
THE D-EQUIVALENCE CONJECTURE FOR MODULI SPACES OF SHEAVES
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In [BO], Bondal and Orlov made the following

Conjecture 0.1 (D-equivalence). If X and Y are birationally equivalent projective Calabi-Yau
manifolds, then there is an equivalence of derived categories of coherent sheaves DCoh(X) →
DCoh(Y ).

This conjecture is motivated by homological mirror symmetry. Although it has been established
in dimension three [B], and various “local” versions of the conjecture have been established, there
are few examples known for compact Calabi-Yau manifolds in dimension > 3. The purpose of this
note is to sketch a proof of the following

Theorem 0.2. The D-equivalence conjecture holds for Calabi-Yau manifolds which are birationally
equivalent to a moduli space of Gieseker semistable coherent sheaves (of some fixed primitive Mukai
vector) on a K3 surface.

This theorem will actually be a consequence of a more general theorem, Theorem 3.6 which leads
to derived equivalences for any birational equivalence resulting from “variation of stability” on a
derived stack with self-dual cotangent complex. The theorem above, and in fact a slightly more
general statement, arises from applying this theorem to moduli spaces of Bridgeland semistable
objects in the derived category of a twisted K3-surface as one varies the stability condition. The
approach we present has several key new ingredients:

(1) The theory of Θ-stratifications, and the general structure theorem for the derived category
of coherent complexes on a quasi-smooth stack with a Θ-stratification, leading to the
aforementioned Theorem 3.6 on derived equivalences;

(2) A new theorem on the local structure of derived stacks with self-dual cotangent complex
which admit a good moduli space, Theorem 2.3, powered by the Luna slice theorem of
[AHR];

(3) The minimal model program for Calabi-Yau manifolds which are birationally equivalent to
a moduli space of coherent sheaves on a K3-surface [BM]; and

(4) A new existence result for good moduli spaces of Bridgeland semistable objects in the derived
category of a twisted K3-surface, Theorem 4.3.

This paper will ultimately be a section in a larger paper [HL5]. I have written this sketch of the
argument now because I have announced these results in several lectures, and people have expressed
interest in a written summary.

I call this a “sketch” of proof because there are certain points which depend on forthcoming work.
Notably, we use the general structure theorem for the derived category of a derived stack with a
Θ-stratifications which was announced in [HL4]. This will appear in the final version of [HL5], but
the special case of local quotient stacks already appears in [HL3]. We also use a forthcoming result
of the author, Alper, and Heinloth on the existence of good moduli spaces, Theorem 4.3. Finally,
our discussion of the moduli stacks of Bridgeland semistable twisted complexes on a K3-surface is
somewhat telegraphic, and we will fill in some of the details of the discussion in the final version of
this paper.

In sections 1,2, and 3, we work over an arbitrary base field k of characteristic 0, and in section 4
we specialize to the case k = C.
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1. A remark on intrinsic geometric invariant theory

A key technical tool will be an intrinsic version of the main theorem of geometric invariant theory
for stacks X which admit a “good moduli space” in the sense of [A]. We also use the theory of
Θ-stability [HL1], which provides methods for constructing canonical stratifications of algebraic
stacks. The stratification is defined intrinsically via a generalized version of the Hilbert-Mumford
criterion formulated in terms of maps Θ→ X, where Θ := A1/Gm.

Theorem 1.1. Let X→ Y be a good moduli space, where X is a finite type geometric stack.1 Then
an class ` ∈ NS(X)R and positive definite b ∈ H4(X;R) induces a Θ-stratification

X = Xss(`) ∪ S0 ∪ · · · ∪ SN .

Xss(`) admits a good moduli space Xss(`)→ Y ′, and Y ′ is projective over Y . The formation of this
stratification is étale local on Y .

If k′/k is a field extension, then a k′-point p ∈ Sα(k′) classifies a canonical map f : Θk′ → X with
f(1) ' p, which we refer to as the Harder-Narasimhan (HN) filtration of the `-unstable point p. The
strata canonically deformation retract onto the “centers” Zss

α , which classify maps (BGm)k′ → X.
The projection π : Sα → Zss

α maps a HN filtration f : Θk′ → X to its “associated graded,” the
restriction of f to a map {0}/(Gm)k′ → X.

The key to the proof of theorem Theorem 1.1 is the final claim, that the construction is local
on Y . The proof is an elementary consequence of the recent “Luna étale slice theorem” for stacks
established in [AHR], one consequence of which is the following:

Theorem 1.2. Let X→ Y be a good moduli space, where X is a finite type geometric stack. Then
there is an étale surjection Spec(R)→ Y such that the base change of X to Spec(R) is a quotient of
an affine scheme by a linearly reductive k-group.

A more precise formulation states that if X→ Y is a good moduli space, then any point y ∈ Y is
contained in the image of some ëlate map U → Y such that X×Y U ' Spec(R)/G where G = Aut(x)
for some closed point x ∈ X in the fiber over y ∈ Y . Theorem 1.2 allows one to reduce Theorem 1.1
to the classical situation of an affine scheme modulo a linearly reductive group.

2. A local structure theorem for stacks with self-dual cotangent complex

We will make use of an even more specific local model for stacks of coherent sheaves on a
K3-surface. We consider an action of an algebraic group G on a smooth affine scheme Spec(B).

1Recall that a geometric stack is a quasi-compact algebraic stack with affine diagonal.

2



Definition 2.1. A weak co-moment map is a G-equivariant linear map µ : g → B along with
G-equivariant isomorphisms φ0 : Ω1

B ' TB and φ1 : B ⊗ g ' B ⊗ g such that the diagram

B ⊗ g
dµ //

φ1
��

Ω1
B

φ0
��

B ⊗ g
a // TB

commutes after restricting to (B/B · µ(g))red, where a : g→ TB is the infinitesimal derivative of the
G action on B.

Remark 2.2. When φ0 is induced by an algebraic symplectic form, and φ1 is the identity, the map
µ is called the co-moment map and is uniquely defined up to adding a character of g. Thus our
notion is a weaker version of this more common concept.

Given a weak co-moment map, one can form a commutative DGA B[g[1]; dξ = µ(ξ)], by which we
mean the free graded-commutative B-algebra generated by the vector space g, where the differential
on g is given by µ. This defines an affine derived scheme which also has a G-action.

Theorem 2.3. Let X be a derived algebraic stack such that LX ' L∨X, let Xcl → Y be a good moduli
space. For any closed point y ∈ Y , there is an étale map

X′ := Spec(B[g[1]; dξ = µ(ξ)])/G→ X

whose image in Y contains y, where G is linearly reductive, Spec(B) is a smooth affine G-scheme,
and µ : g → B is a weak co-moment map. Furthermore, if U = Spec((B/B · µ(g))G), then
(X′)cl ' Xcl ×Y U .

