Schubert calculus puzzles from quiver varieties

Allen Knutson (Cornell)
Flags, Galleries, and Reflection Groups, Sydney 2019

Abstract

In 2006 Paul Zinn-Justin observed that our puzzle rule [K-Tao '03] for equivariant Schubert calculus on Grassmannians was based on an "Rmatrix", a solution to the Yang-Baxter equation. In 2017 Zinn-Justin and I extended this to discover and prove puzzle rules for K-theory of 2- and 3-step flag manifolds. [Maulik and Okounkov '12] trace R-matrices to Nakajima quiver varieties (whose definition I'll recall), and I'll explain how our puzzles can be seen directly from the quiver varieties. (In fact, the puzzles for a quiver variety extension are more symmetric!) We give a rule to recognize when a general-looking quiver variety is just T^{*} of a partial flag variety.

Then I'll show a further extension, which was most easily discovered via the quiver variety interpretation, computing pullbacks in K_{T} along $\mathrm{Fl}\left(\mathbb{C}^{\mathrm{n}}\right) \hookrightarrow \mathrm{Fl}\left(\mathrm{k}, \mathrm{k}+1, \ldots, \mathrm{n} ; \mathbb{C}^{\mathrm{n}}\right) \times \mathrm{Fl}\left(1,2, \ldots, \mathrm{k} ; \mathbb{C}^{\mathrm{n}}\right)$.

An intersection theory problem.

Let L_{1}, L_{2} be two different, but crossing, lines in 3-space.
Let Y_{1}, Y_{2} be the set of lines touching L_{1}, L_{2} respectively. Then

$$
\mathrm{Y}_{1} \cap \mathrm{Y}_{2}=\left\{\text { lines in the } \mathrm{L}_{1} \mathrm{~L}_{2} \text { plane }\right\} \quad \bigcup \quad\left\{\text { lines through } \mathrm{L}_{1} \cap \mathrm{~L}_{2}\right\}
$$

\{lines doing both $\}$

Let $\operatorname{Gr}\left(1, \mathbb{P}^{3}\right) \cong \operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$ be the Grassmannian of lines in projective 3-space. Although $Y_{1} \neq Y_{2}$ as sets, they are homologous in $\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)$, so define the same element " S_{0101} " in cohomology (or K-theory).
More generally, consider lines in \mathbb{P}^{n-1} that touch a fixed j-plane and are contained in a fixed k-plane. Make a length n binary string λ with two zeros, in positions $n-k, n-j$, and let S_{λ} denote the cohomology (or K-theory) class.

Then the above lets us compute

$$
\left(S_{0101}\right)^{2}=S_{1001}+S_{0110} \quad \text { in } H^{*}\left(\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)\right) \quad\left(\text { or that minus } S_{1010} \text {, in } K\left(\operatorname{Gr}\left(2, \mathbb{C}^{4}\right)\right)\right)
$$

Cohomology and K-theory of Grassmannians.

To a length n binary string λ with k zeroes, consider the Schubert cell

$$
X_{\lambda}^{\circ}:=\left\{\begin{array}{c}
\operatorname{row}\left[\begin{array}{cccccccccccc}
0 & 1 & * & * & * & * & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 1 & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * & * & * & * \\
\operatorname{span} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\text { the } \mathrm{k} \text { pivot columns at } \lambda^{\prime} \text { s zeroes }
\end{array}\right\} \quad \subseteq \operatorname{Gr}\left(\mathrm{k}, \mathbb{C}^{\mathfrak{n}}\right)
$$

Using Gaussian elimination, we see these cells give a paving of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ by affine spaces, so their closures give bases $\left\{S_{\lambda}\right\}$ of cohomology and K-theory called Schubert classes. When we have a ring with basis $\left\{S_{\lambda}\right\}$, we want to understand the structure constants $c_{\lambda \mu}^{\gamma}$ of its multiplication $S_{\lambda} S_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\gamma} S_{\gamma}$.
Theorem [Littlewood-Richardson 1934, made correct in 1970s]
The H^{*} structure constants count a set (of Young tableaux), so are ≥ 0.
Theorem [Kleiman 1973]. There's a geometric reason for this, and it applies to other homogeneous spaces G/P as well, but gives no formula. (Indeed, there is a Galois group obstruction to enumerating points of intersection [Harris 1979].)
The corresponding results in K-theory are [Buch '02], followed by [Brion '02].

