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Abstract. I propose an algebraic framework in which to study measures of informa-
tion. One immediate consequence is a new proof of the classification of branching
entropies on a Boolean algebra. Common constructions in the theory of entropy such
as the conditional entropy and the mutual information arise naturally in this frame-
work. A generalized theory of information can be interpreted in a category-theoretic
context as a natural transformation between two functors.

In 1948, Claude E. Shannon established the statistical theory of entropy (Shannon
1948), which offered deep insights into coding theory and compression. Since then re-
searchers have been generalizing the axiomatic structure of the Shannon entropy so that
they might bring it to bear on other mathematical questions.

One such generalization is the notion of a branching inset entropy (Kannappan &
Sander 2004). In 1983, J. Aczel named the problem of classifying inset information
measures on a list of unsolved problems in the theory of functional equations at the
Twenty-First Symposium on Functional Equations. The problem was solved (Ebanks
1986, B́.R. Ebanks & Ng 1990), but the proof is 20 pages long and involves checking
over a dozen special cases.

Below we introduce an algebraic object, the partition algebra, and we identify the
space of branching entropies as the dual of this object. In addition to producing a new
and simple algebraic proof of the classification of branching entropies, this construction
endows the space of branching entropies with a rich algebraic structure with information
theoretic interpretations and leads to a notion of a generalized information theory.

1. Definition of the partition algebra
We fix an arbitrary base ring k, but for most applications we can consider k = R. For
any boolean algebra F , we consider the space of formal linear combinations of elements
of F with coefficients in k, where we take the element ∅ ∈ F to be zero. We can extend
the intersection operation “ ∩ ” bilinearly to define a multiplication of formal sums. This
k-module, along with the multiplication, is a k-algebra denoted k0F .

Define the k-algebra AkF to be the quotient of k0F by the ideal generated by expres-
sions of the form a ∪ b+ a ∩ b− a− b for all a, b ∈ F . In other words AkF is the space
of formal linear combinations of elements of F , but where we consider a ∪ b = a + b
whenever a, b ∈ F are disjoint.

We refer to AkF as the “algebra of simple functions on F”, because if F is a boolean
algebra of subsets of some set X , then AkF is just the algebra of k-valued functions on
X whose range is a finite set in k and whose level sets are elements of F . We see this
by identifying the formal element E ∈ F ⊆ AkF with the indicator function χE for all
subsets E ∈ F .

Denote the surjection onto the quotient algebra πF : k0F → AkF . This surjection
is natural in the sense that if φ : F → G is a map of boolean algebras, then there is a
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corresponding map of short exact sequences

0 // kerπF //

φ∗
��

k0F
πF //

φ∗
��

AkF //

φ∗
��

0

0 // kerπG // k0G
πG // AkG // 0

Finally we define the “partition algebra” as the smallest subalgebra of k0F containing
kerπF . So we have

PkF := ker πF ⊕ k · 1 ⊆ k0F

The projection πF induces an augmentation map πF : PkF → k, and a map of boolean
algebras F → G naturally induces a map of augmented k-algebras PkF → PkG. The
space kerπF is a k0F-module and hence a PkF-module.

1.1. Calculation in PkF and AkF

The main tool for calculation in the algebra of simple functions AkF is the existence of a
canonical form

Proposition 1..1. For any element f ∈ AkF there is a unique minimal (i.e. fewest terms)
expression f = λ1a1 + · · ·+λnan such that λi ∈ k are non-zero and the elements ai ∈ F
are pairwise disjoint.

This proposition makes rigorous the analogy between elements of AkF and “func-
tions”, and many arguments can be made using this analogy.

Remark 1..2. Another way to make this analogy rigorous when k is a field is to consider
the spectrum Spec AkF , then the boolean algebra F is canonically isomorphic to the
lattice of open-and-closed subsets of this space. When k = Z/2 this is just Stone’s
theorem as presented in (M.F. Atiyah 1969)

Next we introduce a notation for calculation in the algebra PkF . If ω = {ω1, . . . , ωn}
is an unordered n-tuple of pairwise disjoint elements of F (we ignore the zero element
∅ ∈ F), i.e. ωi ∩ ωj = ∅ for i 6= j, then we define

ω∗ := ω1 + · · ·+ ωn ∈ k0F
ω] := (ω1 ∪ · · · ∪ ωn)− ω∗ ∈ PkF

We call such an n-tuple a partition of F and say that ω is full if ω1 ∪ · · · ∪ ωn = 1. If ω
is full then ω∗ ∈ PkF ⊆ k0F and ω] = 1 − ω∗ by definition. Furthermore in this case
πF(ω∗) = 1.

