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Abstract

Geometric invariant theory and derived categories of coherent sheaves

by

Daniel Scott Halpern-Leistner

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Constantin Teleman, Chair

Given a quasiprojective algebraic variety with a reductive group action, we describe a re-
lationship between its equivariant derived category and the derived category of its geometric
invariant theory quotient. This generalizes classical descriptions of the category of coher-
ent sheaves on projective space and categorifies several results in the theory of Hamiltonian
group actions on projective manifolds.

This perspective generalizes and provides new insight into examples of derived equiva-
lences between birational varieties. We provide a criterion under which two different GIT
quotients are derived equivalent, and apply it to prove that any two generic GIT quotients of
an equivariantly Calabi-Yau projective-over-affine variety by a torus are derived equivalent.

We also use these techniques to study autoequivalences of the derived category of coherent
sheaves of a variety arising from a variation of GIT quotient. We show that these autoe-
quivalences are generalized spherical twists, and describe how they result from mutations
of semiorthogonal decompositions. Beyond the GIT setting, we show that all generalized
spherical twist autoequivalences of a dg-category can be obtained from mutation in this
manner.

Motivated by a prediction from mirror symmetry, we refine the main theorem describing
the derived category of a GIT quotient. We produce additional derived autoequivalences
of a GIT quotient and propose an interpretation in terms of monodromy of the quantum
connection. We generalize this observation by proving a criterion under which a spherical
twist autoequivalence factors into a composition of other spherical twists.

Finally, our technique for studying the derived category of a GIT quotient relies on a
special stratification of the unstable locus in GIT. In the final chapter we establish a new
modular description of this stratification using the mapping stack Hom(Θ, X/G), where
Θ = A1/Gm. This is the first foundational step in extending the methods of GIT beyond
global quotient stacks X/G to other stacks arising in algebraic geometry. We describe a
method of constructing such stratifications for arbitrary algebraic stacks and show that it
reproduces the GIT stratification as well as the classical stratification of the moduli stack of
vector bundles on a smooth curve.
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Chapter 1

Introduction

Let k be an algebraically closed field of characteristic 0. Let X be a quasiprojective variety
over k and consider the action of a reductive group G on X. A classical problem in algebraic
geometry is to make sense of the orbit space “X/G.”

Simple examples show that finding an algebraic variety which parameterizes orbits is not
always possible. For instance the categorical quotient of An by the action of Gm with weight
−1 (we denote this by An(1)) is Spec k. Even if G acts freely, such as for the action of Gm

on A1(−1)× A1(1)− {0}, the quotient will not be a separated scheme.
Grothendieck’s solution was to generalize the notion of a scheme to that of an algebraic

stack. In this more general setting, the quotient of X by G is well defined as a stack. Most of
the geometric notions defined for algebraic varieties are also naturally defined for algebraic
stacks. For example on can study vector bundles on X/G, which are equivariant vector
bundles on X, and if k = C then one can study the topological cohomology of X/G, which
agrees with the equivariant cohomology H∗G(X). In this thesis, we will denote the quotient
stack by X/G.

Mumford’s geometric invariant theory [33] offers a different solution. One chooses some
additional geometric data, a G-linearized ample line bundle L, and uses this to define an
open G-invariant subvariety Xss ⊂ X. In good situations, there will be a variety which
parameterizes G orbits in Xss, called a geometric quotient of Xss by G, or alternatively a
coarse moduli space for the stack Xss/G. In this thesis, we will use the term “GIT quotient”
to refer to the quotient stack Xss/G and not its coarse moduli space.

When comparing the geometry of Xss/G and X/G, one must consider the geometry of the
unstable locus Xus = X−Xss. It turns out that this subvariety admits a special stratification
which we call a Kempf-Ness (KN) stratification. Classically, this stratification was used by
Kirwan and others to describe very precise relationships between the cohomology of X/G
and the cohomology of Xss/G. The natural restriction map H∗(X/G) → H∗(Xss/G) is
surjective, and one can describe the kernel of this homomorphism fairly explicitly.

We develop a categorification of these ideas. In Chapter 2 we establish a relationship
between the derived category of equivariant coherent sheaves on X, i.e. Db(X/G), and the
derived category Db(Xss/G) which is analogous to Kirwan’s results on equivariant cohomol-
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ogy. In Chapter 3 we apply these results to study autoequivalences of the derived category
predicted by homological mirror symmetry. Finally, in Chapter 4, we revisit the foundations
of the subject and discuss how the KN stratifications used in Chapters 2 and 3 can be con-
structed for stacks which are not global quotient stacks. In future work, we hope to apply
these methods to moduli problems in algebraic geometry.

1.1 Background

1-parameter subgroups and parabolic subgroups

Let G be a reductive group over an algebraically closed field k of characteristic 0. A one
parameter subgroup is a group homomorphism λ : Gm → G. Given such a λ, we define
subgroups of G:

Lλ = the centralizer of λ

Pλ = {p ∈ G| lim
t→0

λ(t)pλ(t)−1 exists}

Uλ = {u ∈ G| lim
t→0

λ(t)pλ(t)−1 = 1}

Then Lλ ⊂ Pλ is a Levi factor and we have the semidirect product sequence

1 // Uλ // Pλ // Lλ //tt
1 (1.1)

where Uλ ⊂ Pλ is the unipotent radical. The projection π : Pλ → Lλ maps

p 7→ lim
t→0

λ(t)pλ(t)−1.

The Hilbert-Mumford numerical criterion

Let X ⊂ Pn × Am be a closed subvariety invariant with respect to the action of a reductive
group G. We sometimes refer to a closed subvariety of Pn×Am as projective-over-affine. This
condition is equivalent to the canonical morphism X → Spec Γ(X,OX) being projective.

Let L := OX(1) be a choice of G-linearized ample line bundle on X. Then the semistable
locus is defined to be the G-equivariant open subvariety

Xss :=
⋃

s∈Γ(X,Ln)G

{x ∈ X|s(x) 6= 0}

The Hilbert-Mumford criterion provides a computationally effective way to determine if a
point x ∈ X lies in Xss.

If λ : Gm → G is a one parameter subgroup y = limt→0 λ(t)x exists, then y is fixed by
Gm under λ, so the fiber Ly is a one dimensional representation of Gm. We let weightλ(Ly)
denote the weight (i.e. the integer corresponding to the character) of this representation.
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Theorem 1.1.1 (Hilbert-Mumford numerical criterion). Let a reductive group G act on a
projective-over-affine variety X. Let x ∈ X and L a G-ample line bundle on X. Then
x ∈ Xss if and only if weightλ Ly ≥ 0 for all λ for which y = limt→0 λ(t)x exists.

In the following section, we will show how this numerical criterion can be refined, leading
to a stratification of the unstable locus by the “degree of instability.”

Stratifications of the unstable locus in GIT

Now in addition to a G-linearized ample line bundle, we choose an inner product on the
cocharacter lattice of G which is invariant under the Weyl group action. This allows us to
define the norm |λ| > 0 for all nontrivial one-parameter subgroups. If G is a complex group
and K ⊂ G a maximal compact subgroup, then this is equivalent to specifying a K-invariant
Hermitian inner product on g which takes integer values on the cocharacters.

We will describe the construction of a statification of the unstable locus X − Xss, but
first we must recall a general theorem due to Hesselink. We will need the following notion

Definition 1.1.2. If G is a linear algebraic group over k acting on a scheme X over k, we
say that the action is locally affine if for any 1PS λ : Gm → G, there is an open cover of X
by Gm-invariant affine schemes.

This is a fairly mild hypothesis. First, it suffices to find an invariant affine cover for 1PS’s
in a fixed maximal torus T ⊂ G. Furthermore

Lemma 1.1.3. If X is a normal k scheme with a G action and Y ⊂ X is a G-equivariant
closed subscheme, then the action of G on Y is locally affine

Proof. As a consequence of Sumihiro’s theorem, any group action on a normal k scheme is
locally affine. Furthermore, for any G-quivariant closed immersion Y ⊂ X, if and the action
on X is locally affine then the action on Y is locally affine as well.

We let X be a k-scheme with a locally affine action of a linear group G, and let λ : Gm →
G be a one-parameter subgroup (1PS). λ induces a Gm action on X, and we let XGm denote
the fixed subscheme. When we wish to emphasize the dependence on λ, we will denote the
fixed subscheme by Xλ. Hesselink’s theorem states1

Theorem 1.1.4 ([23]). Let X be a k-scheme admitting a locally finite action by Gm. Then
the functor

ΦX(T ) =
{
Gm-equivariant maps A1 × T → X

}
is representable by a scheme Y . Restriction of a map A1 × T → X to {1} × T ⊂ A1 × T
defines a morphism j : Y → X which is a local immersion. Restriction to {0}×T ⊂ A1×T
defines a morphism π : Y → XGm which is affine.

1Theorem 1.1.4 is the special case of the main theorem of section 4 of [23] for which the “center” is
C = X and the “speed” is m = 1.
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It is also straightforward to verify that π : Y → XGm has connected geometric fibers. We
note the following alternate characterization of ΦX(T )

Lemma 1.1.5. Restriction of an equivariant map A1×T → X to {1}×T identifies ΦX(T )
with the subfunctor

{f : T → X|Gm × T
t·f(x)−−−→ X extends to A1 × T} ⊂ Hom(T,X)

Proof. Restriction to {1} × T identifies the set of equivariant maps Gm × T → X with
Hom(T,X). If the corresponding map extends to A1 × T it will be unique because X is

separated. Likewise the uniqueness of the extension of Gm×Gm×T → X to Gm×A1×T → X
guarantees the Gm equivariance of the extension A1 × T → X.

We will also often make use of the following strengthened version of the Biaynicki-Birula
theorem.

Proposition 1.1.6. If X is a k scheme with a locally affine Gm action and X → S is a
smooth morphism which is Gm invariant, then both XG

m and Y are smooth over S.
If S is smooth over k, then Y → XGm is a Zariski-locally trivial bundle of affine spaces

with linear Gm action on the fibers.

The first statement of the proposition can be verified by checking that the map of functors
ΦX → hS is formally smooth. The second statement is proved in Section 5 of [23].

Theorem 1.1.4 allows us to define the blade corresponding to a connected component
Z ⊂ Xλ

YZ,λ := π−1(Z) =
{
x ∈ X| lim

t→0
λ(t) · x ∈ Z

}
(1.2)

Note that YZ,λ is connected and π : YZ,λ → Z is affine. When X is smooth then both YZ,λ
and Z are smooth, and YZ,λ is a fiber bundle of affine spaces over Z by Proposition 1.1.6.

We define the subgroup

PZ,λ := {p ∈ Pλ|l(Z) ⊂ Z, where l = π(p)}

PZ,λ ⊂ Pλ has finite index – it consists of the preimage of those connected components of Lλ
which stabilize Z. YZ,λ is closed under the action of PZ,λ, because

lim
t→0

λ(t)px = lim
t→0

λ(t)pλ(t)−1λ(t)x = l · lim
t→0

λ(t)x.

G acts on the set of such pairs (Z, λ) by g · (Z, λ) = (gZ, gλg−1), and g · YZ,λ = YgZ,gλg−1 .
Up to this action we can assume that λ lies in a fixed choice of maximal torus of G, and the
set of Z appearing in such a pair is finite.

We are now ready to describe the stratification of the unstable locus in GIT. For each
pair (Z, λ) we define the numerical invariant

µ(λ, Z) =
−1

|λ|
weightλ L|Z ∈ R (1.3)
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One constructs the KN stratification iteratively by selecting a pair (Zα, λα) which maximizes
µ among those (Z, λ) for which Z is not contained in the previously defined strata. One
defines the open subset Z◦α ⊂ Zα not intersecting any higher strata, and the attracting set
Y ◦α := π−1(Z◦α) ⊂ YZα,λα . One also defines Pα = PZα,λα and the new strata is defined to be
Sα = G · Yα.

The strata are ordered by the value of the numerical invariant µ. It is a non-trivial fact
that S̄α ⊂ Sα ∪

⋃
µβ>µα

Sβ, so the Hilbert-Mumford criterion leads to an ascending sequence

of G-equivariant open subvarieties Xss = X0 ⊂ X1 ⊂ · · · ⊂ X where each Xi \ Xi−1 is a
stratum. It is evident that the stratification of Pn × Am induces the stratification of X via
the embedding X ⊂ Pn × Am.

In this thesis we will use some special properties of the locally closed subvariety Sα (see
[30], [16] and the references therein):

(S1) By construction Y ◦α = π−1(Z◦α) is an open subvariety of the blade corresponding to
Zα and λα. The variety Z◦α is Lα equivariant, and Y ◦α is Pα equivariant. The map
π : x 7→ limt→0 λα(t) ·x is algebraic and affine, and it is Pα-equiviant if we let Pα act on
Z◦α via the quotient map Pα → Lα. Thus Y ◦α = Spec

Z◦α
(A) where A = OZ◦α⊕

⊕
i<0Ai is

a coherently generated Pα-equivariant OZ◦α algebra, nonpositively graded with respect
to the weights of λα.

(S2) Y ◦α ⊂ X is invariant under Pα and the canonical map G×Pα Y ◦α → G · Y ◦α =: Sα is an
isomorphism.

(S3) Property (S1) implies that the conormal sheaf NSα/X = ISα/I2
Sα

restricted to Z◦α has
positive weights with respect to λα

Note that properties (S1) and (S3) hold for any subvariety which is the attracting set of
some Z ⊂ Xλ, so (S2) is the only property essential to the strata arising in GIT. Note also
that when G is abelian, Pα = G and Y ◦α = Sα for all α, which simplifies the description of
the stratification.

Due to the iterative construction of the KN stratification, it will suffice for many of our
arguments to analyze a single closed stratum S ⊂ X.

Definition 1.1.7 (KN stratification). Let X be a quasiprojective variety with the action of
a reductive group G. A closed Kempf-Ness (KN) stratum is a closed subvariety S ⊂ X such
that there is a λ and an open-and-closed subvariety Z ⊂ Xλ satisfying properties (S1)-(S3).
We will introduce standard names for the morphisms

Z
σ // Y ⊂ S

j //
π
jj X (1.4)
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If X is not smooth along Z, we make the technical hypothesis that there is a G-equivariant
closed immersion X ⊂ X ′ and a KN stratum S ′ ⊂ X ′ such that X ′ is smooth in a neighbor-
hood of Z ′ and S is a union of connected components of S ′ ∩X.

Let Xu ⊂ X be a closed equivariant subvariety. A stratification Xu =
⋃
αSα indexed

by a partially ordered set I will be called a KN stratification if Sβ ⊂ X −
⋃
α>β Sα is a KN

stratum for all β.