A first formula for the structure constants of $\mathrm{H}_{\mathrm{T}}^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right)$.

Theorem [K-Tao, '03]. Glue these puzzle pieces (which may be rotated) into puzzles, which
 aren't permitted 10-labels on the boundary.

Then in $\mathrm{H}^{*}, \mathrm{c}_{\lambda \mu}^{v}$ is the number of puzzles with boundary conditions λ, μ, ν like so:

In fact our result is in torus-equivariant cohomology, with structure constants $c_{\lambda \mu}^{v}$ now in $H_{\top}^{*}(p t) \cong \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$:

$$
\begin{aligned}
& \left(\mathrm{S}_{0101}\right)^{2}=\quad \mathrm{S}_{1001}+ \\
& S_{0110} \\
& + \\
& \left(y_{2}-y_{3}\right) S_{0101}
\end{aligned}
$$

The equivariant piece doesn't break into triangles, can't be rotated, and contributes a factor of $y_{i}-y_{j}$ according to its position.

Puzzles for 2-step and 3-step flag manifolds.

A d-step flag manifold $F l\left(n_{1}, n_{2}, \ldots, n_{d} ; \mathbb{C}^{n}\right)$ is the space of chains
$\left\{0 \leq V^{n_{1}} \leq V^{n_{2}} \leq \ldots \leq V^{n_{d}} \leq \mathbb{C}^{n}\right\}$ of subspaces with a fixed list of dimensions, the $\mathrm{d}=1$ case being Grassmannians. This manifold too comes with a decomposition into Schubert cells, now indexed by strings in $\{0,1, \ldots, d\}$ with multiplicities given by the differences $n_{i+1}-n_{i}$ (where $n_{0}=0, n_{d+1}=n$).
Conjecture [K 1999], Theorem [Buch-Kresch-Purbhoo-Tamvakis '16].
The same puzzle count computes structure constants in $\mathrm{H}^{*}\left(\mathrm{Fl}\left(\mathfrak{n}_{1}, \mathfrak{n}_{2} ; \mathbb{C}^{n}\right)\right)$, requiring only these new puzzle pieces ($\&$ rotations):

It's relatively easy to check that my rule gives the correct multiplication by generators. BKPT's lengthy and delicate proof is that my rule is associative.
So, apparently one wants numbers $0,1,2$ around the outside of the puzzle plus on the inside, "multinumbers" (XY) where all $\mathrm{X}>$ all Y ? I found that the analogous 3-step multinumbers gave 23 labels and didn't quite work.
Corrected conjecture [Buch '06], Theorem [K-Zinn-Justin '17].
The same puzzle count computes $\mathrm{d}=3$ structure constants, but one needs 27 labels, the ones I missed being (3(21))(10), (32)((21)0), 3(((32)1)0), (3(2(10)))0.

Example. A 2-step puzzle in which all 8 labels appear.

A dual picture: scattering diagrams and a surprise.

The n triangles on the bottom of a puzzle shape are different from the others: they can't occur in an equivariant piece. Let's pair up the non-bottom triangles into vertical rhombi. Now, let's look at the graph-theory dual of an equivariant puzzle, an overlay of n Ys.

This dual puzzle is worth $\left(y_{1}-y_{2}\right)\left(y_{2}-y_{4}\right)$:

If V is the 3 -d space with basis $\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{10}$, then we can regard the options at a crossing as giving a matrix $\mathrm{R}: \mathrm{V} \otimes \mathrm{V} \rightarrow \mathrm{V} \otimes \mathrm{V}$; at a trivalent vertex as a matrix $\mathrm{U}: \mathrm{V} \otimes \mathrm{V} \rightarrow \mathrm{V}^{*}$; and the puzzle formula as a matrix coefficient $\mathrm{V}^{\otimes 2 n} \rightarrow\left(\mathrm{~V}^{*}\right)^{\otimes n}$.