Next if ω and ξ are two partitions, we can define their join to be the tuple of pairwise
intersections

ω ∨ ξ := {ω1 ∩ ξ1, ω1 ∩ ξ2, . . . , . . . , ωm ∩ ξn}

For any two partitions we have ω∗ξ∗ = (ω ∨ ξ)∗, and ω] and ω∗ are orthogonal idempo-
tents, i.e.

(ω∗)2 = ω∗, (ω])2 = ω], ω∗ω] = 0
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Finally if both ω and ξ are full partitions then ω]ξ] = ω] + ξ] − (ω ∨ ξ)].
There is a correspondence between full partitions of F and finite boolean subalgebras

of F . If G ⊆ F is a finite boolean subalgebra, then it has a set of irreducible generators
(sometimes called ”atoms”). The set of atoms is the unique collection a1, . . . , an ∈ G
which are distinct, nonzero generators and such that

ai ∩ x = ai or ∅ for all x ∈ G

In particular a1 ∪ · · · ∪ an = 1 and the ai are pairwise disjoint. We can associate
to G the full partition {a1, . . . , an}, and this establishes a bijection between finite subal-
gebras and full partitions. Sometimes it is convenient to confuse ω with the subalgebra
it generates and vice versa. In the context of subalgebras the join ω ∨ ξ is the smallest
boolean subalgebra of F containing both ω and ξ, i.e. the subalgebra generated by the
two subalgebras ω and ξ.

One important fact about the partition algebra is the following

Proposition 1..3. Let k be a ring andF a boolean algebra. The space kerπF is generated
as a k-module by the set of ω], where ω = {ω1, ω2} ranges over all partitions of F with
just two elements.

This is an immediate consequence of the Proposition 2..2 below, so we will postpone
the proof until then.

Corollary 1..4. The space kerπF is generated as a k-module by the set of ω], where
ω = {ω1, ω2, ω3} ranges over all full partitions of F with three elements. The space PkF
is generated as a k-modules by the set of ω∗, where ω ranges over all full partitions of F
with three elements.

2. The relation to entropy
The algebraic objects defined in the previous section capture many important structures
in information theory and measure theory. Dualizing the relationship between the parti-
tion algebra and the algebra of simple functions will yield a relationship between finitely
additive measures and so-called “branching entropies” on a boolean algebra.

2.1. Additive measures

Given a boolean algebra F , the space Mk(F) of additive measures on F is defined to be
the k-module of functions µ : F → k such that µ(∅) = 0 and

µ(a ∪ b) = µ(a) + µ(b) whenever a ∩ b = ∅

Note that these are finitely additive measures and need not be countably additive even
when F is a σ-algebra. One can see that the space Mk(F) is naturally identified with the
k dual of the space AkF , i.e. the space (AkF)∗ of k-linear maps AkF → k.

In the case k = R we can relate this definition to the usual notion of a measure on a
measure space. First of all, a ”measure” is usually considered to take nonnegative values,
i.e. µ(a) ≥ 0 for all a ∈ F . We can express this condition in algebraic terms by saying
that the symmetric bilinear form on ARF given by

(f, g)µ := µ(f · g)
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is positive semi-definite. One can use Proposition 1..1 to show that µ nonnegative is
equivalent to (•, •)µ positive semi-definite. We denote by M+

R(F) the space of nonneg-
ative measures on F – it is closed under addition and multiplication by positive scalars
(i.e. it is a semigroup under addition with a compatible R+ group action).

Classically (•, •)µ is just the L2 inner product on the algebra of simple functions.
From this algebraic perspective, the classical Jordan decomposition theorem – which
states that a signed measure µ can be written uniquely as the difference of two orthogonal
nonnegative measures µ = µ1 − µ2 – can be seen as a decomposition of a symmetric
bilinear form as the difference of two orthogonal nonnegative forms (i.e. such that the
null space of µ is precisely the intersection of the null spaces of µ1 and µ2).