Remark 1.1.8. The technical hypothesis is only used for the construction of Koszul systems
in Section 2.1. It is automatically satisfied for the GIT stratification of a projective-over-
affine variety.

We denote the open complement V = X − S. We will use the notation X, S, and V
to denote the stack quotient of these schemes by G. Property (S2) implies that as stacks
the natural map Y/P → S/G is an equivalence, and we will identify the category of G-
equivariant quasicoherent sheaves on S with the category of P -equivariant quasicoherent
sheaves on Y under the restriction functor. We will also use j to denote Y/P → X/G.

A KN stratum has a particularly nice structure when X is smooth along Z. In this
case Z must also be smooth, and Y is a locally trivial bundle of affine spaces over Z. By
(S2), S is smooth and hence S ⊂ X is a regular embedding. In this case det(NS/X) is an
equivariant line bundle and its restriction to Z is concentrated in a single nonnegative weight
with respect to λ (it is 0 iff NS/X = 0). For each stratum in a smooth KN stratification we
define

ηα = weightλα
(
detNSα/X |Zα

)
(1.5)

These numbers will be important in stating our main theorem 1.2.1.

1.2 Introduction to Chapter 2

In Chapter 2 we describe a relationship between the derived category of equivariant coherent
sheaves on a smooth projective-over-affine variety, X, with an action of a reductive group,
G, and the derived category of coherent sheaves on a GIT quotient of X with respect to G.
The main theorem connects three classical circles of ideas:

• Serre’s description of quasicoherent sheaves on a projective variety in terms of graded
modules over its homogeneous coordinate ring,

• Kirwan’s theorem that the canonical map H∗G(X)→ H∗(X//G) is surjective,[30] and

• the “quantization commutes with reduction” theorem from geometric quantization
theory equating h0(X,L)G with h0(X//G,L) when the linearization L descends to the
GIT quotient[43].
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We denote the quotient stacks X = X/G and Xss = Xss/G and the bounded derived
category of coherent sheaves on X by Db(X), and likewise for Xss.2 Restriction gives an
exact dg-functor i∗ : Db(X/G)→ Db(Xss/G), and in fact any bounded complex of equivariant
coherent sheaves on Xss can be extended equivariantly to X. The main result of this chapter
is the construction of a functorial splitting of i∗.

Theorem 1.2.1 (derived Kirwan surjectivity, preliminary statement). Let X be a smooth
projective-over-affine variety with a linearized action of a reductive group G, and let X =
X/G. Specify an integer wi for each KN stratum of the unstable locus X \ Xss. Define the
full subcategory of Db(X)

Gw :=
{
F

q ∈ Db(X) |H∗(Lσ∗i F
q
) supported in weights [wi, wi + ηi)

}
Then the restriction functor i∗ : Gw → Db(Xss) is an equivalence of categories.

Remark 1.2.2. The full version of the result proved in Chapter 2 is more general than
Theorem 1.2.1 in two ways. First, it applies to the situation where X is singular provided
the KN strata satisfy two additional properties (L+) and (A). Second, it describes the
kernel of the restriction map Db(X/G) → Db(Xss/G) explicitly by identifying Gw as piece
of a semiorthogonal decomposition of Db(X), where the remaining semiorthogonal factors
generate the kernel of the restriction.

The simplest example of Theorem 1.2.1 is familiar to many mathematicians: projective
space P(V ) can be thought of as a GIT quotient of V/C∗. Theorem 1.2.1 identifies Db(P(V ))
with the full triangulated subcategory of the derived category of equivariant sheaves on V
generated byOV (q), · · · ,OV (q+dimV −1). In particular the semiorthogonal decompositions
described in Section 2.1 refine and provide an alternative proof of Beilinson’s theorem that
the line bundles OP(V )(1), . . . ,OP(V )(dimV ) generate Db(P(V )).

Serre’s theorem deals with the situation in which G = C∗, X is an affine cone, and the
unstable locus consists only of the cone point – in other words one is studying a connected,
positively graded k-algebra A. The category of quasicoherent sheaves on Proj(A) can be
identified with the quotient of the full subcategory of the category of graded A-modules
graded in degree ≥ q for any fixed q by the subcategory of modules supported on the cone
point. This classical result has been generalized to noncommutative A by M. Artin [4]. D.
Orlov studied the derived categories and the category of singularities of such algebras in
great detail in [36], and much of the technique of the proof of Theorem 1.2.1 derives from
that paper. In fact our Theorem 2.0.3 gives a more refined version of this result, identifying
a full subcategory of the category of graded A-modules which gets identified with the derived
category of Proj(A) under the quotient map.

2On a technical note, all of the categories in this paper will be pre-triangulated dg-categories, so Db(X)
denotes a dg-enhancement of the triangulated category usually denoted Db(X). However, all of the results will
be statements that can be verified on the level of homotopy categories, such as semiorthogonal decompositions
and equivalences of categories, so I will often write proofs on the level of the underlying triangulated category.
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In the context of equivariant Kähler geometry, Theorem 1.2.1 is a categorification of Kir-
wan surjectivity, which states that the restriction map on equivariant cohomology H∗G(X)→
H∗G(Xss) is surjective.3 Kirwan’s proof procedes inductively, showing that the restriction
map H∗G(Xss ∪ S0 · ∪Sn)→ H∗G(Xss ∪ S0 ∪ · · · ∪ Sn−1) is surjective for each n. Our proof of
Theorem 1.2.1 follows an analogous pattern, although the techniques are different.

One can recover the De Rham cohomology of a smooth stack as the periodic-cyclic
homology its derived category[46, 28], so the classical Kirwan surjectivity theorem follows
from the existence of a splitting of i∗. Kirwan surjectivity applies to topological K-theory
as well[21], and one immediate corollary of Theorem 1.2.1 is an analogous statement for
algebraic K-theory

Corollary 1.2.3. The restriction map on algebraic K-theory Ki(X)→ Ki(X
ss) is surjective.

The fully faithful embedding Db(Xss) ⊂ Db(X) of Theorem 1.2.1 and the more precise
semiorthogonal decomposition of Theorem 2.0.3 correspond, via Orlov’s analogy between
derived categories and motives[35], to the claim that the motive Xss is a summand of X.
Via this analogy, the results of this paper bear a strong formal resemblance to the motivic
direct sum decompositions of homogeneous spaces arising from Bia lynicki-Birula decompo-
sitions[12]. However, the precise analogue of Theorem 1.2.1 would pertain to the equivariant
motive X/G, whereas the results of [12] pertain to the nonequivariant motive X.

The “quantization commutes with reduction” theorem from geometric quantization the-
ory relates to the fully-faithfulness of the functor i∗. The original conjecture of Guillemin
and Sternberg, that dimH0(X/G,Lk) = dimH0(Xss/G,Lk), has been proven by several
authors, but the most general version was proven by Teleman in [43]. He shows that the
canonical restriction map induces an isomorphism RΓ(X/G,V) → RΓ(Xss/G,V) for any
equivariant vector bundle such that V|Zα is supported in weight > −ηα. If V1 and V2 are
two vector bundles in the grade restriction windows of Theorem 1.2.1, then the fact that
RHom

q
X(V1,V2) → RHom

q
Xss(V1|Xss ,V2|Xss) is an isomorphism is precisely Teleman’s quan-

tization theorem applied to V2 ⊗ V∨1 ' RHom(V1,V2).
In Section 2.2, we apply Theorem 1.2.1 to construct new examples of derived equiva-

lences and embeddings resulting from birational transformations, as conjectured by Bondal
& Orlov[8]. The G-ample cone in NS1

G(X) has a decomposition into convex conical cham-
bers[16] within which the GIT quotient Xss(L) does not change, and Xss(L) undergoes a
birational transformation as [L] crosses a wall between chambers. Derived Kirwan surjectiv-
ity provides a general approach to constructing derived equivalences between the quotients
on either side of the wall: in some cases both quotients can be identified by Theorem 1.2.1
with the same subcategory of Db(X/G). This principle is summarized in Ansatz 2.2.11.

For a certain class of wall crossings, balanced wall crossings, there is a simple criterion
for when one gets an equivalence or an embedding in terms of the weights of ωX |Zi . When
G = T is abelian, all codimension-1 wall crossings are balanced, in particular we are able

3When Xss/G is a DM stack, the equivariant cohomology H∗G(Xss) agrees with the cohomology of the
coarse moduli space
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to prove that any two generic torus quotients of an equivariantly Calabi-Yau variety are
derived equivalent. For nonabelian G, we consider a slightly larger class of almost balanced
wall crossings. We produce derived equivalences for flops which excise a Grassmannian
bundle over a smooth variety and replace it with the dual Grassmannian bundle, recovering
recent work of Will Donovan and Ed Segal[18, 17].

Finally, in Section 2.3 we investigate applications of Theorem 2.0.3 beyond smooth quo-
tients X/G. We identify a criterion under which Property (L+) holds for a KN stratifica-
tion, and apply it to hyperkähler reductions. We also explain how Morita theory[7] recovers
derived Kirawn surjectivity for certain complete intersections and derived categories of sin-
gularities (equivalently categories of matrix factorizations) “for free” from the smooth case.

The inspiration for Theorem 1.2.1 were the grade restriction rules for the category of
boundary conditions for B-branes of Landau-Ginzburg models studied by Hori, Herbst, and
Page [22], as interpreted mathematically by Ed Segal [39]. The essential idea of splitting
was present in that paper, but the analysis was only carried out for a linear action of C∗,
and the category Gw was identified in an ad-hoc way. The main contribution of this paper is
showing that the splitting can be globalized and applies to arbitraryX/G as a categorification
of Kirwan surjectivity, and that the categories Gw arise naturally via the semiorthogonal
decompositions to be described in the next section.

1.3 Introduction to Chapter 3

This chapter is joint work with Ian Shipman.

Homological mirror symmetry predicts, in certain cases, that the bounded derived cat-
egory of coherent sheaves on an algebraic variety should admit twist autoequivalences cor-
responding to a spherical object [40]. The autoequivalences predicted by mirror symmetry
have been widely studied, and the notion of a spherical object has been generalized to the
notion of a spherical functor [2] (See Definition 3.2.10). In Chapter 3 we apply the tech-
niques of Chapter 2 to the construction of autoequivalences of derived categories, and our
investigation leads to general connections between the theory of spherical functors and the
theory of semiorthogonal decompositions and mutations.

We consider an algebraic stack which arises as a GIT quotient of a smooth quasiprojective
variety X by a reductive group G. By varying the G-ample line bundle used to define the
semistable locus, one gets a birational transformation Xss

− /G 99K X
ss
+ /G called a variation

of GIT quotient (VGIT). We study a simple type of VGIT, which we call a balanced wall
crossing (See Section 3.2).

Under a hypothesis on ωX , a balanced wall crossing gives rise to an equivalance ψw :
Db(Xss

− /G)→ Db(Xss
+ /G) which depends on a choice of w ∈ Z, and the composition Φw :=

ψ−1
w+1ψw defines an autoequivalence of Db(Xss

− /G). Autoequivalences of this kind have been
studied recently under the name window-shifts [17, 39]. We generalize the observations of
those papers in showing that Φw is always a spherical twist.
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Recall that if B is an object in a dg-category, then we can define the twist functor

TB : F 7→ Cone(Hom
q
(B,F )⊗C B → F )

If B is a spherical object, then TB is by definition the spherical twist autoequivalence defined
by B. More generally, if S : A → B is a spherical functor (Definition 3.2.10), then one can
define a twist autoequivalence TS := Cone(S ◦ SR → idB) of B, where SR denotes the
right adjoint. Throughout this paper we refer to a twist autoequivalence corresponding to
a spherical functor simply as a ”spherical twist.” A spherical object corresponds to the case
where A = Db(k − vect).

It was noticed immediately [40] that if B were instead an exceptional object, then TB is
the formula for the left mutation equivalence ⊥B → B⊥ coming from a pair of semiorthogonal
decompositions 〈B⊥, B〉 = 〈B, ⊥B〉.4 In fact, we will show that there is more than a formal
relationship between spherical functors and mutations. If C is a pre-triangulated dg category,
then the braid group on n-strands acts by left and right mutation on the set of length n
semiorthogonal decompositions C = 〈A1, . . . ,An〉 with each Ai admissible. Mutating by a
braid gives equivalences Ai → A′σ(i), where σ is the permutation that the braid induces on
end points. In particular if one of the semiorthogonal factors is the same subcategory before
and after the mutation, one gets an autoequivalence Ai → Ai.

Summary Theorem 1.3.1 (spherical twist=mutation=window shifts). If C is a pre trian-
gulated dg category admitting a semiorthogonal decomposition C = 〈A,G〉 which is fixed by
the braid (acting by mutations)

then the autoequivalence of G induced by mutation is the twist TS corresponding to a spherical
functor S : A → G (Theorem 3.2.11). Conversely, if S : A → B is a spherical functor, then
there is a larger category C admitting a semiorthogonal decomposition fixed by this braid
which recovers S and TS (Theorem 3.2.15).

In the context of a balanced GIT wall crossing, the category C arises naturally as a
subcategory of the equivariant category Db(X/G), defined in terms of “grade restriction rules”
(Section 3.1). The resulting autoequivalence agrees with the window shift Φw (Proposition
3.2.4) and corresponds to a spherical functor fw : Db(Z/L)w → Db(Xss

− /G), where Z/L is
the “critical locus” of the VGIT, which is unstable in both quotients (Section 3.2).

In the second half of the paper we revisit the prediction of derived autoequivalences from
mirror symmetry. Spherical twist autoequivalences of Db(V ) for a Calabi-Yau V correspond
to loops in the moduli space of complex structures on the mirror Calabi-Yau V ∨, and flops
correspond, under the mirror map, to certain paths in that complex moduli space. We

4Such semiorthogonal decompositions exist when Hom
q
(F

q
, B) has finite dimensional cohomology for all

F
q
.
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review these predictions, first studied in [24] for toric varieties, and formulate corresponding
predictions for flops coming from VGIT in which an explicit mirror may not be known.