As a basic input to the proof of this theorem, we observe:

Lemma 2.4. Let X be a derived stack such that Xcl ' Spec(R)/G for some ring R and reductive
group G. Then X ' Spec(A)/G for some connective CDGA A with a G-equivariant isomorphism
π0(A) ' R.

Proof. By approximating X by its truncations, it suffices to show that if X′ → X is a square-zero
extension and X′ ' Spec(A′)/G for some G-equivariant CDGA A′, then X ' Spec(A)/G for some
square-zero extension of G-equivariant CDGA A → A′. This amounts to a deformation theory
problem: showing that square-zero extensions of the stack by Spec(A′)/G by a coherent sheaf over
Spec(π0(A′))/G correspond bijectively to G-equivariant square zero extensions of Spec(A′) by this

same coherent sheaf. This is a consequence of the long exact sequence for the relative cotangent
complex of the map Spec(A′)→ Spec(A′)/G and the fact that coherent sheaves on Spec(π0(A′))/G
have vanishing higher cohomology. �

The next useful observation is that Zariski locally over Spec(π0(A)G), one can describe certain
derived stacks as a derived complete intersection [AG]. By this we mean Spec of a G-equivariant
CDGA of the form k[U0, U1; d], which denotes the free CDGA generated by a representation U0 of
G in homological degree 0 and a representation U1 in homological degree 1 with a G-equivariant
differential defined by the G-equivariant linear map d : U1 → k[U0].

Lemma 2.5. Let G be a linearly reductive group, and let A be a connective G-equivariant CDGA
which is quasi-smooth.2 Let o ∈ Spec(π0(A)) be a closed point with Aut(o) = G. Then there is

2A derived stack is defined to be quasi-smooth if the cotangent complex LX is a perfect complex with Tor-amplitude
in [1, 0,−1].
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an f ∈ π0(A)G which does not vanish at o and a G-equivariant quasi-isomorphism with a derived
complete intersection

Af ' k[U0, U1; d],

where Af is the localization of A.

Proof. First choose some G-equivariant semi-free presentation A ∼ k[U•; dA], where U• =
⊕

i≥0 Ui[i]
– in other words Ui is placed in homological degree i. The fiber of the cotangent complex at o has
the form

LA|o ' (· · · → U2
d2−→ U1

d1−→ U0)

Choosing a subspace W ⊂ U1 which maps isomorphically onto the quotient U1/ im(U2), the
inclusion of the subcomplex (W → U0) ⊂ (· · · → U2 → U1 → U0) is a quasi-isomorphism. It
follows from the fact that Spec(A) is quasi-smooth that the inclusion of the semi-free subalgebra
A′ := k[U0,W [1]; dA] ⊂ k[U•; dA] induces an isomorphism of cotangent complexes at o. Thus the
closed immersion

Spec(A)/G ↪→ Spec(A′)/G

is étale at o ∈ Spec(A) and hence a Zariski open immersion in a neighborhood of o. It follows
from the orbit structure of reductive group actions on affine schemes that any G-equivariant open
neighborhood of a point with a closed orbit is contained in an open affine of the form Af for some

f ∈ π0(A)G.
�

Proof of Theorem 2.3. Using Theorem 1.2 and Lemma 2.4, we may reduce to the case where X =
Spec(A)/G for a linearly reductive group G and G-equivariant connective CDGA A. Furthermore

we may assume that if o ∈ Spec(π0(A)) is the unique point with closed orbit in the fiber over y ∈ Y ,
then o is in fact a closed point and Aut(o) = G. The quasi-isomorphism LX ' (LX)∨ implies that X

is quasi-smooth, so Lemma 2.5 implies that we can further reduce to the case where A = k[U0, U1; d]
is a G-equivariant complete intersection.

The cotangent complex admits an explicit presentation of the form

LSpec(A)/G ' A⊗
(
δU1[1]⊕ δU0 ⊕ g∨[−1]

)
where the vector space g∨[−1]⊕ δU0⊕ δU1[1] is concentrated in homological degree −1, 0, 1, and the
differential is a deformation of the differential internal to A. The space δUi is the space of “formal
differentials” of elements of Ui, and is isomorphic to Ui as a G-representation. The hypothesis on
Aut(o) implies that the quasi-isomorphism ψ : LX ' (LX)∨ provides an isomorphism

g ' H1(LX|o) ⊂ δU1.

We shall consider the resulting splitting δU1 ' U1 ' g⊕W as a G-representation.
The G-equivariant complete intersection CDGA A′ := k[U0,W ; dA] ⊂ A is smooth at o ∈

Spec(π0(A)), and hence A′ will be smooth and classical after inverting an element f ∈ π0(A)G. We
regard A as obtained from A′ by adjoining relations corresponding to a moment map µ : g→ k[U0],
and hence after inverting f we will have a quasi-isomorphism

Af ' B[g[1]; dξ = µ(ξ)],

where B := π0(A′f ) is a smooth ring and µ : g→ k[U0]→ B the induced G-equivariant map. This
map must be a weak co-moment map by Lemma 2.6 below. �

Lemma 2.6. Let G be a reductive group, let B be a smooth k-algebra with a G-equivariant map
µ : g→ B, and let X := Spec(B[g[1]; dξ = µ(ξ)])/G. Fix a closed point o ∈ Spec(B/B · µ(g))G at
which Aut(o) = G. Then any isomorphism ψ : LX ' (LX)∨ induces, after inverting an element
f ∈ π0(B)G with f(o) 6= 0, isomorphisms φ1 : B ⊗ g → B ⊗ g and φ0 : Ω1

B → TB giving µ the
structure of a weak co-moment map.
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Proof. The cotangent complex, which is a dg-module over A := B[g[1]; d], has the form

LSpec(A)/G = A⊗ g[1]⊕A⊗B Ω1
B ⊕A⊗ g∨[−1]

where the differential is a deformation of the differential internal to A by the k-linear map dµ : g→ Ω1
B

and the action map Ω1
B → B ⊗ g∨ restricted to A. Concretely, the isomorphism ψ : LX ' (LX)∨

induces an isomorphism of dg-A-modules

LSpec(A)/G '

ψ

��

· · · // Ω1
B ⊕A1 ⊗ g∨

a⊕(dA⊗g∨)//

ψ0

��

A0 ⊗ g∨

ψ−1

��
(LSpec(A)/G)∨ ' · · · // TB ⊕A1 ⊗ g∨

(dµ)∨⊕(dA⊗g∨)// A0 ⊗ g∨

.