That's not quite right because of the $y_{i}-y_{j}$ coefficients; we need the tensor factors V to "carry" these parameters in some sense, ($\mathrm{V}, \mathrm{y}_{\mathrm{i}}$).

Observation [Zinn-Justin '05].
Rotating the nonrotatable equivariant pieces appropriately (!?), the equivariant puzzle R-matrix satisfies the Yang-Baxter equation:

Where do solutions to Yang-Baxter (typically) come from?

Let $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g}\left[z^{ \pm}\right]\right)$be the quantized loop algebra; it comes with many "evaluation representations" ($\mathrm{V}_{\delta}, \mathrm{c} \in \mathbb{C}^{\times}$) taking $z \mapsto \mathrm{c}$ then using the usual irrep V_{δ} of \mathfrak{g}.
Drinfel'd and Jimbo observed that $\left(V_{\gamma}, a\right) \otimes\left(V_{\delta}, b\right)$ is irreducible for generic a / b, but \cong to $\left(V_{\delta}, b\right) \otimes\left(V_{\gamma}, a\right)$, and these isos are " R-matrices" (solutions to YBE).
Theorem [K-Z] '17]. 1. The $d=1$ puzzle R-matrix, acting on the \otimes^{2} of the 3 -space with basis $\{\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{1} 0\}$, is a $q \rightarrow \infty$ limit of the R-matrix for $\mathfrak{s l}_{3} \circlearrowright \mathbb{C}^{3} \otimes \mathbb{C}^{3}$.
2. For the $d=2$ case and its 8 edge labels $\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{2}, \overrightarrow{10}, \overrightarrow{20}, 2 \overrightarrow{21}, 2(\overrightarrow{10}),(2 \overrightarrow{1}) 0$, we need a $q \rightarrow \infty$ limit of the R-matrix for $\mathfrak{d}_{4} \circlearrowright$ spin $+\otimes$ spin $_{-}$.
3. For the $d=3$ case and its 27 edge labels, we need a $q \rightarrow \infty$ limit of the R-matrix for $\mathfrak{e}_{6} \circlearrowright \mathbb{C}^{27} \otimes \mathbb{C}^{27}$ (which one can find in the 1990 s physics literature).
4. For the $d=4$ case, the same technology led us to a 249-label rule based on $\mathfrak{e}_{8} \circlearrowright\left(\mathfrak{e}_{8} \oplus \mathbb{C}\right)^{\otimes 2}$, but alas it is nonpositive. $:+$
In each case, the Yang-Baxter equation (and similar "bootstrap" equation to deal with trivalent vertices) is used in a quick proof of the puzzle rule, and the nonzero matrix entries in the $q \rightarrow \infty$ limit tell us the valid puzzle pieces.
There was even no conjecture for K-theory in 2- or 3-step until 2017 (which arrived with our YBE-based proof, and in 3-step requires 151 new pieces).

A more natural labeling of $d=1$ puzzles.

The trivalent pieces are based on the map $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \rightarrow A l t^{2} \mathbb{C}^{3}$. Using the T weights as labels (instead of $0,1,10$) makes puzzles look more like pipe dreams:

In that old labeling system, the 10 label is forbidden on every boundary, but in the new one, the 2 is forbidden on NE, the 0 on NW, the 02 on South. In the old, we forbid the $10-10-10$ triangle; in the new, the 02 label (everywhere).
To get back to the old labels (but don't! they're not as good), one first replaces each $i j$ with the unique missing label i.e. $\operatorname{Alt}^{2} \mathbb{C}^{3} \cong\left(\mathbb{C}^{3}\right)^{*}$, then rotates the label system $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ once on the South side and twice on the NW side. Finally, write 2 as " 10 ".