By studying toric flops between toric Calabi-Yau varieties of Picard rank 2 (Section 3.3),
we find that mirror symmetry predicts more autoequivalences than constructed in Theorem
1.3.1. The expected number of autoequivalences agrees with the length of a full exceptional
collection on the critical locus Z/L of the VGIT. Motivated by this observation, we intro-
duce a notion of “fractional grade restriction windows” given the data of a semiorthogonal
decomposition on the critical locus. This leads to

Summary Theorem 1.3.2 (Factoring spherical twists). Given a full exceptional collec-
tion Db(Z/L)w = 〈E0, . . . , EN〉, the objects Si := fw(Ei) ∈ Db(Xss

− /G) are spherical, and
(Corollary 3.3.12)

Φw = TS0 ◦ · · ·TSN .
More generally, let S = E → G be a spherical functor of dg-categories and let E = 〈A,B〉
be a semiorthogonal decomposition such that there is also a semiorthogonal decomposition
E = 〈FS(B),A〉, where FS is the cotwist autoequivalence of E induced by S. Then the
restrictions SA : A → G and SB : B → G are spherical as well, and TS ' TSA ◦TSB (Theorem
3.3.13).

We propose an interpretation of this factorization theorem in terms of monodromy of the
quantum connection in a neighborhood of a partial large volume limit (Section 3.3).

1.4 Introduction to Chapter 4

In Chapter 4 we revisit the foundational problem of constructing the stratification of the
unstable locus in geometric invariant theory. We are motivated by two questions.

Question 1.4.1. Theorem 2.0.3 requires that a KN stratification have special properties,
Properties (L+) and (A), which hold automatically when X is smooth, but can fail even for
mildly singular X. Is there nevertheless a version of Theorem 2.0.3 which applies in this
setting?

The second question comes from examples of KN stratifications beyond the setting of
GIT. For example if G is a reductive group, then the moduli stack of G-bundles on a smooth
curve C admits a KN stratification of the unstable locus due to Harder-Narasimhan and Shatz
[41]. In the setting of differential geometry, the moduli space of semistable bundles can be
constructed as a GIT quotient of an infinite dimensional space by an infinite dimensional
“gauge group.” The Shatz stratification agrees with the KN stratification for this infinite
dimensional quotient, but this description does not carry over to the setting of algebraic
geometry.

Question 1.4.2. Many moduli problems in algebraic geometry which come with a notion
of “stability” also come with canonical stratifications of their unstable loci. Is there a way
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to intrinsically construct a stratification of a stack X which simultaneously generalizes the
KN stratification in GIT (without relying on a global quotient presentation) and the Shatz
stratification?

Although these two questions seem unrelated, the key to answering both lies in a modular
interpretation for the strata that we establish in this chapter. We consider the quotient stack
Θ := A1/Gm. If X = X/G is a global quotient, then we show that a morphism of stacks
Θ → X is described uniquely up to 2-isomorphism by specifying a point x ∈ X and a 1PS
λ : Gm → G under which limt→0 λ(t)x exists. Thus for a point x ∈ X, the test data in the
Hilbert-Mumford numerical criterion are exactly morphisms f : Θ→ X such that f(1) ' x.

When X is of finite type over C, we can define the cohomology of X to be the cohomology
of the geometric realization of its underlying topological stack [34]. We show that one can
define the numerical invariant µ(x, λ) intrinsically in terms of the corresponding morphism
f : Θ→ X given the cohomology class l = c1(L) ∈ H2(X;Q) and a class b ∈ H4(X;Q). While
it is well-known that one needs a class l ∈ H2(X;Q) to define semistability, the importance
of a class in H4(X;Q) for defining a stratification of the unstable locus is a new observation.
The class b corresponds to the choice of a K-invariant inner product on g, and it is necessary
to define the KN stratification.

Furthermore, the strata Sα/G arising in geometric invariant theory admit a modular
interpretation as open substacks of the mapping stack

X(Θ) := Hom(Θ,X)

We show that this stack, which classifies maps S × Θ → X for any test scheme S, is an
algebraic stack, and we describe it explicitly using a global quotient presentation of X. Even
when X is connected, the stack X(Θ) will have infinitely many connected components, and
the numerical invariant will define a locally constant real valued function on X(Θ).

Note that restricting a morphism S×Θ→ X to the subscheme S×{1} ⊂ S×Θ defines a
morphism r1 : X(Θ)→ X. We show that the Hilbert-Mumford criterion identifies a sequence
of connected components of X(Θ) for which r1 is a closed immersion away from the image
of previous connected components (with higher numerical invariant). In other words the
morphism r1 identifies the strata with open substacks of the connected components of X(Θ)
selected by the Hilbert-Mumford criterion.

Now recall that Property (L+) referred to in Question 1.4.1 states that the relative
cotangent complex L

q
Sα/X

must have positive weights along Zα w.r.t. λα. The modular

interpretation of Sα/G means that every strata fits into a universal evaluation diagram

Θ× Sα/G ev //

π

��

X

Sα/G

Let L
q
X denote the cotangent complex of X, and consider the object

E
q
:= π∗ (ev∗L

q
X[1](1)) ∈ Db(Sα/G)
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One can show that this object automatically has positive weights along Zα with respect to
λα. If X = X/G is smooth, then E

q ' L
q
Sα/X

' NSαX[1] is the relative cotangent complex.
When X is not smooth, then E

q
only represents the cotangent complex of the inclusion

Sα/G ↪→ X/G if we equip Sα with its canonical derived structure as an open substack of the
derived mapping stack X(Θ).

Thus using the modular interpretation one can equip Sα/G with a derived structure such
that Property (L+) holds automatically. In future work, we will address the consequences
of this observation for the extension of Theorem 2.0.3. In this chapter, we take the first key
step of establishing the modular interpretation for the strata in the classical (i.e. non-derived
setting).

In Chapter 4 we also use the modular interpretation to provide a preliminary answer
to Question 1.4.2. In Shatz’s stratification of the moduli of unstable vector bundles over a
curve with rank R and degree D, the strata are indexed by sequences of points in the plane
(R0, D0), . . . , (Rp, Dp) = (R,D) with 0 < R1 < · · · < Rp and such that the region below
the piecewise linear path connecting these points is convex. An unstable vector bundle E
has a unique Harder-Narasimhan filtration, and the sequence of ranks and degrees of the
vector bundles in that filtration determines the stratum on which E lies. The same applies
for principal SLR bundles.

For G = GLR or SLR, we identify classes in H2 and H4 of the moduli stack of G-bundles
on Σ, BunG(Σ), for which the intrinsic Hilbert-Mumford procedure reproduces the Shatz
stratification. A map Θ → BunG(Σ) is equivalent to the data of a locally free sheaf on Σ
together with a descending filtration whose associated graded is also locally free. The map
f : Θ→ BunG(Σ) which optimizes our numerical invariant subject to the constraint f(1) ' E
corresponds to the Harder-Narasimhan filtration. For this f the numerical invariant takes
the value √∑

(νj)2rj − ν2R

where νj denotes slope (deg / rank) of the jth piece of the graded bundle associated to the
Harder-Narasimhan filtration, and rj denotes its rank. This quantity is strictly monotone
increasing with respect to inclusion of Shatz polytopes.

We say that this is a partial answer to question 1.4.2 because both in this example and
for the modular interpretation of the KN strata in GIT, we use our prior knowledge of
the existence of the stratification and verify that it can be “rediscovered” via our intrinsic
description. The key inputs that we use are the existence and uniqueness (up to conjugacy)
of a maximally destabilizing one-parameter subgroup for a point in X/G and the existence
and uniqueness of a Harder-Narasimhan filtration of an unstable vector bundle on a curve.

There are many moduli problems, such as the moduli stack of all polarized projective
varieties, where several different notions of stability have been introduced but where the
notion corresponding to the Harder-Narasimhan filtration of an unstable object has not been
investigated. Therefore, in order to use our general formulation of the notion of stability
to discover new examples of KN stratifications, we must revisit the classical proofs of the
existence and uniqueness of Harder-Narasimhan filtrations from an intrinsic perspective.
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In the final sections of Chapter 4 we do just that. We introduce a new combinatorial
object which we call a fan. For an arbitrary algebraic stack X and a point x ∈ X, we introduce
a fan D(X, x)• which parameterizes all of the one parameter degenerations f : Θ→ X with
f(1) ' x. This fan generalizes the data of the fan of a toric variety X, which can be thought
of as describing the various limit points of a generic point of X under the 1PS’s of the torus
acting on X.

Furthermore, an abstract fan has a geometric realization |F•|, a topological space which
is homeomorphic the union of cones in RN in many cases. A fan also admits a projective
realization P(F•) which in good cases is homeomorphic to the intersection of |F•| with the
unit sphere SN−1 ⊂ RN .

We show that the numerical invariant determined by a class in H2(X;Q) and H4(X;Q)
(see Example 4.3.6) defines a continuous function on the topological space P(D(X, x)•) which
is locally convex in a suitable sense. Furthermore we show that for a global quotient of an
affine variety by a reductive group, X = V/G, the subset of P(D(X, x)•) on which the
numerical invariant is positive is also convex in a suitable sense. In this context, Kempf’s
original argument [29] for the existence and uniqueness of maximal destabilizing 1PS’s can
be boiled down to a simple observation: a convex function on a convex set has a unique
maximizer.

In future work, we hope to apply this technique to establish KN stratifications for many
other moduli problems in algebraic geometry. This would lead to a notion of “Harder-
Narasimhan filtration” for objects other than vector bundles and coherent sheaves.
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Chapter 2

Derived Kirwan surjectivity

As discussed in the introduction, we will consider a quasiprojective variety X with the action
of a reductive group G. We let Xss ⊂ X be an open subvariety whose complement admits a
KN-stratification (Definition 1.1.7). We will use the symbol X to denote the quotient stack
X/G, and likewise for Xss. As the statement of Theorem 1.2.1 indicates, we will construct
a splitting of Db(X) → Db(Xss) by identifying a subcategory Gw ⊂ Db(X) that is mapped
isomorphically onto Db(Xss). In fact we will identify Gw as the middle factor in a large
semiorthogonal decomposition of Db(X).

We denote a semiorthogonal decomposition of a triangulated category D by full triangu-
lated subcategories Ai as D = 〈An, . . . ,A1〉 [9]. This means that all morphisms from objects
in Ai to objects in Aj are zero for i < j, and for any object of E ∈ D there is a sequence
0 = E0 → E1 → · · ·En = E with Cone(Ei−1 → Ei) ∈ Ai, which is necessarily unique
and thus functorial.1 In our applications D will always be a pre-triangulated dg-category,
in which case if Ai ⊂ D are full pre-triangulated dg-categories then we will abuse the nota-
tion D = 〈An, . . . ,A1〉 to mean that there is a semiorthogonal decomposition of homotopy
categories, in which case D is uniquely identified with the gluing of the Ai.

A baric decomposition is simply a filtration of a triangulated category D by right-
admissible triangulated subcategories, i.e. a family of semiorthogonal decompositions D =
〈D<w,D≥w〉 such that D≥w ⊃ D≥w+1, and thus D<w ⊂ D<w+1, for all w. This notion was
introduced and used construct ’staggered’ t-structures on equivariant derived categories of
coherent sheaves [1].

Although the connection with GIT was not explored in the original development of the
theory, baric decompositions seem to be the natural structure arising on the derived category
of the unstable locus in geometric invariant theory. The key to our proof will be to consider a
single closed KN stratum S ⊂ X and construct baric decompositions of Db(S) in Proposition
2.1.14 and of Db

S(X), the bounded derived category of complexes of coherent sheaves on X

1There are two additional equivalent ways to characterize a semiorthogonal decomposition: 1) the in-
clusion of the full subcategory Ai ⊂ 〈Ai,Ai−1, . . . ,A1〉 admits a left adjoint ∀i, or 2) the subcategory
Ai ⊂ 〈An, . . . ,Ai〉 is right admissible ∀i. In some contexts one also requires that each Ai be admissible in
D, but we will not require this here. See [9] for further discussion.
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whose homology is supported on a KN stratum S, in Proposition 2.1.21. We will postpone
a detailed analysis of the homological structure of a single KN stratum to Section 2.1 – here
we apply the results of that section iteratively to a stratification with multiple KN strata.

In order to state our main theorem in the setting where X is singular, we will introduce
two additional properties on the KN strata. When X is smooth, Z, Y , and S will all be
smooth as well and these properties will hold automatically.

(A) π : Y → Z is a locally trivial bundle of affine spaces

(L+) The derived restriction of the relative cotangent complex Lσ∗L
q
S/X along the closed

immersion σ : Z ↪→ S has nonnegative weights w.r.t. λ.

We will use the construction of the cotangent complex in characteristic 0 as discussed in
[31]. Note that when X is smooth along Z, L

q
S/X ' NS/X [1] is locally free on S, so Property

(L+) follows from (S3).
For each inclusion σi : Zi ↪→ Si and ji : Si ↪→ X, we define the shriek pullback functor

σ!
i : Db(X)→ Db(Zi) as the composition F

q 7→ σ∗i j
!
iF

q
, where j!

iF
q
= Hom(OSi , F

q
) regarded

as an OSi module.

Theorem 2.0.3 (derived Kirwan surjectivity). Let X = X/G be a stack quotient of a
quasiprojective variety by a reductive group, let Xss ⊂ X be an open substack, and let {Sα}α∈I
be a KN stratification (Definition 1.1.7) of Xu = X \ Xss. Assume that each Sα satisfies
Properties (A) and (L+). Define the integers

ai := weightλi det(NZiYi) (2.1)

For each KN stratum, choose an integer wi ∈ Z. Define the full subcategories of Db(X)

Db
Xu(X)≥w := {F q ∈ Db

Xu(X) |∀i, λi weights of H∗(σ∗i F
q
) are ≥ wi}

Db
Xu(X)<w := {F q ∈ Db

Xu(X)
∣∣∀i, λi weights of H∗(σ!

iF
q
) are < wi + ai}

Gw :=

{
F

q ∣∣∣∣ ∀i,H∗(σ∗i F q
) has weights ≥ wi, and

H∗(σ!
iF

q
) has weights < wi + ai

}
Then there are semiorthogonal decompositions

Db
Xu(X) = 〈Db

Xu(X)<w,D
b
Xu(X)≥w〉 (2.2)

Db(X) = 〈Db
Xu(X)<w,Gw,D

b
Xu(X)≥w〉 (2.3)

and the restriction functor i∗ : Gw → Db(Xss) is an equivalence of categories. We have
PerfXu(X)≥v ⊗L Db

Xu(X)≥w ⊂ Db
Xu(X)≥v+w.

