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Abstract
In 2006 Paul Zinn-Justin observed that our puzzle rule [K-Tao ’03] for

equivariant Schubert calculus on Grassmannians was based on an “R-
matrix”, a solution to the Yang-Baxter equation. In 2017 Zinn-Justin and
I extended this to discover and prove puzzle rules for K-theory of 2- and
3-step flag manifolds.

[Maulik and Okounkov ’12] trace R-matrices to Nakajima quiver
varieties (whose definition I’ll recall), and I’ll explain how our puzzles
can be seen directly from the quiver varieties. (In fact, the puzzles for a
quiver variety extension are more symmetric!) We give a rule to recognize
when a general-looking quiver variety is just T∗ of a partial flag variety.

Then I’ll show a further extension, which was most easily discovered
via the quiver variety interpretation, computing pullbacks in KT along
Fl(Cn) →֒ Fl(k, k+ 1, . . . , n; Cn)× Fl(1, 2, . . . , k; Cn).
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An intersection theory problem.

Let L1, L2 be two different, but crossing, lines in 3-space.
Let Y1, Y2 be the set of lines touching L1, L2 respectively. Then

Y1 ∩ Y2 = {lines in the L1L2 plane}
⋃

{lines doing both}

{lines through L1 ∩ L2}

Let Gr(1,P3) ∼= Gr(2,C4) be the Grassmannian of lines in projective 3-space.
Although Y1 6= Y2 as sets, they are homologous in Gr(2,C4), so define the same
element “S0101” in cohomology (or K-theory).

More generally, consider lines in P
n−1 that touch a fixed j-plane and are

contained in a fixed k-plane. Make a length n binary string λ with two zeros, in
positions n− k, n− j, and let Sλ denote the cohomology (or K-theory) class.

Then the above lets us compute

(S0101)
2 = S1001+S0110 in H∗(Gr(2,C4))

(

or that minus S1010, in K(Gr(2,C4))
)
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Cohomology and K-theory of Grassmannians.

To a length n binary string λ with k zeroes, consider the Schubert cell

X◦
λ :=





row

span









0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 0 0 0 1









the k pivot columns at λ’s zeroes





⊆ Gr(k,Cn)

Using Gaussian elimination, we see these cells give a paving of Gr(k,Cn) by
affine spaces, so their closures give bases {Sλ} of cohomology and K-theory
called Schubert classes. When we have a ring with basis {Sλ}, we want to
understand the structure constants cνλµ of its multiplication SλSµ =

∑
ν c

ν
λµSν.

Theorem [Littlewood-Richardson 1934, made correct in 1970s]
The H∗ structure constants count a set (of Young tableaux), so are ≥ 0.

Theorem [Kleiman 1973]. There’s a geometric reason for this, and it applies to
other homogeneous spaces G/P as well, but gives no formula. (Indeed, there is
a Galois group obstruction to enumerating points of intersection [Harris 1979].)

The corresponding results in K-theory are [Buch ’02], followed by [Brion ’02].

These slides are available at http://math.cornell.edu/∼allenk/ 2



A first formula for the structure constants of H∗
T(Gr(k,Cn)).

Theorem [K-Tao, ’03]. Glue these puzzle pieces
(which may be rotated) into puzzles, which
aren’t permitted 10-labels on the boundary.

Then in H∗, cνλµ is the number of puzzles
with boundary conditions λ, µ, ν like so:

0 0

0

1 1

1

1 0

10

λ µ
ν

In fact our result is in torus-equivariant cohomology, with structure constants
cνλµ now in H∗

T(pt)
∼= Z[y1, . . . , yn]:
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(S0101)
2 = S1001 + S0110 + (y2 − y3)S0101

The equivariant piece doesn’t break into triangles, can’t be rotated, and
contributes a factor of yi − yj according to its position.
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Puzzles for 2-step and 3-step flag manifolds.

A d-step flag manifold Fl(n1, n2, . . . , nd; C
n) is the space of chains

{0 ≤ Vn1 ≤ Vn2 ≤ . . . ≤ Vnd ≤ C
n} of subspaces with a fixed list of

dimensions, the d = 1 case being Grassmannians. This manifold too comes
with a decomposition into Schubert cells, now indexed by strings in {0, 1, . . . , d}

with multiplicities given by the differences ni+1 − ni (where n0 = 0, nd+1 = n).