The inner product perspective gives us yet another way to think about measures on
the space AkF . It can be shown that µ 7→ (•, •)µ gives a one-to-one onto correspondence
between measures on F and inner products on AkF under which the action of k0F on
AkF is self-adjoint.

Remark 2..1. In order to discuss countably additive measures on a σ-algebra, we must
introduce a suitable topology on the vector space ARF . Then the space of countably
additive measures can be constructed as the space of continuous linear functionals on
ARF .

2.2. Branching entropies

The notion of a (symmetric) branching entropy is a common generalization of the Shan-
non entropy and several other information measures. For a particular boolean algebra F
and base ring k, a branching entropy h is a k-valued function on the set of all partitions
of F which satisfies the following axioms

• h(ω1, . . . , ωn) = h(∅, ω1, . . . , ωn)

• h(ω1, . . . , ωn+1) = h(ω1, ω2) + h(ω1 ∪ ω2, ω3, . . . , ωn+1)

In particular these axioms imply that for a one-element partition we have h(ω1) = 0. The
space of all such branching entropies is a k-module which we will denote as Brk(F). A
map of boolean algebras φ : F → G induces a map of k-modules φ∗ : Brk(G)→ Brk(F)
and (φ ◦ ϕ)∗ = ϕ∗ ◦ φ∗.

As with additive measures we can consider the k-module

Relk(F) :=
{

formal sums of partitions λ1ω
(1) + · · ·λmω(m)

}
/ ∼

where
{∅, ω1, . . . , ωn} ∼ {ω1, . . . , ωn}
{ω1, . . . , ωn+1} ∼ {ω1, ω2}+ {ω1 ∪ ω2, ω3, . . . , ωn+1}

and one can see that Brk(F) is naturally identified with the k dual of Relk(F), i.e.
Brk(F) ∼= (Relk(F))∗ naturally. We have the following theorem

Proposition 2..2. The assignment ω 7→ ω] induces a natural isomorphism of k-modules
Relk(F)

∼=−→ kerπF .

Corollary 2..3. There is a natural isomorphism of k-modules Brk(F) ∼= (kerπF)∗.

4



Proof. k0F is the union of the subalgebras k0ξ ⊆ k0F where ξ ranges over all Boolean
subalgebras of F . The map ω → ω] is natural with respect to these inclusions and the
corresponding inclusions Relk(ξ) ⊆ Relk(F), so it suffices to show that the map is an
isomorphism for F = ξ finite.

We equip Relk(F) with a natural k0F-module structure (hence a PkF-module struc-
ture) via the action

a · {ω1, . . . , ωn} := {a ∩ ω1, . . . , a ∩ ωn}

And for finiteF = ξ the space kerπξ is generated as a Pkξ-module by ξ] because Akξ can
be naturally identified with ξ∗ · k0ξ and the projection k0ξ → Akξ is just multiplication
by ξ∗. It follows that for finite ξ we can define an inverse explicitly by u · ξ] 7→ u · ξ for
u ∈ Pkξ.

It can be shown that the spaces AkF and PkF are both projective as k-modules A,
and thus taking the dual spaces gives a short exact sequence

0→ Mk(F)→ (k0F)∗ → Brk(F)→ 0

This short exact sequence classifies the space of branching entropies. Explicitly it states
that any branching entropy is of the form

h(ω1, . . . , ωn) = f(ω]) = f(ω1 ∪ · · · ∪ ωn)− f(ω1)− · · · − f(ωn)

for some function f : F → k with f(∅) = 0. Furthermore, the short exact sequence
implies that two functions f, f ′ induce the same branching entropy if and only if their
difference f − f ′ is an additive measure on F .

This gives a simple algebraic proof of the classification of branching entropies, and
this proof works over a general base ring k and not just R. However, the isomorphism
2..3 does more than just classify the k-module of branching entropies. As we show in the
next section, this isomorphism endows Brk(F) with a rich algebraic structure.

2.3. The algebraic structure of branching entropies

From the proposition 2..2, the space Relk F is naturally a Pk(F)-module. This induces a
PkF-module structure on Brk(F), given explicitly by

(ω∗ · h)(ξ) = h(ω∗ξ]) = h((ω ∨ ξ)] − ω])
= h(ω ∨ ξ)− h(ω)

Here we have assumed that ω and ξ are both full partitions. In classical information theory
the quantity H(ω ∨ ξ)−H(ω) is defined to be the conditional entropy H(ξ|ω), although
here it arises as the natural action of the partition algebra on the space of branching en-
tropies. In the classical notation we write this action as (ω∗ · h)(•) = h(•|ω).