If X is smooth in a neighborhood of Xu, then Properties (A) and (L+) hold automatically,
and we define

ηi := weightλi det(NSiX
∨) (2.4)

= weightλi det(N∨YiX)− weightλi det(gλi>0)
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Then we have alternate characterizations

Db
Xu(X)<w := {F q ∈ Db

Xu(X) |∀i, λi weights of H∗(σ∗i F
q
) are < wi + ηi}

Gw := {F q |∀i,H∗(σ∗i F q
) has weights in [wi, ηi) w.r.t. λi}

Proof. Choose a total ordering of I, α0 > α1 > · · · such that αn is maximal in I \
{α0, . . . , αn−1}, so that Sαn is closed in X \ Sα0 ∪ · · · ∪ Sαn−1 . Introduce the notation
Sn =

⋃
i<nSαi . Sn ⊂ X is closed and admits a KN stratification by the n strata Sαi for

i < n, so we will proceed by induction on n. The base case is Theorem 2.1.31.
Assume the theorem holds for Sn ⊂ X, so Db(X) = 〈Db

Sn(X)<q,G
n
q ,D

b
Sn(X)≥q〉 and

restriction maps Gn
q isomorphically onto Db(X \Sn). Sαn ⊂ X \Sn is a closed KN stratum,

so Theorem 2.1.31 gives a semiorthogonal decomposition of Gn
q ' Db(X \ Sn) which we

combine with the previous semiorthogonal decomposition

Db(X) = 〈Db
Sn(X)<q,D

b
Sαn

(X \Sn)<q(α),G
n+1
q ,Db

Sαn
(X \Sn)≥q(α),D

b
Sn(X)≥q〉

The first two pieces correspond precisely to Db
Sn+1(X)<q and the last two pieces correspond

to Db
Sn+1(X)≥q. The theorem follows by induction.

Remark 2.0.4. The semiorthogonal decomposition in this theorem can be refined further
using ideas of Kawamata[27], and Ballard, Favero, Katzarkov[6] (See Amplification 2.1.23
below for a discussion in this context).

Example 2.0.5. Let X ⊂ Pn be a projective variety with homogeneous coordinate ring
A. The affine cone SpecA has Gm action given by the nonnegative grading of A and the
unstable locus is Z = Y = S = the cone point. OS can be resolved as a semi-free graded
dg-algebra over A, (A[x1, x2, . . .], d)→ OS with generators of positive weight. Thus L

q
S/Z =

OS ⊗ Ω1
A[x1,...]/A

has positive weights. The Property (A) is automatic. In this case Theorem
2.0.3 is essentially Serre’s theorem on the derived category of a projective variety.

Corollary 2.0.6. Let Z be a quasiprojective scheme and A =
⊕

i≥0Ai a coherently generated
sheaf of algebras over Z, with A0 = OZ. Let j : Z ↪→ Spec(A) be the inclusion. There is an
infinite semiorthogonal decomposition,

Db(gr−A) = 〈. . . ,Db(Z)w−1,Gw,D
b(Z)w,D

b(Z)w+1, . . .〉

where Db(Z)w denotes the subcategory generated by j∗ Db(Z)⊗OX(−w), and

Gw =

{
F

q ∈ Db(X/C∗)
∣∣∣∣ H∗(j∗F q

) has weights ≥ w, and
H∗(j!F

q
) has weights < w

}
and the restriction functor Gw → Db(ProjA) is an equivalence.
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Example 2.0.7. Consider the graded polynomial ring k[x1, . . . , xn, y1, . . . , ym]/(f) where the
xi have positive degrees and the yi have negative degrees and f is a homogeneous polynomial
such that f(0) = 0. This corresponds to a linear action of Gm on an equivariant hypersurface
Xf in the affine space An

x × Am
y . Assume that we have chosen the linearization such that

S = {0} × Am
y ∩Xf . One can compute

L
q
S/Xf

{
(OSx1 ⊕ · · · ⊕ OSxn)[1], if f /∈ (x1, . . . , xn)
(OSf → OSdx1 ⊕ · · · ⊕ OSdxn)[1] if f ∈ (x1, . . . , xn)

Thus S ⊂ Xf satisfies Property (L+) iff either deg f ≥ 0, in which case f ∈ (x1, . . . , xn),
or if deg f < 0 but f /∈ (x1, . . . , xn). Furthermore, Property (A) amounts to S being an
affine space, which happens iff deg f ≥ 0 so that S = Am

y , or deg f = −1 with a nontrivial
linear term in the yi. Note in particular that in order for Xf to satsify these properties
with respect to the stratum of the the opposite linearization, then we are left with only two
possibilities: either deg f = 0 or deg f = ±1 with nontrivial linear terms. This illustrates
the non-vacuousness of Properties (A) and (L+).

Explicit constructions of the splitting, and Fourier-Mukai kernels

Given an F
q ∈ Db(Xss), one can extend it uniquely up to weak equivalence to a complex

in Gq. Due to the inductive nature of Theorem 2.0.3, the extension can be complicated to
construct. We will discuss a procedure for extending over a single stratum at the end of
Section 2.1, and one must repeat this for every stratum of Xus.

Fortunately, it suffices to directly construct a single universal extension. Consider the
product Xss×X = (Xss×X)/(G×G), and the open substack Xss×Xss whose complement
has the KN stratification Xss×Sα. One can uniquely extend the diagonal OXss×Xss to a sheaf
Õ∆ in the subcategory Gq with respect to this stratification. The Fourier-Mukai transform
Db(Xss)→ Db(X) with kernel Õ∆, has image in the subcategory Gq and is the identity over
Xss. Thus for any F

q ∈ Db(Xss), (p2)∗(Õ∆ ⊗ p∗1(F
q
)) is the unique extension of F

q
to Gq.

2.1 Homological structures on the unstable strata

In this section we will study in detail the homological properties of a single closed KN stratum
S := S/G ⊂ X as defined in 1.1.7. We establish a multiplicative baric decomposition of
Db(S), and when S ⊂ X satisfies Property (L+), we extend this to a multiplicative baric

decomposition of Db
S(X), the derived category of complexes of coherent sheaves on X whose

restriction to V = X − S is acyclic. Then we use these baric decompositions to construct
our main semiorthogonal decompositions of Db(X).

Recall the structure of a KN stratum (1.4) and the associated parabolic subgroup (1.1).
By Property (S1), S := S/G ' Y/P via the P -equivariant inclusion Y ⊂ S, so we will
identify quasicoherent sheaves on S with P -equivariant quasicoherent OY -modules. Fur-
thermore, we will let P act on Z via the projection P → L. Again by Property (S1), we
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have Y/P = Spec
Z

(A)/P , where A is a coherently generated OZ-algebra with Ai = 0 for
i > 0, and A0 = OZ . Thus we have identified quasicoherent sheaves on S with quasicoherent
A-modules on Z′ := Z/P .

Remark 2.1.1. The stack Z := Z/L is perhaps more natural than the stack Z′. The
projection π : Y → Z intertwines the respective P and L actions via P → L, hence we
get a projection S → Z := Z/L. Unlike the map S → Z′, this projection admits a section
Z/L → Y/P . In other words, the projection A → A0 = OZ is λ(C∗)-equivariant, but
not P -equivariant. We choose to work with Z′, however, because the map S → Z is not
representable, so the description of quasicoherent S modules in terms of “Z-modules with
additional structure” is less straightforward.

We will use the phrase OZ-module to denote a quasicoherent sheaf on the stack Z′ =
Z/P , assuming quasicoherence and P -equivariance unless otherwise specified. λ fixes Z, so
equivariant OZ modules have a natural grading by the weight spaces of λ, and we will use
this grading often.

Lemma 2.1.2. For any F ∈ QCoh(Z′) and any w ∈ Z, the submodule F≥w :=
∑

i≥w Fi of
sections of weight ≥ w with respect to λ is P equivariant.

Proof. C∗ commutes with L, so F≥w is an equivariant submodule with respect to the L
action. Because U ⊂ P acts trivially on Z, the U -equivariant structure on F is determined
by a coaction a : F → k[U ]⊗ F which is equivariant for the C∗ action. We have

a(F≥w) ⊂ (k[U ]⊗ F )≥w =
⊕
i+j≥w

k[U ]i ⊗ Fj ⊂ k[U ]⊗ F≥w

The last inclusion is due to the fact that k[U ] is non-positively graded, and it implies that
F≥w is equivariant with respect to the U action as well. Because we have a semidirect product
decomposition P = UL, it follows that F≥p is an equivariant submodule with respect to the
P action.

Remark 2.1.3. This lemma is a global version of the observation that for any P -module
M , the subspace M≥w with weights ≥ w with respect to λ is a P -submodule, which can be
seen from the coaction M → k[P ]⊗M and the fact that k[P ] is nonnegatively graded with
respect to λ.

It follows that any F ∈ QCoh(Z′) has a functorial factorization F≥w ↪→ F � F<w. Note
that as C∗-equivariant instead of P -equivariant OZ-modules there is a natural isomorphism
F ' F≥w ⊕ F<w. Thus the functors (•)≥w and (•)<w are exact, and that if F is locally free,
then F≥w and F<w are locally free as well.

We define QCoh(Z′)≥w and QCoh(Z′)<w to be the full subcategories of QCoh(Z′) consist-
ing of sheaves supported in weight ≥ w and weight < w respectively. They are both Serre
subcategories, they are orthogonal to one another, (•)≥w is right adjoint to the inclusion
QCoh(Z′)≥w ⊂ QCoh(Z′), and (•)<w is left adjoint to the inclusion QCoh(Z′)<w ⊂ QCoh(Z′).
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Lemma 2.1.4. Any F ∈ QCoh(Z′)<w admits an injective resolution F → I0 → I1 → · · ·
such that I i ∈ QCoh(Z′)<w. Likewise any F ∈ Coh(Z′)≥w admits a locally free resolution
· · · → E1 → E0 → F such that Ei ∈ Coh(Z′)≥w.

Proof. First assume F ∈ QCoh(Z′)<w, and let F → I0 be the injective hull of F .2 Then
I0
≥w ∩ F<w = 0, hence I0

≥w = 0 because I0 is an essential extension of F . QCoh(Z′)<w is a
Serre subcategory, so I0/F ∈ QCoh(Z′)<w as well, and we can inductively build an injective
resolution with I i ∈ QCoh(Z′)<w.

Next assume F ∈ Coh(Z′)≥w. Choose a surjection E → F where E is locally free. Then
E0 := E≥w is still locally free, and E≥w → F is still surjective. Because Coh(Z′)≥w is a Serre
subcategory, ker(E0 → F ) ∈ Coh(Z′)≥w as well, so we can inductively build a locally free
resolution with Ei ∈ Coh(Z′)≥w.

We will use this lemma to study the subcategories of Db(Z′) generated by Coh(Z′)≥w and
Coh(Z′)<w. Define the full triangulated subcategories

Db(Z′)≥w = {F q ∈ Db(Z′)|Hi(F
q
) ∈ Coh(Z′)≥w}

Db(Z′)<w = {F q ∈ Db(Z′)|Hi(F
q
) ∈ Coh(Z′)<w}

For any complex F
q
we have the canonical short exact sequence

0→ F
q
≥w → F

q → F
q
<w → 0 (2.5)

If F
q ∈ Db(Z′)≥w then the first arrow is a quasi-isomorphism, because (•)≥w is exact. Likewise

for the second arrow if F
q ∈ Db(Z′)<w. Thus F

q ∈ Db(Z′)≥w iff it is quasi-isomorphic to a
complex of sheaves in Coh(Z′)≥w and likewise for Db(Z′)<w.

Proposition 2.1.5. These subcategories constitute a baric decomposition

Db(Z′) = 〈Db(Z′)<w,D
b(Z′)≥w〉

This baric decomposition is multiplicative in the sense that

Perf(Z′)≥w ⊗ Db(Z′)≥v ⊂ Db(Z′)≥v+w.

It is bounded, meaning that every object lies in D≥w ∩ D<v for some w, v. The baric trun-
cation functors, the adjoints of the inclusions D≥w,D<w ⊂ Db(Z′), are exact.

Proof. If A ∈ Coh(Z′)≥w and B ∈ Coh(Z′)<w, then by Lemma 2.1.4 we resolve B by injectives
in QCoh(Z′)<w, and thus RHom(A,B) ' 0. It follows that Db(Z′)≥w is left orthogonal to
Db(Z′)<w. QCoh(Z′)≥w and QCoh(Z′)≤w are Serre subcategories, so F

q
≥w ∈ Db(Z′)≥w and

F
q
<w ∈ Db(Z′)<w for any F

q ∈ Db(Z′). Thus the natural sequence (2.5) shows that we
have a baric decomposition, and that the right and left truncation functors are the exact
functors (•)≥w and (•)<w respectively. Boundedness follows from the fact that coherent
equivariant OZ-modules must be supported in finitely many λ weights. Multiplicativity is
also straightforward to verify.

2The injective hull exists because QCoh(Z′) is cocomplete and taking filtered colimits is exact.
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Remark 2.1.6. A completely analogous baric decomposition holds for Z as well. In fact,
for Z the two factors are mutually orthogonal.

Quasicoherent sheaves on S

The closed immersion σ : Z ↪→ Y is L equivariant, hence it defines a map of stacks σ : Z→ S.
Recall also that because π : S → Z′ is affine, the derived pushforward Rπ∗ = π∗ is just the
functor which forgets the A-module structure. Define the thick triangulated subcategories

Db(S)<w = {F q ∈ Db(S)|π∗F
q ∈ Db(Z′)<w}

Db(S)≥w = {F q ∈ Db(S)|Lσ∗F q ∈ D−(Z)≥w}

In the rest of this subsection we will analyze these two categories and show that they con-
stitute a multiplicative baric decomposition.

Complexes on S of the form A⊗ E q
, where each Ei is a locally free sheaf on Z′, will be

of prime importance. Note that the differential di : A ⊗ Ei → A⊗ Ei+1 is not necessarily
induced from a differential Ei → Ei+1. However we observe

Lemma 2.1.7. If E ∈ QCoh(Z), then A· (A⊗E)≥w = A⊗E≥w, where the left side denotes
the smallest A-submodule containing the OZ-submodule (A⊗ E)≥w.

Proof. By definition the left hand side is the A-submodule generated by
⊕

i+j≥wAi ⊗ Ej
and the left hand side is generated by

⊕
j≥wA0 ⊗ Ej ⊂ A ⊗ E≥w. These OZ-submodules

clearly generate the same A-submodule.

This guarantees that im di ⊂ A⊗Ei+1
≥w , so A⊗E q

≥w is a subcomplex, and E≥w is a direct
summand as a non-equivariant OZ-module, so we have a canonical short exact sequence of
complexes in QCoh(S)

0→ A⊗ E q
≥w → A⊗ E

q → A⊗ E q
<w → 0 (2.6)

Proposition 2.1.8. F
q ∈ Db(S)≥w iff it is quasi-isomorphic to a right-bounded complex of

the sheaves of the form A⊗ Ei with Ei ∈ Coh(Z′)≥w locally free.