Bear in mind that A0 = B, A1 = B ⊗ g, A2 = B ⊗
∧2 g, etc. Now at the point o ∈ Spec(B/µ(g)) ⊂

Spec(B) the differential in this complex vanishes, so ψ−1 induces an isomorphism B⊗ g∨ → B⊗ g∨

in a neighborhood of o in Spec(B). Likewise, as ψ is a map of dg-A-modules, the map ψ0 maps
A1 ⊗ g∨ to A1 ⊗ g∨ and is induced by ψ−1. It thus descends to a map ψ0 : Ω1

B → TB of B-modules.
The resulting diagram of maps of B-modules

Ω1
B

a //

ψ0

��

B ⊗ g∨

ψ−1

��
TB

(dµ)∨// B ⊗ g∨

commutes after restricting to B/B ·µ(g), and the vertical arrows are isomorphisms in a G-equivariant
Zariski-open neighborhood of o ∈ Spec(B). After localizing we can invert the vertical arrows and
dualize this diagram, giving µ the structure of a weak co-moment map. �

3. The magic windows theorem

We first define our “weight windows.” We will assume that for a generic class ` ∈ NS(X)R, the
open substack Xss(`) ⊂ X provided by Theorem 1.1 is Deligne-Mumford. This will happen in our
examples. Let X be a derived stack whose cotangent complex is perfect, and let f : BC∗ → X be a
map. Then we define

aXf := wt
(
det((f∗LX)<0)

)
Definition 3.1. We say that δ ∈ Pic(X)R is generic if for all f : BGm → X, the weight of f∗δ− 1

2a
X
f

is not an integer.

First let us consider the Θ-stratification of Theorem 1.1. We will restrict our attention to maps
f : (BGm)k′ → X classified by k′ points of the centers Zss

α of the strata Sα, and we call such a map
`-canonical.

Definition 3.2. For any δ ∈ NS(X)R, we define the full subcategory

G`X(δ) =

F ∈ DCoh(X)

∣∣∣∣∣∣
for all `-canonical maps f : (BGm)k′ → X :

minWt(f∗(F )) ≥ wt(f∗δ) + 1
2a

X
f , and

minWt(f∗(DX(F ))) ≥ 1
2a

X
f − wt(f∗δ)


Theorem 3.3. [HL3, Theorem 3.2] For δ ∈ NS(X)R generic and ` ∈ NS(X)R arbitrary, the
restriction functor induces an equivalence G`X(δ) ' DCoh(Xss(`)).
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Proof. This is a slight rephrasing of the cited theorem. The theorem in [HL3] has an additional
hypothesis on the cotangent complex, but it is guaranteed by the isomorphism LX ' (LX)∨.
Furthermore, we have used [HL3, Lemma 3.10] to identify our definition of the category G`X(δ) with
the definition in [HL3]. �

As the notation suggests, the category G`X(δ) depends on the class `, or more specifically the

Θ-stratification of Theorem 1.1. But the dependence on ` only shows up in the definition of G`X(δ)
where one chooses which maps f : (BGm)k′ → X to apply the weight conditions to.

Definition 3.4. Let X be a derived stack such that LX ' L∨X. Then for any δ ∈ NS(X)R we define

MX(δ) =

F ∈ DCoh(X)

∣∣∣∣∣∣
for all f : (BGm)k′ → X

minWt(f∗F ) = −∞ or ≥ wt(f∗δ) + 1
2a

X
f , and

minWt(f∗(DX(F ))) = −∞ or ≥ 1
2a

X
f − wt(f∗δ)


Remark 3.5. For a general map f : (BGm)k′ → X and F ∈ DCoh(X), the weights of f∗(F ) ∈
D−Coh((BGm)k′) need not be bounded below. However, one consequence of [HL3, Theorem 3.2] is

that for any map f : (BGm)k′ → X classified by a k′-point of Zss
α for some α and any F ∈ DCoh(X),

the weights of f∗(F ) are bounded below even though the complex need not be homologically
bounded. It follows that MX(δ) ⊂ G`X(δ) for any ` and δ.

Theorem 3.6 (Magic windows). Let X be a derived stack such that LX ' L∨X and Xcl admits a
good moduli space. Let δ ∈ NS(X)R be generic, and assume that ` ∈ NS(X)R is such that Xss(`) is
Deligne-Mumford. Then

MX(δ) = G`X(δ)

as subcategories of DCoh(X), and hence the restriction functor defines an equivalence MX(δ) '
DCoh(Xss(`)).

Remark 3.7. If Xss(`) is Deligne-Mumford, then the self duality LX ' (LX)∨ implies that Xss(`) is
in fact smooth.

Remark 3.8. The condition that there exists a δ ∈ NS(X)R which is generic in the sense above
is non-vacuous. One can show that δ ∈ NS(X)R is generic if and only if for every closed point
x ∈ X with linearly reductive automorphism group G, the restriction of δ to a real character of a
maximal torus T ⊂ G is generic in the sense of [HLS]. The results of [HLS], combined with the
local description of X above, can be used to show that if there exists a generic δ then Xss(`) is
Deligne-Mumford for ` in the complement of a finite real hyperplane arrangement in NS(X)R.

The key value of this theorem is that the category MX(δ) does not depend on `, unlike the
category of G`X(δ). An immediate consequence of Theorem 3.6 combined with Theorem 3.3 is the
following

Corollary 3.8.1. DCoh(Xss(`)) ' DCoh(Xss(`′)) for any two generic `, `′ ∈ NS(X)R.

Proof of Theorem 3.6. The claim of the theorem is that if F ∈ DCoh(X) is a complex for which
f∗(F ) satisfies certain weight bounds for a special class of maps f : (BGm)k′ → X – namely those
maps classified by a point of Zss

α (k′) for some α – then f∗(F ) satisfies the analogous weight bounds
(or has unbounded weights) with respect to any map f : (BGm)k′ → X.

Both of these weight conditions on the complex F can be checked étale locally over the good
moduli space of Xcl, and Theorem 1.1 implies that the formation of the stratification of X is étale
local over the good moduli space of Xcl as well. Thus it suffices to prove the claim after base change
along an étale cover of the good moduli space. Theorem 2.3 implies that we may assume that
X = Spec(B[g[1]; dξ = µ(ξ)]) for some linearly reductive G, smooth equivariant G-algebra B, and
weak co-moment map µ : g→ B. This is the situation in which we prove the theorem, in the next
section. �
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3.1. Proof of the magic windows theorem in the local case. This is the technical heart of
our main result. We work with a smooth G-scheme X := Spec(R) along with a weak co-moment
map µ : g → R, which we regard as a map X → g∨. From this data we construct the scheme
Y = X × g along with the map W : Y → A1 given by W (x, ξ) = 〈µ(x), ξ〉. W is equivariant with
respect to scaling g and A1 with weight 1.