Standard formulas involving conditional entropy, such as the fact that h(ζ|ω ∨ ξ) =
h(ζ ∨ ξ|ω)− h(ξ|ω) follow immediately from this interpretation of conditional entropy.

Note: The space kerπF is a k0F-module in addition to being a PkF-module. Thus
studying the action of all of k0F on Brk(F) provides a new more general notion of con-
ditional entropy which does not seem to appear in the classical theory.
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Given a branching entropy h ∈ (kerπF)∗ we define a symmetric bilinear form (u, v)h :=
h(u · v) for u, v ∈ kerπF . As usual we can think of |u|2 = (u, u) as a kind of “pseudo-
norm” on kerπF , although one should exercise caution as to when this “norm” is non-
negative (see below). This symmetric bilinear form gives rise to many of the classical
quantities studied in information theory

(ω], ξ]) = h(ω) + h(ξ)− h(ω ∨ ξ)
|ω∗ξ]|2 = h(ξ|ω) (1)

|ω] − ξ]|2 = 2h(ω ∨ ξ)− h(ω)− h(ξ)
= h(ξ|ω) + h(ω|ξ)

The quantity (ξ], ω]) is usually called the mutual information and denoted I(ω; ξ). The
quantity

∣∣ξ] − ω]∣∣2 is called the Rohklin metric and is sometimes denoted ρ(ω, ξ).

The short exact sequence 2.2. allows us to define the notion of the complement of a
branching entropy. We will need the following lemma

Lemma 1. Fix a base ring k and let F be an arbitrary boolean algebra. There exists a
finitely additive measure µ ∈ Mk(F) with µ(1) = 1. If k = R, the measure can be chosen
to be nonnegative.

This is just a rephrasing of the existence of ultrafilters (). The ultrafilter lemma implies
that there are boolean algebra homomorphisms ψ : F → {∅,1}. One can verify that if we
consider 1 = 1 ∈ k and ∅ = 0 ∈ k then the boolean algebra homomorphism is precisely
a finitely additive measure.

We summarize the definition and properties of the complement map in the following
proposition (we use [f(x)] ∈ Brk(F) to denote the branching entropy represented by the
function f : F → k)

Proposition 2..4. Let µ ∈ Mk(F) with µ(1) = 1, then the k-linear map

(•)c : Brk(F)→ Brk(F)

: [f(x)] 7→ [f(xc)− f(1)µ(xc)]

is well-defined and independent of the choice of µ. Also (hc)c = h for any h ∈ Brk(F).

If we think of Brk as a functor Brk : Boolop → Modk from the (opposite) cate-
gory of boolean algebras to the category of k-modules, then the complement is a natural
transformation of functors (•)c : Brk ⇒ Brk.

All of the above structure on Brk(F) leads one to interpret a branching entropy h as a
sort of “state of knowledge” in a whole configuration space Brk(F). Imagine h represents
my knowledge of the outcome of a chemistry experiment. The relation (ω∗ · h)(•) =
h(•|ω) allows us to interpret the action of the partition algebra on h as appending facts
(i.e. additional data and measurements) to my current state of knowledge h. In the same
vein,

∣∣ω]∣∣ = h(ω]) represents the knowledge I stand to gain once I am given the data
encoded by ω. Finally the complement hc represents “complementary” knowledge in the
sense that if h were to encode which of several possible events occured in my experiment,
the hc encodes a weighted average of the knowledge of whether each event failed to occur.
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Example 2..5. For any nonnegative measure µ ∈ M+
R(F) we can assign the Shannon

entropy Hµ ∈ BrR(F) induced by the function a 7→ η(µ(a)) := µ(a) log µ(a). Explicitly
the Shannon entropy assigns

Hµ(ω) = η(µ(ω1 ∪ · · · ∪ ωn))− η(µ(ω1))− · · · − η(µ(ωn))

This assignment rule µ 7→ Hµ ∈ BrR(F) is the entire content of the classical statistical
definition of information. If we consider BrR and MR as contravariant functors M+

R ,BrR :
Boolop → Set, then the Shannon entropy is just a natural transformation of functors
S : M+

R → BrR.