First we observe the following extension of Nakayama’s lemma to the derived category

Lemma 2.1.9 (Nakayama). Let F
q ∈ D−(S) with coherent cohomology. If Lσ∗F

q ' 0, then
F

q ' 0.

Proof. The natural extension of Nakayama’s lemma to stacks is the statement that the
support of a coherent sheaf is closed. In our setting this means that if G ∈ Coh(S) and
G⊗OZ = 0 then G = 0, because supp(G) ∩ Z = ∅ and every nonempty closed substack of
S intersects Z nontrivially.

If Hr(F
q
) is the highest nonvanishing cohomology group of a right bounded complex,

then Hr(Lσ∗F
q
) ' σ∗Hr(F

q
). By Nakayama’s lemma σ∗Hr(F

q
) = 0 ⇒ Hr(F

q
) = 0, so we

must have σ∗Hr(F
q
) 6= 0 as well.
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Remark 2.1.10. Note another consequence of Nakayama’s lemma: if F
q

is a complex of
locally free sheaves on S and Hi(F

q⊗OZ) = 0, then Hi(F
q
) = 0, because the canonical map

on stalks Hi(F
q
)⊗ k(z)→ Hi(F

q ⊗ k(z)) is an isomorphism if it surjective. In particular if
Ei ∈ Coh(Z′) are locally free and σ∗(A⊗ E q

) = E
q

has bounded cohomology, then A⊗ E q
has bounded cohomology as well.

Proof of Proposition 2.1.8. We assume that Lσ∗F
q ∈ Db(Z)≥w. Choose a right bounded

presentation by locally frees A⊗ E q ' F
q
and consider the canonical sequence (2.6).

Restricting to Z gives a short exact sequence 0→ E
q
≥w → E

q → E
q
<w → 0. The first and

second terms have homology in Coh(Z)≥w, and the third has homology in Coh(Z)<w. These
two categories are orthogonal, so it follows from the long exact homology sequence that E

q
<w

is acyclic. Thus by Nakayama’s lemma A⊗ E q
<w is acyclic and F

q ' A⊗ E q
≥w.

Using this characterization of Db(S)≥w we have semiorthogonality

Lemma 2.1.11. If F
q ∈ D−(S)≥w and G

q ∈ D+(S)<w, then RHomS(F
q
, G

q
) = 0.

Proof. By Proposition 2.1.8 if suffices to prove the claim for F
q
= A⊗E with E ∈ Coh(Z′)≥w

locally free. Then A ⊗ E ' Lπ∗E, and the derived adjunction gives RHomS(Lπ∗E,F
q
) '

RHomZ′(E,Rπ∗F
q
). π is affine, so Rπ∗F

q ' π∗F
q ∈ D+(Z′)<w. The claim follows from the

fact that QCoh(Z′)≥w is left orthogonal to D+(Z′)<w.

Remark 2.1.12. The category of coherent S modules whose weights are < w is a Serre sub-
category of Coh(S) generating Db(S)<w, but there is no analogue for Db(S)≥w. Consider for
instance, when G is abelian there is a short exact sequence 0→ A<0 → A→ OZ → 0. This
nontrivial extension shows that RHomS(OZ ,A<0) 6= 0 even though OZ has nonnegative
weights.

Every F ∈ Coh(S) has a highest weight submodule as an equivariantOZ-module F≥h 6= 0
where F≥w = 0 for w > h. Furthermore, because A<0 has strictly negative weights the map
(F )≥h → (F ⊗OZ)≥h is an isomorphism of L-equivariant OZ-modules. Using the notion of
highest weight submodule we prove

Proposition 2.1.13. If A⊗ E q
is a right-bounded complex with bounded cohomology, then

E
q
≥w := (σ∗(A ⊗ E

q
))≥w has bounded cohomology and thus so does A ⊗ E

q
≥w by Remark

2.1.10. If A⊗ E q
is perfect, then so are E

q
≥w and A⊗ E q

≥w.

Proof. We define the subquotient A⊗E q
[a,b) = A⊗ (E

q
≥a)<b for any ∞ ≤ a < b ≤ ∞, noting

that the functors commute so order doesn’t matter. The generalization of the short exact
sequence (2.6) for a < b < c is

0→ A⊗ E q
[b,c) → A⊗ E

q
[a,c) → A⊗ E

q
[a,b) → 0 (2.7)

We will use this sequence to prove the claim by descending induction.
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First we show that for W sufficiently high, A ⊗ E q
≥W ' 0. By Nakayama’s lemma and

the fact that A ⊗ E q
has bounded cohomology, it suffices to show (Lσ∗F )≥W ' 0 for any

F ∈ Coh(S), and this follows by constructing a resolution of F by vector bundles whose
weights are ≤ the highest weight of F .

Now assume that the claim is true for A⊗E q
≥w+1. It follows from the sequence (2.6) that

A⊗ E q
<w+1 has bounded cohomology. The complex E

q
[w,w+1) is precisely the highest weight

space of A ⊗ E q
<w+1, and thus has bounded cohomology as well. Applying σ∗ to sequence

(2.7) gives 0→ E
q
≥w+1 → E

q
≥w → E

q
[w,w+1) → 0, thus E

q
≥w has bounded cohomology and the

result follows by induction.
The argument for perfect complexes similar to the previous paragraph. By induction

A⊗E q
<w+1 is perfect, thus so is σ∗(A⊗E q

<w+1) and its highest weight space E
q

[w,w+1). Because
E

q
[w,w+1) is concentrated in a single weight, the differential on A⊗ E q

[w,w+1) is induced from

the differential on E
q

[w,w+1), i.e. A ⊗ E q
[w,w+1) = Lπ∗(E

q
[w,w+1)). It follows that A ⊗ E q

[w,w+1)

is perfect, and thus so is A⊗ E q
≥w by the exact sequence (2.7).

Proposition 2.1.14. The categories Db(S) = 〈Db(S)<w,D
b(S)≥w〉 constitute a multiplica-

tive baric decomposition. This restricts to a multiplicative baric decomposition of Perf(S),
which is bounded. If Z ↪→ Y has finite Tor dimension, for instance if Property (A) holds,
then the baric decomposition on Db(S) is bounded as well.

Proof. Lemma 2.1.11 implies Db(S)≥w is left orthogonal to G
q ∈ Db(S)<w. In order to

obtain left and right truncations for F
q ∈ Db(S) we choose a presentation of the form

A ⊗ E q
with E

q ∈ Coh(Z) locally free. The canonical short exact sequence (2.6) gives an
exact triangle A⊗ E q

≥w → F
q → A⊗ E q

<w 99K. By Proposition 2.1.13 all three terms have
bounded cohomology, thus our truncations are β≥wF

q
= A ⊗ E q

≥w and β<wF
q
= A ⊗ E q

≥w.
If F

q ∈ Perf(S), then by Proposition 2.1.13 so are β≥wF
q
and β<wF

q
.

The multiplicativity of Db(S)≥w follows from the fact that Db(Z)≥w is multiplicative and
the fact that Lσ∗ respects derived tensor products.

EveryM ∈ Coh(S) has a highest weight space, soM ∈ Db(S)<w for some w. This implies
that any F

q ∈ Db(S) lies in Db(S)<w for some w. The analogous statement for Db(S)≥w
is false in general, but if F

q ∈ Db(S) is such that σ∗F
q

is cohomologically bounded, then
F

q ∈ Db(S)≥w for some w. The boundedness properties follow from this observation.

Amplification 2.1.15. If Property (A) holds, then β≥wF
q

and β<wF
q

can be computed
from a presentation F

q ' A ⊗ E
q

with Ei ∈ Coh(Z′) coherent but not necessarily locally
free. Furthermore Lπ∗ = π∗ : Db(Z′)w → Db(S)w is an equivalence, where Db(S)w :=
Db(S)≥w ∩ Db(S)<w+1 and likewise for Db(Z)w.

Proof. If π : Y → Z is flat and E ∈ Coh(Z′), then A⊗E ∈ Db(S)≥w iff E ∈ Coh(Z′)≥w and
likewise for < w. Thus

A⊗ E q
≥w → F

q → A⊗ E q
<w 99K
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is the exact triangle defining the baric truncations of F
q
. In fact for any coherent A-module

M there is a coherent E ∈ Coh(Z′) and a surjection A⊗ E � M which is an isomorphism
on highest weight subsheaves, and one can use this fact to construct a presentation of this
form in which Ei

≥w = 0 for i� 0. So in fact β≥wF
q
is equivalent to a finite complex of the

form A⊗ E q
≥w.

For the second claim, fully faithfulness of Lπ∗ follows formally from the fact that π
admits the section σ : Z = Z/L ↪→ S. Essential surjectivity follows from the first part of
the proposition.

Our final observation is that the components of the baric decomposition of Db(S) and
Db(Z′) can be characterized pointwise over Z. We let C∗ act on Y via λ and consider the

flat morphism of stacks Y/C∗ → Y/P . This gives a pullback (forgetful) functor D(S) →
D(Y/C∗). Given a point p : ∗ ↪→ Z, one can compose this forgetful functor with the pullback

and shriek-pullback to get functors p∗ : D−(S) → D−(∗/C∗) and p! : D+(S) → D+(∗/C∗).
By abuse of notation we denote the analogous functors p∗ : D−(Z′) → D−(∗/C∗) and p! :
D+(Z)→ D+(∗/C∗), so that p! = p!σ! and p∗ = p∗σ∗.

Lemma 2.1.16. A complex F
q ∈ D−(Z′) lies in D−(Z′)≥,<w iff p∗F

q ∈ D−(∗/C∗)≥,<w for
all p : ∗ ↪→ Z. Dually, a complex F

q ∈ D+(Z′) lies in D+(Z′)≥,<w iff p!F
q ∈ D+(∗/C∗)≥,<w

for all p.

Proof. It suffices to work over Z/C∗. Because every quasicoherent sheaf functorially splits
into λ eigensheaves, p∗(F

q
)≥,<w = (p∗F

q
)≥,<w and p!(F

q
)≥,<w = (p!F

q
)≥,<w. The claim for

F
q ∈ D−(Z′) now follows by applying derived Nakayama’s Lemma to F

q
<,≥w. Likewise the

claim for F
q ∈ D+(Z′) follows from the Serre dual statement of derived Nakayama’s Lemma,

namely that F
q ∈ D+(Z) is acyclic iff p!F

q
= Hom(p∗C, F

q
) is acyclic for all p (note that we

only need Nayama’s Lemma in the non-equivariant setting).

Corollary 2.1.17. The subcategories D−(S)≥w,D(S)<w ⊂ D(S) are characterized by their
images in D(Y/C∗). If we consider all points p : ∗ ↪→ Z.

• F q ∈ D−(S) lies in D−(S)≥w iff p∗F
q ∈ D−(∗/C∗)≥w, ∀p

• F q ∈ Db(S) lies in F
q ∈ Db(S)<w iff p∗F

q ∈ D−(∗/C∗)<w, ∀p

Dually, if π : Y → Z is a bundle of affine spaces with determinant weight a, then Db(S)≥,<w
are characterized by the weights of σ!F

q
. We have

• F q ∈ D+(S) lies in D+(S)<w iff p!F
q ∈ D+(∗/C∗)<w+a, ∀p

• F q ∈ Db(S) lies in Db(S)≥w iff p!F
q ∈ D+(∗/C∗)≥w+a, ∀p

Proof. The first claim is immediate from the definitions of D−(S)≥w and D(S)<w, so for
the remainder of the proof we can work in the category D(Y/C∗). From Proposition 2.1.14
and the discussion preceding it, we know that D−(S)≥w and Db(S)<w are characterized by
σ∗F

q ∈ D−(Z/C∗). The claim now follows from Lemma 2.1.16.
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Now assume that π : Y → Z is a bundle of affine spaces. Locally over Z, σ!F
q '

σ∗F
q
(−a)[d], where d is the fiber dimension of π and a is the weight of λ on det(NZ/Y )∨,

so the weights of σ!F
q

are simply shifts of the weights of σ∗F
q
. If F

q ∈ Db(S) the claim
again follows from Lemma 2.1.16. By definition an unbounded object F

q ∈ D+(S) lies in
D+(S)<w iff Hi(F

q
) ∈ QCoh(S)<w for all i, i.e. iff τ≤nF

q ∈ Db(S)<w for all n. One can
prove the claim for D+(S)<w by writing F

q
= lim−→ τ≤nF

q
and that each homology sheaf of

σ!F
q
= lim−→σ!τ≤nF

q
stabilizes after some finite n.

The cotangent complex and Property (L+)

We review the construction of the cotangent complex and prove the main implication of the
positivity Property (L+):

Lemma 2.1.18. If S ↪→ X satisfies Property (L+) and F
q ∈ Db(S)≥w, then Lj∗j∗F

q ∈
D−(S)≥w as well.

We can inductively construct a cofibrant replacement OS as an OX module: a surjective
weak equivalence B q

� OS from a sheaf of dg-OX algebras with B q ' (S(E
q
), d), where

S(E
q
) is the free graded commutative sheaf of algebras on the graded sheaf of OX-modules

E
q
with Ei locally free and Ei = 0 for i ≥ 0. Note that the differential is uniquely determined

by its restriction to E
q
, and letting e be a local section of E

q
we decompose d(e) = d−1(e) +

d0(e) + · · · where di(e) ∈ Si+1(E
q
).

The B q
-module of Kähler differentials is

B q δ−→ Ω1
B q/OX

= S(E
q
)⊗OX

E
q

with the universal closed degree 0 derivation defined by δ(e) = 1 ⊗ e. The differential on
Ω1
B q/OX

is uniquely determined by its commutation with δ

d(1⊗ e) = δ(de) = 1⊗ d0(e) + δ(d2(e) + d3(e) + · · · )

By definition
L

q
(S ↪→ X) := OS ⊗B q Ω1

B q/OX
' OS ⊗ E

q
where the differential is the restriction of d0.