Conjecture [K 1999], Theorem [Buch-
Kresch-Purbhoo-Tamvakis ’16].
The same puzzle count computes structure
constants in H∗(Fl(n1, n2; C

n)), requiring
only these new puzzle pieces (& rotations):

2 0

20

2 1

21

2 10

2(10)

2 2

2

21 0

(21)0

It’s relatively easy to check that my rule gives the correct multiplication by
generators. BKPT’s lengthy and delicate proof is that my rule is associative.

So, apparently one wants numbers 0, 1, 2 around the outside of the puzzle plus
on the inside, “multinumbers” (XY) where all X > all Y? I found that the
analogous 3-step multinumbers gave 23 labels and didn’t quite work.

Corrected conjecture [Buch ’06], Theorem [K–Zinn-Justin ’17].
The same puzzle count computes d = 3 structure constants, but one needs 27

labels, the ones I missed being (3(21))(10), (32)((21)0), 3(((32)1)0), (3(2(10)))0.
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Example. A 2-step puzzle in which all 8 labels appear.

1

0 0

1 1

2(10)

2 10

0

210 1

21

0

21

21

0

1

0

10

1

0

1

11

1

1

10 1

0

00

0

2

2 20 2

0

0

0

20

0

2

(21)0
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A dual picture: scattering diagrams and a surprise.

The n triangles on the bottom of a puzzle
shape are different from the others: they can’t
occur in an equivariant piece. Let’s pair up the
non-bottom triangles into vertical rhombi.
Now, let’s look at the graph-theory dual of an
equivariant puzzle, an overlay of n Ys.

This dual puzzle is worth (y1 − y2)(y2 − y4):

1 1

0

11

0

0

0

0

01

10

1

01

0

1

1 0

10

1

0 0

1 0

If V is the 3-d space with basis ~0,~1, ~10, then we can regard the options at a
crossing as giving a matrix R : V⊗V → V⊗V ; at a trivalent vertex as a matrix
U : V⊗V → V∗; and the puzzle formula as a matrix coefficient V⊗2n → (V∗)⊗n.

That’s not quite right because of the yi − yj coefficients; we need the tensor
factors V to “carry” these parameters in some sense, (V, yi).

Observation [Zinn-Justin ’05].
Rotating the nonrotatable equivariant pieces
appropriately (!?), the equivariant puzzle
R-matrix satisfies the Yang-Baxter equation:

(V,a) (V,b) (V,c)

(V,a)(V,b)(V,c)

(V,a) (V,b) (V,c)

(V,a)(V,b)(V,c)
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Where do solutions to Yang-Baxter (typically) come from?

Let Uq(g[z
±]) be the quantized loop algebra; it comes with many “evaluation

representations” (Vδ, c ∈ C
×) taking z 7→ c then using the usual irrep Vδ of g.

Drinfel ′d and Jimbo observed that (Vγ, a)⊗(Vδ, b) is irreducible for generic a/b,
but ∼= to (Vδ, b)⊗(Vγ, a), and these isos are “R-matrices” (solutions to YBE).

Theorem [K-ZJ ’17]. 1. The d = 1 puzzle R-matrix, acting on the ⊗2 of the

3-space with basis {~0,~1,~10}, is a q→∞ limit of the R-matrix for sl3 � C
3⊗C

3.

2. For the d = 2 case and its 8 edge labels ~0,~1,~2, ~10, ~20, ~21, ~2(10), ~(21)0,
we need a q→∞ limit of the R-matrix for d4 � spin+⊗spin− .

3. For the d = 3 case and its 27 edge labels, we need a q→∞ limit of the
R-matrix for e6 � C

27⊗C
27 (which one can find in the 1990s physics literature).

4. For the d = 4 case, the same technology led us to a 249-label rule
based on e8 � (e8 ⊕ C)⊗2, but alas it is nonpositive. /

In each case, the Yang-Baxter equation (and similar “bootstrap” equation to
deal with trivalent vertices) is used in a quick proof of the puzzle rule, and
the nonzero matrix entries in the q→∞ limit tell us the valid puzzle pieces.

There was even no conjecture for K-theory in 2- or 3-step until 2017 (which
arrived with our YBE-based proof, and in 3-step requires 151 new pieces).
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A more natural labeling of d = 1 puzzles.

The trivalent pieces are based on the map C
3⊗C

3 → Alt2C3. Using the T -
weights as labels (instead of 0, 1, 10) makes puzzles look more like pipe dreams:

0

1

0

1

1 0

1

1

1

0

10

10

10

10

0

1

1

1

1

1

1 1

1

1

1

11 10

1

1

10 0

1

0

0

0

0 0 0

011

10 10 1

2

1

2

2 0

1

1

1

0

02

20

02 12

12 12

12 12

12 12 12

2120

01

01

01 01

12

2

12121012

1 0 1 2 1

In that old labeling system, the 10 label is forbidden on every boundary, but in
the new one, the 2 is forbidden on NE, the 0 on NW, the 02 on South. In the old,
we forbid the 10− 10− 10 triangle; in the new, the 02 label (everywhere).