3. Generalized measures of information
Motivated by the Shannon entropy we define

Definition 3..1. A generalized information theory for the category C is a triple(F,Q, η),
where F : C → Set is a “structure” functor, Q : C → Boolop associates a Boolean
algebra to each object of C, and η : F → BrR ◦Q is a natural transformation of functors.

C
Q

��
F

**VVVVVVVVVVVVVVVVVVVVV

η ��
Boolop

BrR
// Set

The Shannon entropy is purely statistical, C = Boolop and F = MR so the entropy
only depends on a measure on a Boolean algebra. However, we can imagine theories of
information that depend on additional structures such as that of a metric space or a group
action, etc.. This definition of a generalized information theory is a first step towards
extending classical information theory uniformly to other branches of mathematics.

3.1. Nonnegativity of branching entropies

We know from the classical theory that one of the most important properties of the Shan-
non entropy is the quantities Hµ(ω), Iµ(ω; ξ), ρµ(ω, ξ), and Hµ(ω|ξ) are nonnegative and
even obey some subadditivity laws.

To generalize this call a branching entropy nonnegative if the form (•, •)h is positive
semi-definite, and denote by Br+

R(F) the space of nonnegative entropies on F . As before,
Br+

R(F) is a semigroup under addition and has an R+ group action under scalar multipli-
cation. Similarly we call an information theory nonnegative if the map η : F → BrRQ
lands in the subfunctor Br+

R Q.
Unfortunately the Shannon entropy is not nonnegative in this sense, but the comple-

ment of the Shannon entropy is.
Define for any finite Boolean algebra ξ the special element eξ :=

∑
a∈F(−1)|a|ac,

where |a| denotes the number of atoms in a. We have the lemma

Lemma 2. Let η : F → BrR be an information theory on C = Boolop. Then η is
nonnegative iff ηF [x](eF) ≥ 0 for all finite Boolean algebras F and every x ∈ F (F).

Using this lemma
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Proposition 3..2. The complement of the Shannon entropy Hc : µ→ Hc
µ is nonnegative.

These ideas are still in their infancy, but the great range of information-theoretic con-
structions captured by these algebraic structures suggests that they are a step in the right
direction towards a general theory of mathematical complexity. In addition to develop-
ing the idea of nonnegativity further, we are studying specific examples of information
theories on metric spaces and dynamical systems, and we are studying the relationship
between entropy and coding in this general context.

A Proof that AkF and PkF are projective k modules
Proposition A.1. For any boolean algebra F and any ring R, the R-module ARF is
projective.

Proof. Any element of ARF lies in the image of some finite subalgebra ARξ ↪→ ARF ,
we have the isomorphism

ARF ∼= lim−→
ξ⊆F
|ξ|<∞

ARξ

To show ARF is projective, we must show that any diagram of the form

M

π

����lim−→
ξ

ARξ ϕ //

ψ

<<y
y

y
y

N

has a lift ψ. Any such ϕ is simply a family of homomorphisms ϕξ : ARξ → N that
are compatible with the inclusion homomorphisms. ARξ is free on the set of atoms
{ξ1, . . . , ξn}, so we can think of ϕ as a compatible family ϕξ : {ξ1, . . . , ξn} → N of
maps of sets. The compatibility condition means that for all ξ ⊆ ω we have

ϕξ(ξi) =
∑
ωj⊆ξi

ϕω(ωj) ∈ N (2)

for all atoms ξ1, . . . , ξn of ξ.
We seek a family of lifts ψξ that satisfy the relation 2. Define the set S(ξ) for each

finite ξ by

S(ξ) = {f : {ξ1, . . . , ξn} →M so that π ◦ f(ξi) = ϕξ(ξi)}

and for any ξ ⊆ ω ⊆ F we have the maps of sets

S(ω)→ S(ξ)

f 7→ f ′(ξi) =
∑
ωj⊆ξi

f(ωj)

where f ′ ∈ S(ξ) because π is linear, and thus

π ◦ f ′(ξi) =
∑
ωj⊆ξi

π ◦ f(ωj) =
∑
ωj⊆ξi

ϕω(ωj) = ϕξ(ξi)
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Furthermore the maps S(ω) → S(ξ) are surjective. To see this, take a particular f ′ ∈
S(ξ), then we construct a lift f ∈ S(ω) as follows: For each ξi, take the set of ωj ⊆ ξi.
We call them ω1, . . . , ωk for simplicity. Now assign the values of f(ω2), . . . , f(ωk) ∈ M
arbitrarily so that π(f(ωj)) = φω(ωj) ∈ N for j = 2, . . . , k. Then we finally assign the
value of

f(ω1) = f ′(ξi)− f(ω2)− · · · f(ωk)