Proof of Lemma 2.1.18. First we prove the claim for OS. Note that B q
� OS, in addition

to a cofibrant replacement of dg-OX-algebras, is a left bounded resolution of OS by locally
frees. Thus Lj∗j∗OS = OS ⊗OX

B q
= SS(E

q|S) with differential d(e) = d0(e) + d1(e) + · · · .
The term d−1 in the differential vanishes when restricting to S. Restricting further to Z, we
have a deformation of complexes of OZ modules over A1

F
q
t := (S(E

q
)|Z, d0 + td1 + t2d2 + · · · )
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which is trivial over A1 − {0}. The claim of the lemma is that (F
q

1 )<0 ∼ 0. Setting t = 0,
the differential becomes the differential of the cotangent complex, so F

q
0 = S(L

q
S/X)|Z. By

hypothesis L
q
S/X → (L

q
S/X)≥0 is a weak equivalence, so SZ(L

q
S/X|Z) → SZ((L

q
S/X|Z)≥0) is a

weak equivalence with a complex of locally frees generated in nonnegative weights. Thus
(F

q
0 |Z)<0 ∼ 0. By semicontinuity it follows that (F

q
t )<0 = 0 for all t ∈ A1, and the lemma

follows for OS.
Now we consider arbitrary F

q ∈ Db(S). Let ÕS := S(E
q
)|S = Lj∗j∗OS denote the

derived self intersection. OS is a summand of ÕS as an OS module, and we have already
established that ÕS ∈ Db(S)≥0, so E

q ∈ Db(S)≥w iff ÕS⊗E
q ∈ Db(S)≥w. The proof of the

lemma follows from this and the projection formula

Lj∗j∗(ÕS ⊗ F
q
) = Lj∗(j∗OS ⊗L j∗F

q
) = ÕS ⊗L Lj∗j∗F

q

Koszul systems and cohomology with supports

We recall some properties of the right derived functor of the subsheaf with supports functor
RΓS(•). It can be defined by the exact triangle RΓS(F

q
) → F

q → i∗(F
q|V) 99K, and it is

the right adjoint of the inclusion DS(X) ⊂ D(X). It is evident from this exact triangle that
if F

q ∈ Db(X), then RΓS(F
q
) is still bounded, but no longer has coherent cohomology. On

the other hand the formula

RΓS(F
q
) = lim−→Hom(OX/I iS, F

q
)

shows that the subsheaf with supports is a limit of coherent complexes.
We will use a more general method of computing the subsheaf with supports similar to

the Koszul complexes which can be used in the affine case.

Lemma 2.1.19. Let X = X/G with X quasiprojective and G reductive, and let S ⊂ X be
a KN stratum. Then there is a direct system K

q
0 → K

q
1 → · · · in Perf(X)[0,N ] along with

compatible maps K
q
i → OX such that

1. H∗(K q
i ) is supported on S

2. lim−→(K
q
i ⊗ F

q
)→ F

q
induces an isomorphism lim−→(K

q
i ⊗ F

q
) ' RΓS(F

q
).

3. Cone(K
q
i → K

q
i+1)|Z ∈ Db(Z)<wi where wi → −∞ as i→∞.

We will call such a direct system a Koszul system for S ⊂ X

Proof. First assume X is smooth in a neighborhood of S. Then OX/I iS is perfect, so the
above formula implies that the duals K

q
i = (OX/I iS)∨ satisfy properties (1) and (2) with

K
q
i → OX the dual of the map OX → OX/I iS. We compute the mapping cone

Cone(K
q
i → K

q
i+1) =

(
I iS/I i+1

S

)∨
=
(
j∗(S

i(NS/X))
)∨
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Where the last equality uses the smoothness of X. Because Property (L+) is automatic for
smooth X, it follows from Lemma 2.1.18 that Lj∗j∗(S

i(NS/X)) ∈ Db(S)≥n, hence Cone(K
q
i →

K
q
i+1) has weights ≤ −i, and the third property follows.

If X is not smooth in a neighborhood of S, then by hypothesis we have a G-equivariant
closed immersion φ : X ↪→ X ′ and closed KN stratum S ′ ⊂ X ′ such that S is a connected
component of S ′ ∩X and X ′ is smooth in a neighborhood of S ′. Then we let K

q
i ∈ Perf(X)

be the restriction of Lφ∗(OX′/I iS′)∨. These K
q
i still satisfy the third property. Consider

the canonical morphism lim−→(K
q
i ⊗ F

q
) → RΓS′∩XF

q
. Its push forward lim−→φ∗(K

q
i ⊗ F

q
) →

φ∗RΓS′∩X(F
q
) = RΓS′φ∗F

q
is an isomorphism, hence the K

q
i form a Koszul system for S′∩X.

Because S is a connected component of S′∩X, the complexes RΓSK
q
i form a Koszul system

for S.

We note an alternative definition of a Koszul system, which will be useful below

Lemma 2.1.20. Property (3) of a Koszul system is equivalent to the property that for all
w,

Cone(K
q
i → OX)|Z ∈ Db(Z)<w for all i� 0

Proof. First, by the octahedral axiom we have an exact triangle

Cone(K
q
i → OX)[−1]→ Cone(K

q
i+1 → OX)[−1]→ Cone(K

q
i → K

q
i+1) 99K

So the property stated in this Lemma implies property (3) of the definition of a Koszul
system.

Conversely, let K
q
i be a Koszul system for S ⊂ X. For any F

q ∈ D+(X), j!F
q ' j!ΓSF

q
,

so
σ!F

q ' σ!ΓSF
q ' lim−→σ!(K

q
i ⊗ F

q
) ' lim−→K

q
i |Z ⊗ σ!F

q
where we have used compactness of OZ as an object of D+(X) (which follows from the
analogous statement for schemes proved in Section 6.3 of [38]) in order to commute σ! with
the direct limit computing ΓSF

q
.

Now let ω
q ∈ Db(X) be a dualizing complex, which by definition means that ω is a

dualizing complex in Db(X) after forgetting the G action (see [3] for a discussion of dualizing
complexes for stacks). Then σ!ω

q
is a dualizing complex on Z, and its restriction to Z/C∗

is again a dualizing complex. Any dualizing complex on Z/C∗ must be concentrated in a
single weight, so σ!ω

q ∈ Db(Z)N for some weight N ∈ Z.
Now the formula above says that σ!ω

q
= lim−→(K

q
i |Z⊗σ!ω

q
). If we assume that Cone(K

q
i →

K
q
i+1)|Z ∈ Db(Z)<wi where wi → −∞ as i → ∞, then for any v the canonical map (K

q
i ⊗

σ!ω
q
)≥v → lim−→(K

q
i ⊗ σ!ω

q
)≥v is an isomorphism for i� 0. In particular for any fixed v < N

we have σ!ω
q

= (σ!ω
q
)≥v ' (K

q
i )≥v−w ⊗ σ!ω

q
for all i � 0. Thus the map (K

q
i |Z)≥v−N →

OZ = (OZ)≥v−N is an isomorphism for i � 0, hence Cone(K
q
i → OX)|Z ∈ Db(Z)<v−N for

i� 0.
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Quasicoherent sheaves with support on S, and the quantization
theorem

We turn to the derived category Db
S(X) of coherent sheaves on X with set-theoretic support

on S. We will extend the baric decomposition of Db(S) to a baric decomposition of Db
S(X).

Using this baric decomposition we will prove a generalization of the quantization commutes
with reduction theorem, one of the results which motivated this work.

Proposition 2.1.21. Let S ⊂ X be a KN stratum satisfying Property (L+). There is a
unique multiplicative baric decomposition Db

S(X) = 〈Db
S(X)<w,D

b
S(X)≥w〉 such that

j∗(D
b(S)≥w) ⊂ Db

S(X)≥w and j∗(D
b(S)<w) ⊂ Db

S(X)<w

It is described explicitly by

Db
S(X)<w = {F q ∈ Db

S(X)|Rj!F
q ∈ D+(S)<w}

Db
S(X)≥w = {F q ∈ Db

S(X)|Lj∗F q ∈ D−(S)≥w}

When Property (A) holds, this baric decomposition is bounded.

Proof. Let Db
S(X)≥w (respectively Db

S(X)<w) be the triangulated subcategory generated by
j∗(D

b(S)≥w) (respectively j∗(D
b(S)<w)). By Lemma 2.1.18, Lj∗j∗(D

b(S)≥w) ⊂ D−(S)≥w,
and so Db

S(X)≥w is right orthogonal to Db
S(X)<w as a consequence of Lemma 2.1.11.

Next we must show Db
S(X) = Db

S(X)≥w ? Db
S(X)<w, where the A ? B denotes the full

subcategory consisting of F admitting triangles A→ F → B 99K with A ∈ A and B ∈ B.
If A and B are triangulated subcategories, and B ⊂ A⊥, then the subcategory A ? B

is triangulated as well. Furthermore, for any F ∈ Db(S) we have the exact triangle
j∗β≥wF → j∗F → j∗β<wF 99K, so Db

S(X)≥w ? Db
S(X)<w is a triangulated subcategory con-

taining j∗(D
b(S)), and so Db

S(X) = Db
S(X)≥w ?Db

S(X)<w as desired.
Now that we have shown that Db

S(X) = 〈Db
S(X)<w,D

b
S(X)≥w〉, we can characterize each

Db
S(X)≥w,<w as the orthogonal of the other. The adjunctions Lj∗ a j∗ and j∗ a Rj! give the

a posteriori characterizations in the last statement of the proposition.

Remark 2.1.22. Every coherent sheaf on S has a highest weight space. Because coherent
sheaves generate the bounded derived category, we have Db(S) =

⋃
w Db(S)<w. Further-

more, j∗Db(S) generates Db
S(X), so we have Db

S(X) =
⋃
w Db

S(X)<w as well. The analogous
statement for Db(S)≥w is false. Note, however, that Perf(X) ⊂

⋃
w Db

S(X)≥w.

The following is an extension to our setting of an observation which appeared in [6],
following ideas of Kawamata [27]. There the authors described semiorthogonal factors ap-
pearing under VGIT in terms of the quotient Z/L′.

Amplification 2.1.23. Define Db
S(X)w := Db

S(X)≥w∩Db
S(X)<w+1. If the weights of L

q
S/X are

strictly positive, then j∗ : Db(S)w → Db
S(X)w is an equivalence with inverse β<w+1Lj

∗(F
q
).
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Corollary 2.1.24. If L
q
S/X has strictly positive weights, then the baric decomposition of

Proposition 2.1.21 can be refined to an infinite semiorthogonal decomposition

Db
S(X) = 〈. . . ,Db(Z)w,D

b(Z)w+1,D
b(Z)w+2, . . .〉

where factors are the essential images of the fully faithful embeddings j∗π
∗ : Db(Z)w →

Db
S(X).

Finally we will use the baric decomposition of Proposition 2.1.21 to generalize a Theorem
of Teleman [43], which was one of the motivations for this paper.

Definition 2.1.25. We define the thick triangulated subcategories of Db(X)

Db(X)≥w := {F q ∈ Db(X)|Lj∗F q ∈ D−(S)≥w}
Db(X)<w := {F q ∈ Db(X)|Rj!F

q ∈ D+(S)<w}

Theorem 2.1.26 (Quantization Theorem). Let F
q ∈ Db(X)≥w and G

q ∈ Db(X)<v with
w ≥ v, then the restriction map

RHomX(F
q
, G

q
)→ RHomV(F

q|V, G q|V)

to the open substack V = X \S is an isomorphism.

Proof. This is equivalent to the vanishing of RΓS(RHomX(F
q
, G

q
)). By the formula

Rj!HomX(F
q
, G

q
) ' HomS(Lj∗F

q
, Rj!G

q
)

it suffices to prove the case where F
q

= OX , i.e. showing that RΓS(G
q
) = 0 whenever

Rj!G
q ∈ D+(S)<0.

From Property (S3) we have a system K1 → K2 → · · · of perfect complexes in Db
S(X)≤0

such that RΓS(G
q
) = colimRΓ(K

q
i ⊗ G

q
) so it suffices to show the vanishing of each term

in the limit. We have j!(K
q
i ⊗ G

q
) = j∗(K

q
i ) ⊗ j!G

q
, so K

q
i ⊗ G

q ∈ Db
S(X)<0. The category

Db
S(X)<0 is generated by objects of the form j∗F with F ∈ Db(S)<0, and thus RΓ(F

q
) for

all F
q ∈ Db

S(X)<0.

Semiorthogonal decomposition of Db(X)

In this section we construct the semiorthogonal decomposition of Db(X) used to prove the de-
rived Kirwan surjectivity theorem. When Y is a bundle of affine spaces over Z, we construct
right adjoints for each of the inclusions Db

S(X)≥w ⊂ Db(X)≥w ⊂ Db(X).

We prove this in two steps. First we define a full subcategory Db(X)fin ⊂ Db(X) of com-
plexes whose weights along S are bounded and construct a semiorthogonal decomposition

of this category. Then we prove that Db(X)fin = Db(X) when Y is a bundle of affine spaces
over Z.
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Definition 2.1.27. The categories of objects with bounded weights along S are the full
triangulated subcategories

Db(X)fin :=
⋃
v

(
Db(X)≥v ∩Db(X)<v

)
Db(X)fin

≥w := Db(X)≥w ∩Db(X)fin, Db(X)fin
<w := Db(X)<w ∩Db(X)fin

By Remark 2.1.22, any F
q ∈ Db

S(X) lies in Db
S(X)<w for some w, so Db

S(X)≥w ⊂ Db(X)fin

for all w.

Proposition 2.1.28. Let F
q ∈ Db(X)fin and let K

q
i be a Koszul system for S ⊂ X. Then

for sufficiently large i the canonical map

β≥w(K
q
i ⊗ F

q
)→ β≥w(K

q
i+1 ⊗ F

q
)

is an equivalence. The functor

β≥wΓS(F
q
) := lim−→

i

β≥w (K
q
i ⊗ F

q
) (2.8)

is well-defined and is a right adjoint to the inclusions Db
S(X)≥w ⊂ Db(X)

fin
≥w and Db

S(X)≥w ⊂
Db(X)fin.

Proof. By hypothesis the C
q
i := Cone(K

q
i → K

q
i+1) is a perfect complex in Db

S(X)<wi , where

wi → −∞ as i → ∞. Because F
q ∈ Db(X)fin, we have F

q ∈ Db(X)<N for some N , so if
wi +N < w we have C

q
i ⊗ F

q ∈ Db
S(X)<w and

Cone
(
β≥w(K

q
i ⊗ F

q
)→ β≥w(K

q
i+1 ⊗ F

q
)
)

= β≥w(C
q
i ⊗ F

q
) = 0

Thus the direct system β≥w(K
q
i ⊗ F

q
) stabilizes, and the expression (2.8) defines a functor

Db(X)fin → Db
S(X)≥w.