To get back to the old labels (but don’t! they’re not as good), one first replaces
each ij with the unique missing label i.e. Alt2C3 ∼= (C3)∗, then rotates the label
system 0 → 1 → 2 → 0 once on the South side and twice on the NW side.
Finally, write 2 as “10”.
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Nakajima’s geometry of some Uq(g[z
±]) representations.

But why should such representations come up in studying Fl(n1, n2, . . . , nd; C
n)?

Given an oriented graph (Q0, Q1), with some vertices declared “ framed ” and
the others “gauged”, double it by adding a backwards arrow for every arrow.
Attach a vector space Wi to each framed vertex and Vj to each gauged vertex.

Definition. A point in the quiver variety M(Q0, Q1, W , V) is a choice of linear
transformation for every edge, such that

•
∑

± (go out) ◦ (come back in) is zero at each gauged vertex;

• (“stability”) each ~v in each Vi \ ~0 can leak into some Wj \ ~0 via some path;
• all is considered up to

∏
iGL(Vi) change-of-basis at the gauged vertices.

Let M(Q0, Q1, W ) :=
∐

W M(Q0, Q1, W , V) be the quiver scheme.

Theorem [Nakajima ’01]. If Q is ADE, then Uq(its g[z
±]) � K(M(Q0, Q1,W)).

Main example. M





n
↑
nd ← nd−1 ← . . .← n1




∼= T∗Fl(n1, . . . , nd; C

n).

For this framing the Uq(sld+1[z
±])-action appears already in [Ginzburg-

Vasserot 1993], and the rep is K(M(Q0, Q1, nω1)) ∼= (Cd+1)⊗n, whose weight
multiplicities are (d+ 1)-nomial coefficients, i.e. = dimK(T∗Fl(n1, . . . , nd; C

n)).
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Recognizing quiver varieties that are just T∗Fl(n1, . . . , nd; C
n)).

Obviously if the V dimension vector is supported on a type A subdiagram
S ⊆ Q, and W on a single vertex at one end of S, then by the last slide
M(Q0, Q1, W , V) ∼= T∗Fl(n1, . . . , nd; C

n). Say that these (V,W) are of flag type.

Nakajima defined “reflections” M(Q0, Q1, W , V, θ) ∼= M(Q0, Q1, W , rα·V, rα·θ)
but they involve θ-stability, in general more subtle than our “each ~v ∈ Vi leaks
into some Wj ” stability condition (which corresponds to ∀〈θi, αj〉 > 0).
If 〈θi, αj〉 > 0 for all Vj > 0, though, our naı̈ve notion of stability is still correct.

The action of rα · V replaces the α label by the sum of the neighbors including
the framed neighbor in W , minus the original label. In particular the new
dimension is a linear combination of the original dimensions.

Theorem [K-ZJ]. Assume (Q0, Q1, W , V) is of flag type, and that
the dimensions in π · V are nonnegative combinations of the dimensions in V .
Then M(Q0, Q1, W , π · V) ∼= T∗Fl(n1, . . . , nd; C

n)), steps coming from dimV .

Some D4 examples.





n
0 j k

0



→





n
j j k

j



→





n
j j+ k k

j





→





n
k j+ k n+ j

k



→





n
k n+ k n+ j

k



→





n
n n+ k n+ j

k




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Some Lagrangian relations of quiver varieties.

Recall that we decided that the puzzle labels should be 0k, 1n−k on NE but
1k, 2n−k on NW, suggesting we work with “2-step” Fl(k, n; Cn) and Fl(0, k; Cn).

On C
n ⊕ C

n let’s put a C
×-action with weights 0, 1, extending to an action on

M

(

n+n
n+ k k

)

; then M

(

n
k 0

)

×M

(

n
n k

)

is a fixed-point component. Let

attr be the (closed!) attracting set, the Morse/Białynicki-Birula stratum.

Now let Φ−1
N (1) := {the composite (Cn ⊕ 0)ց C

n+k ր (0⊕ C
n) is the identity}.

Points (reps) in that set enjoy splittings of Cn+k, plus coordinates on the C
n.