Our proof of Theorem 3.6 in the local case will make use of the “Landau-Ginzburg/Calabi-Yau”
correspondence, which is a correspondence between the two geometric objects:

(1) the “Hamiltonian reduction” stack X0 := X0/G, where X0 := µ−1(0) = Spec(R[g[1]; dξ =
µ(ξ)]) is the derived zero fiber of the weak moment map (X0 is what is referred to as X in
the other sections of this paper), and

(2) the “graded LG model” (Y,W ) with Y := Y/G×Gm, where Gm acts on Y by scaling g with
weight 1, and the map W : Y→ A1/Gm above.

We will also denote the derived zero fiber Y0 := W−1(0) = Spec(R[g∨, ε[1]; dε = W ]) and consider
the stack Y0 := Y0/G×Gm.

We will continue to study the derived category of complexes with bounded coherent cohomology
over X0,

DCoh(X0) ' DCohG(X0).

On the other hand, we can consider the “graded singularity category”

DSing(Y,W ) ' DCoh(Y0)/Perf(Y0) ' DCohG×Gm(Y0)/PerfG×Gm(Y0).

The superscript G or G×Gm indicates that we are working with categories of equivariant complexes.
See [HLP] for a discussion of the graded singularity category.

Theorem 3.9. [S, I] There is a canonical equivalence ΦX : DSingG×Gm(Y,W ) ' DCohG(X0).

We will prove our theorem using this equivalence to convert the question on DCohG(X0) to
a question about DSingG×Gm(Y,W ). We will introduce subcategories M(Y,W )(δ) ⊂ G`(Y,W )(δ) ⊂
DSing(Y,W ), defined precisely in Definition 3.11 and Definition 3.15 below, which correspond to

the categories MX0(δ) and G`X0
(δ) under ΦX . The strategy of the proof can be described by the

following commutative diagram, in which res denotes a restriction functor:

M(Y,w)(δ) ⊂
3

4
��

G`(Y,W )(δ)

4
��

⊂

1

��
DSing(Y,W )

' ΦX

��

res // DSing(Yss,W )
res

2
// DSingG(Xss × g,W )

' ΦXss

��
MX0(δ) ⊂ G`X0

(δ)

' by Theorem 3.3

OO
⊂ DCoh(X0)

res // DCoh(Xss
0 )

(1)

The goal is to show that MX0(δ) ⊂ G`X0
(δ) is an equality, assuming δ is generic, which will follow

automatically after verifying the following claims (referencing the diagram above):

(1) The restriction map (1) is an equivalence,
(2) The restriction map (2) is an equivalence,
(3) The inclusion (3) is an equality, and
(4) The equivalence ΦX maps the subcategories of DSingG×Gm(Y,W ) to the corresponding

subcategories of DCohG(X0).

The most subtle point, which requires us to analyze the equivalence ΦX carefully, will be (4).
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Remark 3.10. One of the stated assumptions of ?? is that Xss
0 (`)/G is Deligne-Mumford. We can

pull back ` ∈ NS(X/G)R to Y/G = X × g/G, and the `-semistable locus Y ss contains Xss× g. The
existence of a generic parameter δ implies that we may perturb ` slightly so that (X × g)ss(`)/G
will be Deligne-Mumford without changing Xss

0 (`) or the GIT stratification of X0, so we will also
assume without loss of generality that (X × g)ss(`)/G is Deligne-Mumford as well.

3.1.1. The proof of (1). First we recall that DSingG×Gm(Y,W ) is obtained from DCohG×Gm(Y0)
by a localization procedure which inverts a certain natural transformation β : F ⊗ L[−2] → F
for F ∈ DCohG×Gm(Y0). The result is a dg-enhancement of the Verdier quotient DCoh(Y0)/Perf(Y0).
What’s relevant for our purposes is that DSingG×Gm(Y,W ) is generated by objects from DCohG×Gm(Y0).

For any f : (BGm)k′ → Y we define the integer

ηYf := wt
(
det((f∗LY)>0)

)
We note that ` induces a Θ-stratification Y = Yss ∪ SY0 ∪ · · · ∪ SYN as in Theorem 1.1. We will call a

map f : (BGm)k′ → Y `-canonical if it is classified by a point in the center of one of the strata SYα.
The closed substack Y0 ⊂ Y inherits a Θ-stratification as well.

Definition 3.11. We define the full subcategory G`Y0
(δ) ⊂ DCoh(Y0),

G`Y0
(δ) =

F ∈ DCoh(Y0)

∣∣∣∣∣∣
for all `-canonical f : (BGm)k′ → Y0/G
minWt(f∗(F )) ≥ wt(f∗δ)− 1

2η
Y
f , and

minWt(f∗(DX(F ))) ≥ −1
2η

Y
f − wt(f∗δ)

 .

We define G`(Y,W )(δ) ⊂ DSing(Y,W ) to be the full subcategory generated by the image of G`Y0
(δ)

under the quotient functor DCoh(Y0)→ DSing(Y,W ).

Remark 3.12. Because Y0 ↪→ Y is a hypersurface in a smooth variety defined by a function which
is G-invariant, we will see below that the condition that F ∈ DCoh(Y0) lies in G`Y0

(δ) is equivalent to

requiring that for all `-canonical maps f : (BGm)k′ → Y0/G the weights of f∗(F ) lie in the interval

wt(f∗δ) +
1

2
[−ηYf , ηYf ]

Proposition 3.13. [HL2, Section 4] The restriction functor DCoh(Y0) → DCoh(Yss
0 ) induces

equivalences

G`Y0
' DCoh(Yss

0 ), and

G`Y0
∩ Perf(Y0) ' Perf(Yss

0 )

The key reason this holds for both coherent and perfect complexes is that W has weight 0 with
respect to all `-canonical maps (BGm)k′ → Y.

3.1.2. The proof of (2). The subtlety is that the inclusion Xss × g ⊂ (X × g)ss is not an equality.
For graded singularity categories, though, restriction to an open substack induces an equivalence of
categories whenever the open substack contains the entire critical locus of W . It therefore suffices
to verify

Lemma 3.14. If µ : X → g∨ is a weak co-moment map, inducing a function W : X×g→ A1, then

Crit(W )|(X×g)ss ⊂ Xss × g

Proof. From the defining formula W (x, ξ) = 〈µ(x), ξ〉, we see that dW(x,ξ) = 〈dµ(x), ξ〉 ⊕ µ(x) ∈
Ω1
X,x ⊕ g∨. Note that for a weak co-moment map, at any point of x the linear map dµ : TX,x → g∨

is isomorphic to the action map a : Ω1
X,x → g∨, so 〈dµ(x), ξ〉 = 0 if and only if ξ ∈ Lie(Stab(x)). It

follows that
dW(x,ξ) = 0 ⇔ µ(x) = 0 and ξ ∈ Lie(Stab(x)).
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If such a point (x, ξ) ∈ X × g is `-semistable, then x must be semistable as well. If not, then
one could consider the canonical maximal destabilizing subgroup λ : Gm → G for x, and because
ξ ∈ Lie(Stab(x)) the limit limt→0 λ(t) · (x, ξ) would exist. Thus λ would be destabilizing for (x, λ)
according to the Hilbert-Mumford criterion. �

3.1.3. The proof of (3). We first must formulate the magic window subcategory of DSing(Y,W ). As
before, the only difference between the magic window category M and the category G lies in the
choice of which maps f : (BGm)k′ → Y0/G one uses to test the weight conditions.