The fact that β≥wRΓ is the right adjoint of the inclusion follows from the fact that
elements of Db

S(X) are compact in D+
S(X) [38]. For G

q ∈ Db
S(X)≥w we compute

RHom(G
q
, β≥wΓSF

q
) = lim−→

i

RHom(G
q
, K

q
i ⊗ F

q
) = RHom(G

q
, F

q
)

The right orthogonal to Db
S(X)≥w can be determined a posteriori from the fact that

Db
S(X)≥w is generated by j∗Db(S)≥w. Proposition 2.1.28 gives semiorthogonal decomposi-

tions
Db(X)fin

≥w = 〈Gw,D
b
S(X)≥w〉 Db(X)fin = 〈Db(X)fin

<w ,D
b
S(X)≥w〉

where Gw := Db(X)fin
≥w ∩ Db(X)fin

<w . What remains is to show that Db(X)fin
≥w ⊂ Db(X)fin is

right admissible.
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Proposition 2.1.29. The inclusion of the subcategory Db(X)
fin
≥w ⊂ Db(X)fin admits a right

adjoint β≥w(•) defined by the exact triangle

β≥wF
q → F

q → β<w ((K
q
i )
∨ ⊗ F q

) 99K for i� 0

Proof. First note that for F
q ∈ Db(X)fin and for i� 0, Cone(K

q
i → K

q
i+1)∨⊗F q ∈ Db(X)≥w.

It follows that the inverse system (K
q
i )
∨ ⊗ F q

stabilizes, as in Proposition 2.1.28.
Consider the composition F

q → (K
q
i )
∨ ⊗ F q → β<w((K

q
i )
∨ ⊗ F q

) 99K where we define
β≥wF

q
as above. The octahedral axiom gives a triangle

Cone(F
q → (K

q
i )
∨ ⊗ F q

)→ β≥wF
q
[1]→ β≥w((K

q
i )
∨ ⊗ F q

)

Thus for i � 0, β≥wF
q ∈ Db(X)fin

≥w and is right orthogonal to Db
S(X)<w. It follows that

β≥wF
q
is functorial in F

q
and is right adjoint to the inclusion Db(X)fin

≥w ⊂ Db(X)fin.

Combining Propositions 2.1.28 and 2.1.29, we have a semiorthogonal decomposition

Db(X)fin = 〈Db
S(X)fin

<w ,Gw,D
b
S(X)≥w〉 (2.9)

where the restriction functor Gw → Db(V) is fully faithful by theorem 2.1.26. Recall that
our goal is to use the semiorthogonal decomposition (2.9) as follows: any F

q ∈ Db(V)
extends to Db(X), then using (2.9) one can find an element of Gw restricting to F

q
, hence

i∗ : Gw → Db(V) is an equivalence of categories. Unfortunately, in order for this argument

to work, we need Db(X) = Db(X)fin. In the rest of this section we show that when π : Y → Z

is a bundle of affine spaces, Db(X)fin = Db(X).

Lemma 2.1.30. Suppose that π : Y → Z is a bundle of affine spaces, then Db(X)fin =
Db(X).

Proof. First we show that any F
q ∈ Db(X)≥w for some w. Let P

q
be a perfect complex in

Db
S(X) whose support contains Z – for instance any object in the Koszul system constructed

in Lemma 2.1.19 will suffice. We know that P
q⊗F q ∈ Db

S(X)≥a for some a by Remark 2.1.22,
so σ∗(F

q ⊗ P q
) = σ∗P

q ⊗ σ∗F q ∈ D−(Z)≥a.
Because P

q
is perfect, σ∗P

q ∈ Db(Z)<q for some q. It suffices to forget the action of
L on Z and work in the derived category of Z/C∗. Let p : ∗ ↪→ Z be a point, then
p∗(σ∗P

q ⊗ σ∗F q
) = p∗P

q ⊗k p∗F q
has weight ≥ a. However p∗P

q
is non-zero by hypothesis

and is equivalent in Db(∗/C∗) to a direct sum of shifts k(w)[d] with w > −q, so this implies
that p∗F

q ∈ Db(∗/C∗)≥a−q. This holds for every point in Z, so by Lemma 2.1.16, σ∗F
q ∈

D−(Z)≥a−q. Thus F
q ∈ Db(X)≥a−q.

By Lemma 2.1.16 we have that F
q ∈ Db(X)<w iff σ!F

q ∈ D+(Z)<w+a. By the same
argument above, we can assume σ!(P

q ⊗ F q
) = σ∗P

q ⊗ σ!F
q ∈ D+(Z)<N for some N . For

any p : ∗ ↪→ Z, we have p!(σ∗P
q ⊗ σ!F

q
) = p∗P

q ⊗k p!σ!F
q
, so by Lemma 2.1.16 we have

F
q ∈ Db(X)<N−q where q is the highest weight in σ∗P

q
.
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Now that we have identified Db(X)fin = Db(X) in this case, we collect the main results
of this section in the following

Theorem 2.1.31. Let S ⊂ X be a closed KN stratum (Definition 1.1.7) satisfying Properties
(L+) and (A). Let Gw = Db(X)≥w ∩ Db(X)<w, then

Gw =

{
F

q ∈ Db(X)

∣∣∣∣ σ∗F q
supported in weights ≥ w, and

σ!F
q

supported in weights < w + a

}
where a is the weight of det(NZ/Y )∨. There are semiorthogonal decompositions

Db(X) = 〈Db
S(X)<w,Gw,D

b
S(X)≥w〉

And the restriction functor i∗ : Db(X)→ Db(V) induces an equivalence Gw ' Db(V), where
V = X−S.

Proof. Because π : Y → Z is a bundle of affine spaces, Lemma 2.1.30 states that Db(X)fin =
Db(X), and Lemma 2.1.16 implies that Db(X)<w = {F q|σ!F

q ∈ D+(Z)<w+a. As noted above,
the existence of the semiorthogonal decomposition follows formally from the adjoint functors
constructed in Propositions 2.1.28 and 2.1.29.

The fully faithfulness of i∗ : Gw → Db(V) is Theorem 2.1.26. Any F
q ∈ Db(V) ad-

mits a lift to Db(X), and the component of this lift lying in Gw under the semiorthogonal
decomposition also restricts to F

q
, hence i∗ essential surjectivity follows.

Now let X be smooth in a neighborhood of Z. Passing to an open subset containing Z,
we can assume that X is smooth. Recall that in this case S,Y , and Z are smooth, and the
equivariant canonical bundle ωX := (

∧top g)⊗(
∧top Ω1

X) is a dualizing bundle on X and defines
the Serre duality functor DX(•) = RHom(•, ωX[vdimX]), and likewise for S and Z. The
canonical bundles are related by j!ωX ' ωS[− codim(S,X)] and σ!ωS ' ωZ[− codim(Z, S)].

Using the fact that ωZ has weight 0, so DZ(Db(Z)≥w) = Db(Z)<w+1, and the fact that
DZσ

∗F
q ' σ!DX and likewise for S, we have

DS(Db(S)≥w) = Db(S)<a+1−w, and DX(Db(X)≥w) = Db(X)<a+1−w

where a is the weight of λ on ωS|Z.
Furthermore any F

q ∈ Db(X) is perfect, so j!F
q ' j!(OX) ⊗ j∗F

q ' det(NS/X)∨ ⊗
j∗F

q
[− codim(S,X)]. If we let η denote the weight of λ on detNS/X |Z , then this implies

that
Db(X)<w = {F q|σ∗F q

supported in weights < w + η}
Using this we can reformulate Theorem 2.1.31 as

Corollary 2.1.32. Let S ⊂ X be a KN stratum such that X is smooth in a neighborhood of
Z. Let Gw = Db(X)≥w ∩ Db(X)<w, then

Gw = {F q ∈ Db(X)|σ∗F q
supported in weights [w,w + η)}
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where η is the weight of det(ΩSX). There are semiorthogonal decompositions

Db(X) = 〈Db
S(X)<w,Gw,D

b
S(X)≥w〉

And the restriction functor i∗ : Db(X)→ Db(V) induces an equivalence Gw ' Db(V).

One can explicitly define the inverse using the functors β≥w and β<w on Db
S(X). Given

F
q ∈ Db(V), choose a complex F̃

q ∈ Db(X) such that F̃
q|V ' F

q
. Now for N � 0 take the

mapping cone

β≥wRHomX(OX/INS , F̃
q
) = β≥wRΓSF̃

q → F̃
q → G

q
99K

So G
q ∈ Db(X)<w. By Serre duality the left adjoint of the inclusion Db

S(X)<w ⊂ Db(X)<w
is DXβ≥η+1−wRΓSDX, and this functor can be simplified using Lemma 2.1.28. We form the
exact triangle

G̃
q → G

q → β<w(G
q ⊗L OX/INS ) 99K

and G̃
q ∈ Gw is the unique object in Gw mapping to F

q
.

2.2 Derived equivalences and variation of GIT

We apply Theorem 2.0.3 to the derived categories of birational varieties obtained by a varia-
tion of GIT quotient. First we study the case where G = C∗, in which the KN stratification
is particularly easy to describe. Next we generalize this analysis to arbitrary variations of
GIT, one consequence of which is the observation that if a smooth projective-over-affine
variety X is equivariantly Calabi-Yau for the action of a torus, then the GIT quotients of
any two generic linearizations are derived equivalent.

A normal projective variety X with linearized C∗ action is sometimes referred to as a
birational cobordism between X//LG and X//L(r)G where L(m) denotes the twist of L by
the character t 7→ tr. A priori this seems like a highly restrictive type of VGIT, but by
Thaddeus’ master space construction[44], any two spaces that are related by a general VGIT
are related by a birational cobordism. We also have the weak converse due to Hu & Keel:

Theorem 2.2.1 (Hu & Keel). Let Y1 and Y2 be two birational projective varieties, then
there is a birational cobordism X/C∗ between Y1 and Y2. If Y1 and Y2 are smooth, then by
equivariant resolution of singularities X can be chosen to be smooth.

The GIT stratification for G = C∗ is very simple. If L is chosen so that the GIT quotient
is an orbifold, then the Zα are the connected components of the fixed locus XG, and Sα is
either the ascending or descending manifold of Zα, depending on the weight of L along Zα.

We will denote the tautological choice of 1PS as λ+, and we refer to “the weights” of a
coherent sheaf at point in XG as the weights with respect to this 1PS. We define µα ∈ Z to
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Figure 2.1: Schematic diagram for the fixed loci Zα. Sα is the ascending or descending
manifold of Zα depending on the sign of µα. As the moment fiber varies, the unstable strata
Sα flip over the critical sets Zα.

be the weight of L|Zα . If µα > 0 (respectively µα < 0) then the maximal destabilizing 1PS
of Zα is λ+ (respectively λ−). Thus we have

Sα =

{
x ∈ X

∣∣∣∣∣ lim
t→0

t · x ∈ Zα if µα > 0

lim
t→0

t−1 · x ∈ Zα if µα < 0

}

Next observe the weight decomposition under λ+

Ω1
X |Zα ' Ω1

Zα ⊕N
+ ⊕N− (2.10)

Then Ω1
Sα
|Zα = Ω1

Zα
⊕N− if µα > 0 and Ω1

Sα
|Zα = Ω1

Zα
⊕N+ if µα < 0, so we have

ηα =

{
weight of detN+|Zα if µα > 0
−weight of detN−|Zα if µα < 0

(2.11)

There is a parallel interpretation of this in the symplectic category. A sufficiently large
power of L induces a equivariant projective embedding and thus a moment map µ : X → R
for the action of S1 ⊂ C∗. The semistable locus is the orbit of the zero fiber Xss = C∗ ·µ−1(0).
The reason for the collision of notation is that the fixed loci Zα are precisely the critical points
of µ, and the number µα is the value of the moment map on the critical set Zα.

Varying the linearization L(r) by twisting by the character t 7→ t−r corresponds to shifting
the moment map by −r, so the new zero fiber corresponds to what was previously the fiber
µ−1(r). For non-critical moment fibers the GIT quotient will be a DM stack, and the critical
values of r are those for which µα = weight of L(r)|Zα = 0 for some α.

Say that as r increases it crosses a critical value for which µα = 0. The maximal desta-
bilizing 1PS λα flips from λ+ to λ−, and the unstable stratum Sα flips from the ascending
manifold of Zα to the descending manifold of Zα. In the decomposition (2.10), the normal
bundle of Sα changes from N+ to N−, so applying det to (2.10) and taking the weight gives

weight of ωX |Zα = ηα − η′α (2.12)
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Thus if ωX has weight 0 along Zα, the integer ηα does not change as we cross the wall.
The grade restriction window of Theorem 2.0.3 has the same width for the GIT quotient
on either side of the wall, and it follows that the two GIT quotients are derived equivalent
because they are identified with the same subcategory Gq of the equivariant derived category
Db(X/G). We summarize this with the following

Proposition 2.2.2. Let L be a critical linearization of X/C∗, and assume that Zα is the
only critical set for which µα = 0. Let a be the weight of ωX |Zα, and let ε > 0 be a small
rational number.

1. If a > 0, then there is a fully faithful embedding

Db(X//L(ε)G) ⊆ Db(X//L(−ε)G)

2. If a = 0, then there is an equivalence

Db(X//L(ε)G) ' Db(X//L(−ε)G)

3. If a < 0, then there is a fully faithful embedding

Db(X//L(−ε)G) ⊆ Db(X//L(ε)G)

The analytic local model for a birational cobordism is the following

Example 2.2.3. Let Z be a smooth variety and let N =
⊕
Ni be a Z-graded locally free

sheaf on Z with N0 = 0. Let X be the total of N – it has a C∗ action induced by the
grading. Because the only fixed locus is Z the underlying line bundle of the linearization is
irrelevant, so we take the linearization OX(r).

If r > 0 then the unstable locus is N− ⊂ X where N− is the sum of negative weight
spaces of N , and if r < 0 then the unstable locus is N+ (we are abusing notation slightly by
using the same notation for the sheaf and its total space). We will borrow the notation of
Thaddeus [44] and write X/± = (X \ N∓)/C∗.

Inside X/± we have N±/± ' P(N±), where we are still working with quotient stacks, so
the notation P(N±) denotes the weighted projective bundle associated to the graded locally
free sheaf N±. If π± : P(N±) → Z is the projection, then X/± is the total space of the
vector bundle π∗±N∓(−1). We have the common resolution

OP(N−)×SP(N+)(−1,−1)

vv ((
π∗+N−(−1) π∗−N+(−1)

Let π : X → Z be the projection, then the canonical bundle is ωX = π∗(ωZ⊗det(N+)∨⊗
det(N−)∨), so the weight of ωX |Z is

∑
i rank(Ni). In the special case of a flop, Proposition

2.2.2 says

if
∑

i rank(Ni) = 0, then Db(π∗+N−(−1)) ' Db(π∗−N+(−1))
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General variation of GIT quotient

We will generalize the analysis of a birational cobordism to an arbitrary variation of GIT
quotient. Until this point we have taken the KN stratification as given, but now we must
recall its definition and basic properties as described in [16].