And it follows that

π ◦ f(ω1) = π ◦ f ′(ξi)−
k∑
j=2

π ◦ f(ωj) = ϕξ(ξi)−
k∑
j=2

ϕω(ωj) = ϕω(ω1)

And repeating this procedure for each ξi gives a lift f ∈ S(ω), so in fact we have S(ω) �
S(ξ)

Now a lift ψ of ϕ corresponds to a compatible choice of elements of S(ξ) for all ξ,
hence an element of lim←−ξ S(ξ). But the limit over a direct system of non-empty sets and
surjections is always non-empty, and hence there is a lift ψ : ARF →M so that ϕ = π◦ψ.

Corollary A.2. The k-module kerπF is projective

Proof. This follows because k0F is a free k-module. Because AkF is projective, it fol-
lows that kerπF is a direct summand of k0F , hence projective.

B Proof that the Shannon entropy is nonnegative
For n ≥ 0 and a continuous map η : [0,∞)→ R, let

Fn[η](x1, . . . , xn) =
n∑
k=0

(−1)k
∑

i1<···<ik

η(xi1 + · · ·+ xik)

where the k = 0 contribution is just η(0). It will be convenient to introduce the notation
t · η(z) := η(z + t) for the action by translation of positive numbers on the space of
functions [0,∞)→ R.

Observe that if η is differentiable then Fn[η] is as well, and we can calculate

∂Fn[η]

∂xi
(x1, . . . , xn) = −Fn−1[xi · η′](x1, . . . , x̂i, . . . , xn)

∂

∂t
Fn[t · η](x1, . . . , xn) = Fn[t · η′](x1, . . . , xn)

We also have that Fn[η](0, x2, . . . , xn) = 0, because each term containing xi will
cancel the corresponding term not containing x1.

Proposition B.1. Let η : [0,∞)→ R be a smooth function such that

d2kη(z)

dz2k
≥ 0

for all z > 0 and k ≥ n. Then Fn[η](x1, . . . , xn) is nonnegative for x1, . . . , xn ≥ 0.
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Proof. We prove this by induction on n. For the case n = 0, we have F0[η]() = η(0) ≤ 0
by continuity and the hypothesis that d0

dz0
η = η ≥ 0 for z > 0.

Now fix a choice of p1, . . . , pn ≥ 0. Then we will show that

Fn[η](p1 + t, p2 − t, p3, . . . , pn) (3)

is concave as a function of t ∈ [−p1, p2]. Computing the second derivative gives

∂2

∂t2
Fn[η](p1 + t, p2 − t, p3, . . . , pn)

= − ∂

∂t
Fn−1[(t+ p1) · η′](p2 − t, p3, . . . , pn)

+
∂

∂t
Fn−1[(p2 − t) · η′](p1 + t, p3, . . . , pn)

= −Fn−1[(p1 + t) · η′′](p2 − t, p3, . . . , pn)

− Fn−1[(p2 − t) · η′′](p1 + t, p3, . . . , p4)

− 2Fn−2[(p1 + p2) · η′′](p3, . . . , pn)

And the new functions η̃ = (p1 + t) · η′′, (p2 − t) · η′′, and (p1 + p2) · η′′ all have the
property that d2k

dz2k η̃ ≥ 0 for k ≥ n − 1. The inductive hypothesis implies that each term
above is non-positive and so the whole expression is ≤ 0.

Thus we have verified that the function (3) is concave for t ∈ [−p1, p2]. In addition,
the function is 0 when t = −p1 or t = p2 because Fn[η] vanishes when any one of
its arguments vanishes. Concavity implies the function is nonnegative when t = 0 ∈
[−p1, p2]. The proposition now follows by induction on n.

Remark B.2. Under the hypotheses of proposition B.1, the second derivative of

Fn[η](tp1, (1− t)p2, p3, . . . , pn)

is nonnegative. It follows that Fn[η] is a concave function.
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