Imprecisely stated theorem [K-ZJ]. The Lagrangian relations

M

(

n
k 0

)

×M

(

n
n k

)

attr←−→M

(

n+n
n+ k k

)

Φ−1
N

(1)←−−−→M

(

n
k k

)

induce the usual multiplication map on H∗
T×C×(T

∗Gr(k,Cn)), up to a scale, and
by following the natural (analogues of Schubert) bases (and taking q, or really
~, to∞) we recover Grassmannian puzzles.

Changing the left k to j gives H∗(Gr(j,Cn))⊗H∗(Gr(k,Cn))→ H∗(Fl(j, k; Cn)),
i.e. all this time the 1-step puzzle pieces were already enough to do some 2-step!
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Quiver varieties that recover d = 2, 3 puzzles.

Each of the below reflects to a flag type quiver variety, which is fun to verify.

d = 2 :









n
k j 0

0









×









n
n n+ k n+ j

k

remember me from slide 10?









sum, then
split using

n
1
−→ n

←−−−−−−−→









k k+ j j

k

n









d = 3 :





n
l k j 0 0

0



×





n
2n 2n+ l 2n+ l+ k n+ l+ j l

n+ k





this Lagrangian relation involves
two matrix equations

↔





n
l l+ k l+ k+ j l+ j l

k





We know some E8 quiver varieties giving d = 4, but the corresponding reps
e8 ⊕ C are not multiplicity-free, and don’t lead to a positive rule.
(It’s a mostly positive rule, and surely the most efficient known, but definitely
not positive.)
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Multiplying Segre-Schwartz-MacPherson classes.

If we keep q around, instead of taking it to ∞, we get classes in
KC×(T∗Fl(j, k; Cn)) associated to certain conical-Lagrangian-supported sheaves.
Puzzles then compute the products of a related set: those classes, but divided by
the class of the zero section (also Lagrangian). These puzzles also compute (in
the K 99K H∗ limit) the comultiplication of Chern-Schwarz-MacPherson classes.

The Grassmannian rule has puzzle pieces for all nonzero matrix entries of
C

3⊗C
3 → Alt2C3; unlike as in ordinary puzzles, this rule doesn’t forbid

the 02 label (those entries are suppressed only in the q→ 0, K 99K H∗ limit).

Theorem [K-ZJ]. The CSM result lets one compute compactly supported Euler
characteristics of intersections of generically translated Bruhat cells:

χc

(

3
⋂

i=1

(gi · X
◦
λi
)

)

= (−1)k(n−k)−
∑3

i=1 ℓ(λi) #

{
puzzles now including 02 labels

}

Example. Intersect three open Bruhat cells on CP
1 transversely,

resulting in CP
1 \ {3 points}. That has χc = 2 − 3(1) = −11(2−1),

and indeed there is one puzzle, using the 02 label in the interior. 1

2 0

1
02

0 2
01 12
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The newest Schubert calculus: separated descents.

Theorem [K-ZJ]. Consider the puzzle pieces at right, and
their 180◦ rotations. Make size n puzzles with 1, . . . , k and
n − k blanks on NE side, k + 1, . . . , n and k blanks on NW
side. Then these puzzles compute pullbacks of classes along
Fl(n1, . . . . . . , nd;C

n) →֒ Fl(n1, . . . , nk;C
n)×Fl(nk, . . . , nd;C

n)

and with two more pieces (next slide) we get the KT -version.

i j

i>j

i i

[Kogan ’01], the previous state-of-the-art for general H∗(Fl(Cn)) calculations
(extended to K-theory in [K-Yong ’04]), assumed that one of the two factors
was a Grassmannian. (Also this rule was algorithmic, and nonequivariant.)

“Proof”. Same recipe as slide 11, using the Lagrangian relations

M

(

n
n n . . . n nk . . . n1

)

×M

(

n
nd nd−1 . . . nk 0 . . . 0

)

attr closed,
by greedy splitting

attr←−→M

(

n+n
n+ nd n+ nd−1 n+ nd−2 . . . n+ nk nk . . . n1

)

of this

Φ−1
N

(1)←−−−→M

(

n
nd n+ nd−1 n+ nd−2 . . . n+ nk nk . . . n1

)

∼= T∗Fl(Cn)
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A sample separated-descents puzzle, and,

the equivariant and K-theoretic (and dual-K-theoretic) pieces.

4

6

7

5

1

3

2

5

5

51

51

7

7

7

7

1 5

5

53

53

1

176

53

16

6

4

6

6

7

7

7

1

5

5

4

4

6

6

31

7

7

7

1 3

1

1

3

3

5

5 2

j i

equiv

K

i < j

K*

i j
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