Definition 3.15. We define

MY0(δ) =

F ∈ DCoh(Y0)

∣∣∣∣∣∣
for all maps f : (BGm)k′ → Y0/G

minWt(f∗(F )) ≥ wt(f∗δ)− 1
2η

Y
f , and

minWt(f∗(DX(F ))) ≥ −1
2η

Y
f − wt(f∗δ)

 ,

and let M(Y,W )(δ) ⊂ DSing(Y,W ) denote the category generated by the image of MY0(δ).

Remark 3.16. As remarked above, the weight condition on F can be rephrased by requiring that
the weights of f∗(F ) lie in the interval wt(f∗δ) + 1

2 [−ηYf , ηYf ].

Theorem 3.17. If δ is generic, then M(Y,W )(δ) = G`(Y,W )(δ).

Proof. It suffices to show that MY0(δ) = G`Y0
(δ) as subcategories of DCoh(Y0), because these

categories generate the corresponding subcategories of DSing(Y,W ) by definition. We shall make
use of the magic windows theorem on the smooth stack Y = Y/G×Gm, which says that we have
an equality MY(δ) = G`Y(δ) as subcategories of Perf(Y), where the subcategories MY(δ) ⊂ G`Y(δ) ⊂
Perf(Y) are defined to consist of complexes satisfying the same weight bounds with respect to

maps (BGm)k′ → Y as in the definition of MY0(δ) ⊂ G`Y0
(δ) above. The equality MY(δ) = G`Y(δ) was

proved in [HLS] under the more restrictive hypothesis that X = An is a linear representation of G,
but one can reduce the general case of a smooth affine quotient stack to this one via Luna’s étale
slice theorem.

The category Perf(Yss
0 ) is generated by the restriction of perfect complexes on Yss = (X×g)ss/G×

Gm. Combining this with Proposition 3.13 and the magic windows theorem, which implies that
MY(δ)→ DCoh(Yss) is an equivalence, we see that the image of the functor

MY(δ)→ Perf(Y0) ∩ G`Y0
(δ)

generates the latter category. This shows that

Perf(Y0) ∩ G`Y0
(δ) = Perf(Y0) ∩MY0(δ).

In order to conclude that G`Y0
(δ) = MY0(δ), we use the fact that the functor of Proposition 3.13

which lifts a coherent complex F ∈ DCoh(Yss
0 ) to a complex F̃ ∈ GY0(δ) is uniformly bounded in

cohomological amplitude, i.e. there is some K such that

H i(F ) = 0 for i > n⇒ H i(F̃ ) = 0 for i > n+K.

Using this and the fact that any complex in DCoh(Yss
0 ) can be approximated to arbitrarily low

cohomological degree by a perfect complex implies that any complex F ∈ G`Y0
(δ) can be approximated

to arbitrarily low cohomological degree by a complex in F ′ ∈ Perf(Y0) ∩ G`Y0
(δ). We have already

shown that F ′ ∈MY0(δ), and for any f : (BGm)k′ → Y0/G the weights of f∗(F ) and f∗(F ′) agree
in arbitrarily low cohomological degree. We conclude that F ∈MY0(δ) as well. �
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3.1.4. The proof of (4) and linear Koszul duality. Let p : X0 ↪→ X = X/G denote the closed
immersion, which is a regular embedding. Because X is smooth, p∗(F ) is a perfect complex even
when F is not. We will start by considering the weights of complexes p∗(ΦX(F )) for F ∈M(Y,W )(δ)
by studying the equivalence ΦX : DSing(Y,W ) ' DCoh(X0) in more detail.

ΦX is constructed using linear Koszul duality. Regarding W as an element of R ⊗ g∨ ⊂ R[g∨],
we consider the G-equivariant graded CDGA over R,

B = R[g∨, ε[1]; dε = −W ]

where ε has homological degree 1, g∨ has homological degree 0, and both have internal degree 1
with respect to the auxiliary Gm action defining the grading. We then consider the Koszul dual
CDGA defined in [I]

A = R[g[−1], β[−2]; dξ = µ(ξ) · β, dβ = 0].

where g is in cohomological degree 1 and β in cohomological degree 2, and both are in internal
degree −1. The actual statement of the equivalence is the following

Theorem 3.18. [I] There is an R-linear G-equivariant equivalence

ΦX : DCohG×Gm(B) ' DCohG×Gm(A)

which identifies subcategory of perfect dg-B-modules with the full subcategory of dg-A-modules which
are β-torsion (i.e. annihilated by βn for some n).

Isik also identifies the Verdier quotient of the category DCohG×Gm(A) by the category of β-torsion
complexes with the category DCoh(X0) – technically one must mix the internal grading with the
homological grading of a A[β−1]-module in order to identify this category with the category of
modules over the CDGA R[g[1]; dξ = µ(ξ)]. Hence the equivalence ΦX descends to an equivalence

DSing(Y,W ) = DCohG×Gm(B)/PerfG×Gm(B)
'−→ DCoh(X0)

as claimed above. The key property of ΦX we use is that its formation is local over X in the sense
that if we restrict A and B along a map S → X, then the restriction of modules to S intertwines the
corresponding equivalences ΦX and ΦS . We now arrive at the main technical result of this paper:

Proposition 3.19. If F ∈M(Y,W )(δ), then ΦX(F ) ∈ DCoh(X0) lies in MX0(δ).

We will prove this after establishing a few useful lemmas, working in the more concrete setting of
equivariant derived categories. Up to isomorphism every map f : (BGm)k′ → Y0/G corresponds to
a pair (y, λ), where λ : (Gm)k′ → Gk′ is a group homomorphism and y is a k′-point of Y0 fixed by λ.
Analogously a map (BGm)k′ → X classifies a pair (x, λ) with x ∈ X fixed by λ.

Lemma 3.20. Let x ∈ X be such that µ(x) = 0, let y = (x, 0) ∈ Y0, and let F ∈ DCohG×Gm(Y0)
be such that F |y has λ-weights in the window

wt(f∗δ) +
1

2
[−ηYf , ηYf ].

