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