Nakajima's geometry of some $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{g}\left[z^{ \pm}\right]\right)$representations.

But why should such representations come up in studying $\mathrm{Fl}\left(\mathfrak{n}_{1}, n_{2}, \ldots, \mathfrak{n}_{\mathrm{d}} ; \mathbb{C}^{n}\right)$? Given an oriented graph $\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}\right)$, with some vertices declared "framed"" and the others "gauged", double it by adding a backwards arrow for every arrow. Attach a vector space W_{i} to each framed vertex and V_{j} to each gauged vertex. Definition. A point in the quiver variety $\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W, \mathrm{~V}\right)$ is a choice of linear transformation for every edge, such that

- $\sum \pm$ (go out) \circ (come back in) is zero at each gauged vertex;
- ("stability") each \vec{v} in each $V_{i} \backslash \overrightarrow{0}$ can leak into some $W_{j} \backslash \overrightarrow{0}$ via some path;
- all is considered up to $\prod_{i} G L\left(V_{i}\right)$ change-of-basis at the gauged vertices.

Let $\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W\right):=\coprod_{W^{W}} \mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \boxed{W}, \mathrm{~V}\right)$ be the quiver scheme.
Theorem [Nakajima '01]. If Q is ADE , then $\mathrm{U}_{\mathrm{q}}\left(\right.$ its $\left.\mathfrak{g}\left[z^{ \pm}\right]\right) \circlearrowright K\left(\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, W\right)\right)$.
Main example. $\mathcal{M}\left(\begin{array}{lll}n_{n} \\ \uparrow & \\ n_{d} & \leftarrow & n_{d-1}\end{array} \leftarrow \ldots \leftarrow n_{1}\right) \cong T^{*} \mathrm{Fl}\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)$.
For this framing the $\mathrm{U}_{\mathrm{q}}\left(\mathfrak{s l} l_{\mathrm{d}+1}\left[z^{ \pm}\right]\right)$-action appears already in [GinzburgVasserot 1993], and the rep is $K\left(\mathcal{M}\left(Q_{0}, Q_{1}, n \omega_{1}\right)\right) \cong\left(\mathbb{C}^{d+1}\right)^{\otimes n}$, whose weight multiplicities are $(d+1)$-nomial coefficients, i.e. $=\operatorname{dim} K\left(T^{*} F l\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)\right)$.

Recognizing quiver varieties that are just $\left.\mathrm{T}^{*} \mathrm{Fl}\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)\right)$.

Obviously if the V dimension vector is supported on a type A subdiagram $S \subseteq Q$, and W on a single vertex at one end of S, then by the last slide $\mathcal{M}\left(Q_{0}, Q_{1}, W, V\right) \cong T^{*} F l\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)$. Say that these (V, W) are of flag type. Nakajima defined "reflections" $\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{~W}, \mathrm{~V}, \theta\right) \cong \mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{~W}, \mathrm{r}_{\alpha} \cdot V, \mathrm{r}_{\alpha} \cdot \theta\right)$ but they involve θ-stability, in general more subtle than our "each $\vec{v} \in V_{i}$ leaks into some $\overline{W_{j}}$ " stability condition (which corresponds to $\forall\left\langle\theta_{i}, \alpha_{j}\right\rangle>0$).
If $\left\langle\theta_{i}, \alpha_{j}\right\rangle>0$ for all $V_{j}>0$, though, our naïve notion of stability is still correct.
The action of $\mathrm{r}_{\alpha} \cdot V$ replaces the α label by the sum of the neighbors including the framed neighbor in W, minus the original label. In particular the new dimension is a linear combination of the original dimensions.
Theorem [K-ZJ]. Assume ($\left.\mathrm{Q}_{0}, \mathrm{Q}_{1}, \boxed{W}, \mathrm{~V}\right)$ is of flag type, and that the dimensions in $\pi \cdot \mathrm{V}$ are nonnegative combinations of the dimensions in V . Then $\left.\mathcal{M}\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{~W}, \pi \cdot \mathrm{~V}\right) \cong \mathrm{T}^{*} \mathrm{Fl}\left(n_{1}, \ldots, n_{d} ; \mathbb{C}^{n}\right)\right)$, steps coming from $\operatorname{dim} \mathrm{V}$.