Then p∗(ΦX(F ))|x has λ-weights in the same window.

Proof. Note that the functor p∗ simply takes an equivariant R[g[1]; d]-module and regards it as an
equivariant R-module. The compatibility of ΦX with change of base implies that we may restrict to
the fiber over the point x ∈ X. In this case, because µ(x) = 0 be base change of our algebras have
trivial differentials, i.e. they are just the free graded CDGA’s

Ax = k′[g[−1], β[−2]] and Bx = k′[g∨, ε[1]]

where the homological degree and internal degree of the generators is as above. In addition to the
internal and homological grading, the original algebras were G-equivariant. G does not necessarily
fix the point x ∈ X, but (Gm)k′ acts on Ax and Bx via the homomorphism λ.
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For the moment we can disregard the original geometric set up from before and consider the stack
{x}/Gm and the Gm-equivariant map µ : {x} → g∨, where Gm acts on g∨ via λ and the coadjoint
representation. This map happens to be 0, but we can still consider the derived fiber of the zero
map W = 0 : {x} × g → A1, which is precisely the CDGA Bx. Likewise Ax is the Koszul dual
CDGA, which after inverting β corresponds to the derived zero fiber of µ = 0.

The restriction from A-modules and B-modules to Ax and Bx modules intertwines ΦX with the
usual Koszul duality isomorphism

Φx : DCohG×Gm(k′[g∨, ε[1]]) ' DCohG×Gm(k′[g[−1], β[−2]]),

where G = Gm here, but we are distinguishing it notationally from the auxiliary Gm-equivariance
corresponding to the internal grading on Ax and Bx. It suffices to prove the claim for Φx, because
F |{x}×g will still be a coherent complex in DCohG×Gm(Bx) whose restriction to (x, 0) = {x} × {0}
has G-weights in the given window.

Any F ∈ DCohG×Gm(Bx) has a minimal resolution of the form F ∼ (
⊕

i≤k Bx ⊗M i, d) where

M i is a G × Gm-representation in cohomological degree i with the property that the differential
d is 0 after restricting to (x, 0). It follows that the weights appearing in M• are precisely those
appearing in F |(x,0), and in particular the G-weights of M i all lie in the given window. We must
show that the composition

Ψ : DCohG×Gm(Bx)
Φx−−→ DCohG×Gm(Ax)→ DCohG×Gm(Ax[β−1]) ' DCohG(k′[g[1]]) (2) {{eqn:koszul}}

has G-weights lying in that same window after forgetting the k′[g[1]]-module structure (forgetting
the k′[g[1]]-module structure corresponds to pushing forward along p : X0 → X).

Note that the ith term of this complex is k′[g∨] ⊗M i ⊕ k′[g∨]ε ⊗M i+1. The resolution will
eventually be two-periodic in the sense that M i 'M i+2〈1〉 for i� 0, where 〈1〉 denotes the shift by
−1 in internal degree, and under this identification the differential d : k′[g∨]⊗M i → k′[g∨]εM i+2

is multiplication by ε. By Theorem 3.18, we know that any perfect complex is annihilated by the
composition of functors (2), so we may perform a naive truncation by simply discarding all M i for
i > 2p for some p << 0. Thus we can replace F by a complex F ′ which is actually two-periodic

F ′ ' (
⊕
k≥p

Bx ⊗ (M even[2k]〈−k〉 ⊕Modd[2k + 1]〈−k〉), d)

and such that Ψ(F ) ' Ψ(F ′) and the differential d is simply multiplication by ε. Let M even =⊕
nM

even
n and Modd =

⊕
nM

odd
n denote the decomposition of M even and Modd into weight spaces

as a G-representation. Then Ψ(F ′) ∈ DCohG(k[g[1]]) will be quasi-isomorphic to a direct sum
of modules of the form M even

n and Modd
n , where g[1] acts trivially, and the homological shift is

determined by mixing the homological and internal grading of the original complex. The relevant
thing is that forgetting the k′[g[1]]-module structure we see that the resulting complex has only
those G-weights which originally appear in F |(x,0), and this gives the claim. �

Corollary 3.20.1. For any F ∈ M(Y,W )(δ) the complex p∗(ΦX(F )) ∈ DCoh(X) has the property
that for any map f : (BGm)k′ → X, the weights of f∗(p∗(ΦX(F ))) lie in the interval

wt(f∗δ) +
1

2
[−ηYf , ηYf ]

Proof. If f does not land in X0, then f∗(p∗(ΦX(F ))) ' 0 and there is nothing to check. If f
factors through X0 then it corresponds to a one parameter subgroup λ : (Gm)k′ → Gk′ and a point
x ∈ X(k′) fixed by λ with µ(x) = 0, and we apply the previous lemma. �

Next we introduce a lemma which allows one to compare the weights of ΦX(F ) with the weights
of p∗(ΦX(F )). We fix a map f : (BGm)k′ → X0 corresponding to a pair (x, λ) with x ∈ X0 as above.
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Lemma 3.21. For any E ∈ DCohG(X0) we have

minWt(Ex) = minWt(p∗(E)x)− wt(det(g<0)) or = −∞,
minWt((DX0(E))x) = −maxWt(p∗(E)x)− wt(det(g<0)) or = −∞

Proof. The second formula follows from the first, using the fact that p∗ intertwines the Serre duality
functors DX on X and DX0 on X0. DX is just linear duality because the isomorphism TX ' Ω1

X
implies that the canonical bundle ωX ' OX . Therefore we will focus on proving the formula for
minWt(Ex).

Note that p∗(E)x ' p∗(p∗(E))x, so we are comparing the fiber weights at x of the two objects

E, p∗(p∗(E)) ∈ D−Coh
G

(X0). We shall factor the closed immersion p : X0 ↪→ X into two closed
immersions

X0
� � a // X ′ := µ−1(g∨λ 6=0) �

� b // X

Spec(k′[gλ=0[1]])

x̃

OO

b̃ // Spec(k′)

x

OO

Spec(k′)

OO

,

where g∨λ 6=0 denotes the sum of eigenspaces of g∨ under λ of non-zero weight. The square on the

right is cartesian. The subvariety X ′ ↪→ X is only equivariant for the action of the centralizer L of
λ in G, but this suffices to consider λ-weights at the fiber x. We have p∗(p∗(E)) ' a∗b∗b∗a∗(E).