Some Lagrangian relations of quiver varieties.

Recall that we decided that the puzzle labels should be $0^{k}, 1^{n-k}$ on NE but $1^{\mathrm{k}}, 2^{\mathrm{n}-\mathrm{k}}$ on NW, suggesting we work with " 2 -step" $\mathrm{Fl}\left(\mathrm{k}, \mathrm{n} ; \mathbb{C}^{n}\right)$ and $\mathrm{Fl}\left(0, \mathrm{k} ; \mathbb{C}^{n}\right)$. On $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ let's put a \mathbb{C}^{\times}-action with weights 0,1 , extending to an action on $\mathcal{M}\left(\begin{array}{ll}\left.\begin{array}{ll}n+n & \\ n+k & k\end{array}\right) \text {; then } \mathcal{M}\left(\begin{array}{ll}n & \\ k & 0\end{array}\right) \times \mathcal{M}\left(\begin{array}{ll}n & \\ n & k\end{array}\right) \text { is a fixed-point component. Let }{ }^{n} \text {. }\end{array}\right.$ attr be the (closed!) attracting set, the Morse/Białynicki-Birula stratum. Now let $\Phi_{N}^{-1}(\mathbf{1}):=$ the composite $\left(\mathbb{C}^{n} \oplus 0\right) \searrow \mathbb{C}^{n+k} \nearrow\left(0 \oplus \mathbb{C}^{n}\right)$ is the identity $\}$. Points (reps) in that set enjoy splittings of \mathbb{C}^{n+k}, plus coordinates on the \mathbb{C}^{n}.
Imprecisely stated theorem [K-Z]]. The Lagrangian relations

$$
\mathcal{M}\left(\begin{array}{ll}
n & 0 \\
k & 0
\end{array}\right) \times \mathcal{M}\left(\begin{array}{ll}
\left.\begin{array}{ll}
n & \\
n & k
\end{array}\right) \stackrel{a t t r}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{ll}
\frac{n+n}{n+k} & k
\end{array}\right) \stackrel{\Phi_{N}^{-1}(1)}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{ll}
& \frac{n}{k} \\
k & k
\end{array}\right) .
\end{array}\right.
$$

induce the usual multiplication map on $\mathrm{H}_{\mathrm{T} \times \mathbb{C}^{\times}}^{*}\left(\mathrm{~T}^{*} \operatorname{Gr}\left(\mathrm{k}, \mathbb{C}^{n}\right)\right)$, up to a scale, and by following the natural (analogues of Schubert) bases (and taking q, or really \hbar, to ∞) we recover Grassmannian puzzles.
Changing the left k to j gives $H^{*}\left(\operatorname{Gr}\left(j, \mathbb{C}^{n}\right)\right) \otimes H^{*}\left(\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)\right) \rightarrow H^{*}\left(F l\left(j, k ; \mathbb{C}^{n}\right)\right)$, i.e. all this time the 1 -step puzzle pieces were already enough to do some 2 -step!

Quiver varieties that recover $\mathrm{d}=2,3$ puzzles.

Each of the below reflects to a flag type quiver variety, which is fun to verify.
$d=3:\left(\begin{array}{ccccc}\begin{array}{l}n \\ l\end{array} & k & j & 0 & 0\end{array}\right) \times\left(\begin{array}{cccc}\begin{array}{c}n \\ 2 n \\ \end{array} & 2 n+l & 2 n+l+k & n+l+j \\ & & 0 & \\ & n+k & & \end{array}\right)$
this Lagrangian relation involves two matrix equations

$$
\leftrightarrow\left(\begin{array}{cccc}
l & l+k & l+k+j & l+j \\
k & l
\end{array}\right)
$$

We know some E_{8} quiver varieties giving $d=4$, but the corresponding reps $\mathfrak{e}_{8} \oplus \mathbb{C}$ are not multiplicity-free, and don't lead to a positive rule. (It's a mostly positive rule, and surely the most efficient known, but definitely not positive.)

Multiplying Segre-Schwartz-MacPherson classes.

If we keep q around, instead of taking it to ∞, we get classes in $\mathrm{K}_{\mathbb{C} \times}\left(\mathrm{T}^{*} \mathrm{Fl}\left(\mathrm{j}, \mathrm{k} ; \mathbb{C}^{\eta}\right)\right)$ associated to certain conical-Lagrangian-supported sheaves. Puzzles then compute the products of a related set: those classes, but divided by the class of the zero section (also Lagrangian). These puzzles also compute (in the $\mathrm{K} \rightarrow \mathrm{H}^{*}$ limit) the comultiplication of Chern-Schwarz-MacPherson classes.
The Grassmannian rule has puzzle pieces for all nonzero matrix entries of $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \rightarrow A l t^{2} \mathbb{C}^{3}$; unlike as in ordinary puzzles, this rule doesn't forbid the 02 label (those entries are suppressed only in the $q \rightarrow 0, K \rightarrow H^{*}$ limit).
Theorem [K-ZJ]. The CSM result lets one compute compactly supported Euler characteristics of intersections of generically translated Bruhat cells:
$\chi_{c}\left(\bigcap_{i=1}^{3}\left(g_{i} \cdot X_{\lambda_{i}}^{\circ}\right)\right)=(-1)^{k(n-k)-\sum_{i=1}^{3} \ell\left(\lambda_{i}\right)} \#\{$ puzzles now including 02 labels $\}$

Example. Intersect three open Bruhat cells on $\mathbb{C P}^{1}$ transversely, resulting in $\mathbb{C P}^{1} \backslash\{3$ points $\}$. That has $\chi_{c}=2-3(1)=-1^{1(2-1)}$, and indeed there is one puzzle, using the 02 label in the interior.

The newest Schubert calculus: separated descents.

Theorem [K-Z]]. Consider the puzzle pieces at right, and their 180° rotations. Make size n puzzles with $1, \ldots, k$ and $n-k$ blanks on NE side, $k+1, \ldots, n$ and k blanks on NW side. Then these puzzles compute pullbacks of classes along $\mathrm{Fl}\left(n_{1}, \ldots \ldots, n_{d} ; \mathbb{C}^{n}\right) \hookrightarrow \mathrm{Fl}\left(n_{1}, \ldots, n_{k} ; \mathbb{C}^{n}\right) \times \mathrm{Fl}\left(n_{k}, \ldots, n_{d} ; \mathbb{C}^{n}\right)$ and with two more pieces (next slide) we get the K_{T}-version.

[Kogan '01], the previous state-of-the-art for general $\mathrm{H}^{*}\left(\mathrm{Fl}\left(\mathbb{C}^{n}\right)\right)$ calculations (extended to K-theory in [K-Yong '04]), assumed that one of the two factors was a Grassmannian. (Also this rule was algorithmic, and nonequivariant.)
"Proof". Same recipe as slide 11, using the Lagrangian relations

$$
\begin{aligned}
& \stackrel{\text { attr }}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{lll}
\frac{n+n}{n+n_{d}} & n+n_{d-1} & n+n_{d-2} \ldots n+n_{k} \\
n+\ldots
\end{array}\right) \quad \text { of this } \\
& \stackrel{\Phi_{N}^{-1}(1)}{\longleftrightarrow} \mathcal{M}\left(\begin{array}{ccc}
\quad \begin{array}{c}
n \\
n_{d}
\end{array} \quad n+n_{d-1} & n+n_{d-2} \ldots n+n_{k} & n_{k} \ldots n_{1}
\end{array}\right) \cong T^{*} F l\left(\mathbb{C}^{n}\right)
\end{aligned}
$$

A sample separated-descents puzzle, and, the equivariant and K-theoretic (and dual-K-theoretic) pieces.