Our first claim is that if E′ ∈ D−Coh
L

(X ′) is such that the weights of E′x are bounded below,
then minWt(E′x) = minWt(b∗(E

′)x). By the derived base change formula the complex b∗(E
′)x '

b̃∗x̃
∗(E′) ∈ D−Coh

Gm(Spec(k′)). It therefore suffices to show that if F ∈ D−Coh
Gm(k[gλ=0[1]]) is a

complex whose restriction to Spec(k′) has bounded below weights, then b̃∗(F ) has bounded below

weights and minWt(b̃∗(F )) = minWt(F |x), which can be verified immediately by consider a minimal
presentation of F and using the fact that the weights of k[gλ=0[1]] are 0.

To complete the proof of the lemma, it now suffices to show that if E ∈ D−Coh
L

(X0) is a complex
such that the weights of Ex are bounded below, then a∗(E)x has bounded below weights as well,
and

minWt(Ex) = minWt(a∗(E)x)− wt(det(g<0)).

Because a is a regular embedding, the complex a∗(a∗(E)) has a finite filtration whose associated
graded is E⊗

∧
g∨λ 6=0, and thus a∗(E)x has a finite filtration whose associated graded is Ex⊗

∧
g∨λ 6=0.

Because we have discarded the 0 weight spaces of g∨, there is a single one dimensional weight space
of
∧
g∨λ 6=0 whose weight is the minimal weight wt(det(g<0)). It follows that provided the weights of

Ex are bounded below, the non-vanishing subcomplex of a∗(E)x of minimal weight is precisely the
minimal weight subcomplex of Ex tensored with det(g<0), and the formula follows. �

Proof of Proposition 3.19. The proof amounts to comparing the weight windows appearing in the
previous two lemmas with the weight windows defining MX0(δ). Given a point x ∈ X0(k′) fixed by
λ : (Gm)k′ → Gk′ , we have

LY|x ' [0→ Ω1
X,x ⊕ g∨ → g∨], whereas

LX|x ' [g→ Ω1
X,x → g∨]

Self duality implies that (f∗LX)<0 ' ((f∗LX)>0)∨, so one can compute

ηYf + 2 wt(det(g<0)) = −aXf .
12



So for F as in the statement of the proposition, if the weights of f∗(ΦX(F )) are bounded below
then Lemma 3.21 and Corollary 3.20.1 implies that

minWt(ΦX(F )x) = minWt(p∗(ΦX(F ))x)− wt(det(g<0))

≥ wt(f∗δ)− 1

2
ηYf − wt(det(g<0)) = wt(f∗δ) + aXf .

Similarly if the weights of DX0(ΦX(F )) are bounded below, then

minWt(DX0(ΦX(F ))x) = −maxWt(p∗(ΦX(F ))x)− wt(det(g<0))

≥ −wt(f∗δ)− 1

2
ηYf − wt(det(g<0)) = −wt(f∗δ) + aXf .

�

4. The D-equivalence conjecture for moduli spaces of sheaves on a K3-surface

The results of the previous section lead to a general statement about derived stacks with self-dual
cotangent complex LX ' (LX)∨. Namely, if X is such a stack for which Xcl admits a good moduli
space and δ ∈ NS(X)R is generic in the sense of ??, then Xss(`) is a smooth Deligne-Mumford stack
for ` ∈ NS(X)R away from a finite real linear hyperplane arrangement. Furthermore for any ` for
which Xss(`) is smooth and DM the restriction functor

MX(δ) ⊂ DCoh(X)→ DCoh(Xss(`))

is an equivalence, and hence Xss(`) for any two generic values of ` will be derived equivalent. In this
section we discuss how this geometric set-up arises in the study of moduli spaces of sheaves on a
K3-surface. The arguments here are more of a sketch than those appearing in the previous sections,
with the full details to appear in forthcoming work.

We will actually consider a slightly more general set up, following the notation of [BM], and we
refer the reader there for a more complete discussion: Let S be a K3-surface and let α ∈ Br(X)
be a Brauer class. We let C = DCoh(S, α) denote the pre-triangulated dg-category of α-twisted
complexes on S, and

v : K0(C)→ H∗alg(X,α,Z)

the Mukai vector map. Then Bridgeland identifies a connected component Stab†(C) of the space of
numerical stability conditions.

Definition 4.1. For σ ∈ Stab†(C) and Mukai vector v ∈ H∗alg(S, α,Z), we let Mσ(v) denote the
moduli stack of σ-semistable complexes E ∈ C in heart of the t-structure associated to σ with
v(E) = v.

When v is primitive and v2 > 0 and σ is generic for v, then the stack Mσ(v) admits a good
moduli space which is a smooth projective hyperkähler manifold of dimension v2 + 2. For α trivial
and certain stability conditions σ, Mσ(v) can be identified with the stack of Gieseker semistable
coherent sheaves on S of class v.

The cotangent complex of Mσ(v) is self-dual, and at a point [E] ∈ Mσ(v) corresponding to a
complex E ∈ DCoh(S, α) we have

LMσ(v)|[E] ' RHom(E,E[1])∨.

For any family of complexes E ∈ DCoh(S×B,α) over a base B, there is a canonical non-trivial map
of group schemes (Gm)B → AutB(E) which acts by scaling. This can alternatively be described as
a map of sheaves of groups (Gm)Mσ(v) → IMσ(v), where the latter denotes the inertia stack. This
implies that the stack Mσ(v) is never Deligne-Mumford, and as a derived stack Mσ(v) is also never
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smooth, because LMσ(v) has a trivial summand of the form OMσ(v)[1] which is dual to the lie algebra
of this generic Gm stabilizer. More precisely, we have a decomposition

LMσ(v) ' OMσ(v)[1]⊕ (LMσ(v))
rig ⊕ OMσ(v)[−1],

where (LMσ(v))
rig is again self-dual.

Proposition 4.2. There are derived algebraic stacks Mσ(v)((( Gm and M
rig
σ (v) with maps

Mσ(v)
Gm-gerbe // Mσ(v)((( Gm M

rig
σ (v)

surjective
closed immersionoo

such that the first map rigidifies the generic Gm-stabilizer of Mσ(v), and LMσ(v)rig ' (LMσ(v))
rig|Mσ(v)rig .

Sketch of proof. In the classical context, the construction of the rigidification X(((Gm of a stack with
an embedding (Gm)X ↪→ IX appears in [AOV]. When X is a derived stack, we can elevate this to
the construction of a derived stack X((( Gm using deformation theory. The stack X is canonically
obtained as a sequence of square-zero extensions Xcl ↪→ τ≤1X ↪→ τ≤2X ↪→ · · · . Because the map
Xcl → Xcl(((Gm is a Gm gerbe, the pullback functor D−Coh(Xcl(((Gm)→ D−Coh(Xcl) is t-exact and
fully faithful and a complex in D−Coh(Xcl) descends to D−Coh(Xcl/Gm) if and only if Gm acts with
weight 0 in every fiber. Rutherford, LXcl and LX descend to Xcl/Gm and applying this reasoning
inductively allows one to descend the square-zero extensions

Xcl

��

� � // τ≤1X

��

� � // τ≤2X

��

� � // · · ·

Xcl((( Gm
� � // X1

� � // X2
� � // · · ·

Then one can define X((( Gm := colimnXn and the map X → X((( Gm will be a Gm gerbe whose
inertia completes the short exact sequence {1} → (Gm)X → IX(((Gm → IX|X → {1}.

The the cotangent complex of Mσ(v)((( Gm differs from the cotangent complex of Mσ(v) by a
trivial summand in cohomological degree 1, but it still has a trivial summand in cohomological
degree −1. We will use a trick to remove this extraneous summand in the cotangent complex by
considering the determinant map (see [STV])

det : Mσ(v)→ Pic(S)ω

where Pic(S) is the derived Picard stack of S of invertible sheaves of numerical class ω ∈ NS(S).
Note that the class ω is determined by the Mukai vector v. Because H1(S,OS) = 0, we have
Pic(S)ω ' Spec(k[ε[1]])/Gm, where Gm acts trivially on k[ε[1]]. The determinant map descends to

a map Mσ(v)((( Gm → Pic(S)ω((( Gm = Spec(k[ε[1]]), and we define

Mσ(v)rig := Mσ(v)×Spec(k[ε[1]]) Spec(k).

Technically this only works when the complexes of class v have non-zero rank, but one can use the
trick of finding a derived equivalence or anti-equivalence with a different K3 surface which identifies
Mσ(v) with a moduli space of complexes of non-zero rank.

�

Although it was shown in [BM] that Mσ(v)cl admits a good moduli space when σ is generic for v,
we will need to consider good moduli spaces when σ is arbitrary. This will appear in forthcoming
joint work with the author, Jarod Alper, and Jochen Heinloth as part of a larger study on the
construction and properties of good moduli spaces in the theory of Θ-stability:
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Theorem 4.3. [AHR] The stack M
rig
σ (v)cl admits a good moduli space for any σ ∈ Stab†(C) and

primitive v ∈ H∗alg(S, α,Z) with v2 + 2 > 0.

Now given a σ0 ∈ Stab†(C), one has a canonical map from (Zv)⊥ ⊂ H∗alg(S, α,Z) ' Knum
0 (S, α)

to NS(Mrig
σ0 (v)), inducing a map

(R · v)⊥ → NS(Mrig
σ0 (v))

Furthermore, in [BM, Section 10] they describe a map

` : Stab†(C)→ (R · v)⊥ → NS(Mrig
σ0 (v))

under which σ0 maps to a Neron-Severi class which descends to an an ample bundle on the

good moduli space of M
rig
σ0 (v). Furthermore semistability for σ ∈ Stab†(C) which arise as small

perturbations of σ0 can be identified with Θ-semistability on the stack M
rig
σ0 (v) with respect to `(σ).

In light of this observation we can apply Theorem 4.3 and Theorem 3.6 in this particular situation
to obtain:

Theorem 4.4. Let σ0 ∈ Stab†(C) and let σ be a small perturbation of σ0 such that Mrig
σ (v) ⊂M

rig
σ0 (v)

and σ is generic for v. Then for any δ ∈ NS(Mrig
σ0 (v))R which is generic, the restriction functor

induces an equivalence of derived categories

M
M

rig
σ0

(v)
(δ)

⊂

res
' // DCoh(Mrig

σ (v))

DCoh(Mrig
σ0 (v))

The last thing which needs to be checked is that there exists a generic δ ∈ NS(Mrig
σ0 (v))R. As

remarked above it suffices to test the condition of genericity only at closed points of Mrig
σ0 (v), i.e.

points which correspond to polystable objects E ∈ C. We write E =
⊕
Ei ⊗ Vi where Ei are

non-isomorphic simple objects of C, and the Vi are certain multiplicity vector spaces. Then

Aut(E) =
∏
i

GL(Vi)/{(C×) ·
∏
i

1Vi}, and

H0(T[E]M
rig
σ0 (v)) = H0(T[E]Mσ0(v)) '

⊕
i,j

Hom(Ei, Ej [1])⊗Hom(Vi, Vj).

As Serre duality implies Hom(Ei, Ej [1]) ' Hom(Ej , Ei[1])∨, we can identify the spaceH0(T[E]M
rig
σ0 (v))

with the cotangent space of the space of representations of a quiver with: one vertex for each index
i, and dim(Hom(Ei, Ej [1])) arrows from vertex i to vertex j for i ≤ j.

The analysis of genericity for representations of this kind was carried out in [HLS, Section 5.1].
The analysis there holds in our situation with only one slight modification – there the automorphism
group did not involve the quotient by scalar matrices, which introduced the hypothesis that the
quiver have a non-trivial framing vertex. That is no longer necessary here, so the argument shows

that there is some δ ∈ NS(Mrig
σ0 (v))R which is generic for the point [E]. As E varies over all

polystable objects, there will only be a locally finite collection of real hypersurfaces along which

δ ∈ NS(Mrig
σ0 (v))R is non-generic at [E], hence there will exist δ which are generic everywhere. We

can thus conclude.

Corollary 4.4.1. For a flop M
rig
σ+(v) 99K M

rig
σ−(v) induced by perturbing a stability condition

σ0 ∈ Stab†(C) which lies on a wall to two v-generic stability conditions σ±, the equivalences of
Theorem 4.4 give a derived equivalence

DCoh(Mrig
σ+(v)) ' DCoh(Mrig

σ−(v)).
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One can deduce theorem 0.2 from the detailed analysis of the minimal model program from

moduli spaces M
rig
σ (v) completed in [BM], namely: 1) any Calabi-Yau manifold which is birational

to Mσ(v) for some twisted K3 surface (S, α) and some v ∈ H∗alg(S, α,Z) is in fact isomorphic to

such a moduli space (possibly for a different (S′, α′) with an equivalent derived category), and 2)
any birational equivalence between two such Calabi-Yau manifolds can be realized as a sequence of
flops of the kind appearing in Corollary 4.4.1.
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[STV] Timo Schürg, Bertrand Toën, and Gabriele Vezzosi, Derived algebraic geometry, determinants of perfect
complexes, and applications to obstruction theories for maps and complexes, Journal für die reine und angewandte
Mathematik (Crelles Journal) 2015 (2015), no. 702, 1–40.

16


	1. A remark on intrinsic geometric invariant theory
	2. A local structure theorem for stacks with self-dual cotangent complex
	3. The magic windows theorem
	3.1. Proof of the magic windows theorem in the local case

	4. The D-equivalence conjecture for moduli spaces of sheaves on a K3-surface
	References