Let NSG(X)R denote the group of equivariant line bundles up to homological equivalence,
tensored with R. For any L ∈ NSG(X)R one defines a stability function on X

ML(x) := max

{
weightλ Ly
|λ|

∣∣∣∣λ s.t. y = lim
t→0

λ(t) · x exists

}
ML(•) is upper semi-continuous, andM•(x) is lower convex and thus continuous on NSG(X)R
for a fixed x. A point x ∈ X is semistable if ML(x) ≤ 0, stable if ML(x) < 0, strictly
semistable if ML(x) = 0 and unstable if ML(x) > 0.

The G-ample cone CG(X) ⊂ NSG(X)R has a finite decomposition into convex conical
chambers separated by hyperplanes – the interior of a chamber is where ML(x) 6= 0 for all
x ∈ X, so Xss(L) = Xs(L). We will be focus on a single wall-crossing: L0 will be a G-ample
line bundle lying on a wall such that for ε sufficiently small L± := L0 ± εL′ both lie in the
interior of chambers.

By continuity of the function M•(x) on NSG(X)R, all of the stable and unstable points
of Xs(L0) will remain so for L±. Only points in the strictly semistable locus, Xsss(L0) =
{x ∈ X|ML(x) = 0} ⊂ X, change from being stable to unstable as one crosses the wall.

In fact Xus(L0) is a union of KN strata for Xus(L+), and symmetrically it can be written
as a union of KN strata for Xus(L−).[16] Thus we can write Xss(L0) in two ways

Xss(L0) = S±1 ∪ · · · ∪S±m± ∪ Xss(L±) (2.13)

Where S±i are the KN strata of Xus(L±) lying in Xss(L0).

Definition 2.2.4. A wall crossing L± = L0 ± εL′ will be called balanced if m+ = m− and
Z+
i = Z−i under the decomposition (2.13).

By the construction of the strata outlined above, there is a finite collection of locally closed
Zi ⊂ X and one parameter subgroups λi fixing Zi such that G · Zi/G are simultaneously
the attractors for the KN strata of both Xss(L±) and such that the λ±1

i are the maximal
destabilizing 1PS’s.

Proposition 2.2.5. Let a reductive G act on a projective-over-affine variety X. Let L0 be
a G-ample line bundle on a wall, and define L± = L0 ± εL′ for some other line bundle L′.
Assume that

• for ε sufficiently small, Xss(L±) = Xs(L±) 6= ∅,

• the wall crossing L± is balanced, and
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• for all Zi in Xss(L0), (ωX)|Zi has weight 0 with respect to λi

then Db(Xss(L+)) ' Db(Xss(L−)).

Remark 2.2.6. Full embeddings analagous to those of Proposition 2.2.2 apply when the
weights of (ωX)|Zi with respect to λi are either all negative or all positive.

Proof. This is an immediate application of Theorem 2.0.3 to the open substack Xs(L±) ⊂
Xss(L0) whose complement admits the KN stratification (2.13). Because the wall crossing
is balanced, Z+

i = Z−i and λ−i (t) = λ+
i (t−1), and the condition on ωX implies that η+

i = η−i .
So Theorem 2.0.3 identifies the category Gq ⊂ Db(Xss(L0)) with both Db(Xs(L−)) and
Db(Xs(L+)).

Example 2.2.7. Dolgachev and Hu study wall crossings which they call truly faithful, mean-
ing that the identity component of the stabilizer of a point with closed orbit in Xss(L0) is
C∗. They show that every truly faithful wall is balanced.[16, Lemma 4.2.3]

Dolgachev and Hu also show that for the action of a torus T , there are no codimension
0 walls and all codimension 1 walls are truly faithful. Thus any two chambers in CT (X) can
be connected by a finite sequence of balanced wall crossings, and we have

Corollary 2.2.8. Let X be a projective-over-affine variety with an action of a torus T . As-
sume X is equivariantly Calabi-Yau in the sense that ωX ' OX as an equivariant OX-module.
If L0 and L1 are G-ample line bundles such that Xs(Li) = Xss(Li), then Db(Xs(L0)) '
Db(Xs(L1)).

A compact projective manifold with a non-trivial C∗ action is never equivariantly Calabi-
Yau, but Corollary 2.2.8 applies to a large class of non compact examples. The simplest are
linear representations V of T such that detV is trivial. More generally we have

Example 2.2.9. Let T act on a smooth projective Fano variety X, and let E be an
equivariant ample locally free sheaf such that det E ' ω∨X . Then the total space of the
dual vector bundle Y = SpecX(S∗E) is equivariantly Calabi-Yau and the canonical map
Y → Spec(Γ(X,S∗E)) is projective, so Y is projective over affine and by Corollary 2.2.8 any
two generic GIT quotients Y//T are derived equivalent.

When G is non-abelian, the chamber structure of CG(X) can be more complicated. There
can be walls of codimension 0, meaning open regions in the interior of CG(X) where Xs 6=
Xss, and not all walls are truly faithful.[16] Still, there are examples where derived Kirwan
surjectivity can give derived equivalences under wall crossings which are not balanced.

Definition 2.2.10. A wall crossing L± = L0 ± εL′ will be called almost balanced if m+ =
m− and under the decomposition (2.13), one can choose maximal destabilizers such that
λ−i = (λ+

i )−1 and cl(Z+
i ) = cl(Z−i ).
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In an almost balanced wall crossing for which ωX |Zi has weight 0 for all i, we have the
following general principal for establishing a derived equivalence:

Ansatz 2.2.11. For some w and w′, G+
w = G−w′ as subcategories of Db(Xss(L0)/G), where

G±• is the category identified with Db(Xss(L±)/G) under restriction.

For instance, one can recover a result of Segal & Donnovan[17]:

Example 2.2.12 (Grassmannian flop). Choose k < N and let V be a k-dimensional vector
space. Consider the action of G = GL(V ) on X = T ∗Hom(V,CN) = Hom(V,CN) ×
Hom(CN , V ). A 1PS λ : C∗ → G corresponds to a choice of weight decomposition V '

⊕
Vα

under λ. A point (a, b) has a limit under λ iff

V>0 ⊂ ker(a) and im(b) ⊂ V≥0

in which case the limit (a0, b0) is the projection onto V0 ⊂ V . There are only two nontrivial
characters up to rational equivalence, det±. A point (a, b) is semistable iff any 1PS for which
λ(t) · (a, b) has a limit as t→ 0 has nonpositive pairing with the chosen character.

In order to determine the stratification, it suffices to fix a maximal torus of GL(V ), i.e.
and isomorphism V ' Ck, and to consider diagonal one parameter subgroups (tw1 , . . . , twk)
with w1 ≤ · · · ≤ wk. If we linearize with respect to det, then the KN stratification is

λi = (0, . . . , 0, 1, . . . , 1) with i zeros

Zi =

{([
� 0

]
,

[
∗
0

])
,

with ∗ ∈Mi×N ,
and � ∈MN×i full rank

}
Yi =

{([
� 0

]
, b
)
,

with b ∈Mk×N arbitrary,
and � ∈MN×i full rank

}
Si = {(a, b)|b arbitrary, rank a = i}

So (a, b) ∈ X is semistable iff a is injective. If instead we linearize with respect to det−1,
then (a, b) is semistable iff b is surjective, the λi flip, and the critical loci Zi are the same
except that the role of � and ∗ reverse. So this is an almost balanced wall crossing with
L0 = OX and L′ = OX(det).

Let G(k,N) be the Grassmannian parametrizing k-dimensional subspaces V ⊂ CN , and
let 0 → U(k,N) → ON → Q(k,N) → 0 be the tautological sequence of vector bundles on
G(k,N). Then Xss(det) is the total space of U(k,N)N , and Xss(det−1) is the total space of
(Q(N − k,N)∨)N over G(N − k,N).

In order to verify that G+
w = G−w′ for some w′, one observes that the representations

of GLk which form the Kapranov exceptional collection[26] lie in the weight windows for
G+

0 ' Db(Xss(det)) = Db(U(k,N)N). Because U(k,N)N is a vector bundle over G(k,N),
these objects generate the derived category. One then verifies that these object lie in the
weight windows for Xss(det−1) and generate this category for the same reason. Thus by
verifying Ansatz 2.2.11 we have established an equivalence of derived categories

Db(U(k,N)N) ' Db((Q(N − k,N)∨)N)
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The astute reader will observe that these two varieties are in fact isomorphic, but the
derived equivalences we have constructed are natural in the sense that they generalize to
families. Specifically, if E is an N -dimensional vector bundle over a smooth variety Y , then
the two GIT quotients of the total space of Hom(OY ⊗ V, E)⊕Hom(E ,OY ⊗ V ) by GL(V )
will have equivalent derived categories.

The key to verifying Ansatz 2.2.11 in this example was simple geometry of the GIT
quotients Xss(det±) and the fact that we have explicit generators for the derived category of
each. With a more detailed analysis, one can verify Ansatz 2.2.11 for many more examples
of balanced wall crossings, and we will describe this in a future paper.

Remark 2.2.13. This example is similar to the generalized Mukai flops of [13]. The differ-
ence is that we are not restricting to the hyperkähler moment fiber {ba = 0}. The surjectivity
theorem cannot be applied directly to the GIT quotient of this singular variety, but in the
next section we will explore some applications to abelian hyperkähler reduction.

2.3 Applications to complete intersections: matrix

factorizations and hyperkähler reductions

In the example of a projective variety, where we identified Db(Y ) with a full subcategory of
the derived category of finitely generated graded modules over the homogeneous coordinate
ring of Y , the point of the affine cone satisfied Property (L+) “for free.” In more complicated
examples, the cotangent positivity property (L+) can be difficult to verify.

Here we discuss several techniques for extending derived Kirwan surjectivity for stacks
X/G where X is a local complete intersection. First we provide a geometric criterion for
Property (L+) to hold, which allows us to apply Theorem 2.0.3 to some hyperkähler quo-
tients. We also discuss two different approaches to derived Kirwan surjectivity for LCI
quotients, using morita theory and derived categories of singularities.

A criterion for Property (L+) and non-abelian Hyperkähler
reduction

In this section we study a particular setting in which Property (L+) holds for the KN
stratification of a singular quotient stack. This will allow us to address some hyperkähler
reductions by nonabelian groups.

Let X ′ be a smooth quasiprojective variety with an action of a reductive G, and let
S ′ = G · Y ′ ⊂ X ′ be a closed KN stratum (Definition 1.1.7). Because X ′ is smooth, Y ′ is
a P -equivariant bundle of affine spaces over Z ′. Let V be a linear representation of G, and
s : X ′ → V and equivariant map. Alternatively, we think of s as an invariant global section
of the locally free sheaf OX′ ⊗ V . We define X = s−1(0) and S = S ′ ∩X, and likewise for Y
and Z.
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Note that if we decompose V = V+ ⊕ V0 ⊕ V− under the weights of λ, then Γ(S′,OS′ ⊗
V−) = 0, so s|S′ is a section of OS′ ⊗ V0 ⊕ V+.

Lemma 2.3.1. If for all z ∈ Z ⊂ Z ′, (ds)z : TzX → V is surjective in positive weights
w.r.t. λ, then

(σ∗L
q
S)<0 ' [OZ ⊗ V ∨+

(ds+)∨−−−−→ (ΩY ′ |Z)<0]

and is thus a locally free sheaf concentrated in cohomological degree 0.

Proof. First of all note that from the inclusion σ : Z ↪→ S we have

(σ∗L
q
S)<0 → (L

q
Z)<0 → (L

q
Z/S)<0 99K

The cotangent complex L
q
Z is supported in weight 0 because λ acts trivially on Z, so the

middle term vanishes, and we get (σ∗L
q
S)<0 ' (L

q
Z/S)<0[−1], so it suffices to consider the

later.
By definition Y is the zero fiber of s : Y ′ → V0 ⊕ V+. Denote by s0 the section of V0

induced by the projection of P -modules V+⊕V0 → V0. We consider the intermediate variety
Y ⊂ Y0 := s−1

0 (0) ⊂ Y ′. Note that Y = π−1(Z), where π : Y ′ → Z ′ is the projection.
Note that Y0 → Z is a bundle of affine spaces with section σ, so in particular Z ⊂ S0 is

a regular embedding with conormal bundle (Ω1
Y ′ |Z)<0 = (Ω1

X′|Z)<0. Furthermore, on Y0 the
section s0 vanishes by construction, so Y ⊂ Y0, which by definition is the vanishing locus of
s|Y0 , is actually the vanishing locus of the map s+ : Y0 → V+. The surjectivity of (ds)z for
z ∈ Z in positive weights implies that s−1

+ (0) has expected codimension in every fiber over
Z and thus S ⊂ S0 is a regular embedding with conormal bundle OS ⊗ V ∨+ .

It now follows from the canonical triangle for Z ⊂ S ⊂ S0 that

L
q
Z/S ' Cone(σ∗LS/S0 → LZ/S0) ' [OZ ⊗ V ∨+

ds+−−→ (Ω1
Y ′|Z)<0]

with terms concentrated in cohomological degree −2 and −1. The result follows.

Proposition 2.3.2. Let X ′ be a smooth quasiprojective variety with reductive G action, and
let Z ′ ⊂ S ′ ⊂ X ′ be a KN stratum. Let s : X ′ → V be an equivariant map to a representation
of G.

Define X = s−1(0), S = S ′ ∩X, and Z = Z ′ ∩X, and assume that X has codimension
dimV . If for all z ∈ Z, (ds)z : TzX

′ → V is surjective in positive weights w.r.t. λ, then
Property (L+) holds for S/G ↪→ X/G.

Proof. We will use Lemma 2.3.1 to compute the relative cotangent complex (σ∗L
q
S/X)<0. We

consider the canonical diagram

[OY ⊗ V ∨ → Ω1
X′|Y ] //

a

��

[OY ⊗ (V≥0)∨ → Ω1
Y ′|Y ]

b

��
j∗L

q
X

// L
q
S

// L
q
S/X

//
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where the bottom row is an exact triangle and we have used the identification S′ ' Y ′/P and
S ' Y/P . Because X ⊂ X ′ has the expected codimension, it is a complete intersection and
the morphism a is a quasi-isomorphism. Lemma 2.3.1 implies that b is a quasi-isomorphism
after applying the functor (σ∗(•))<0.

Thus we have a quasi-isomorphism

(σ∗L
q
S/X)<0 ' cone

(
[OZ ⊗ V ∨ → Ω1

X′ |Z ]→ [OZ ⊗ (V≥0)∨ → Ω1
Y ′ |Z ]

)
<0

' cone
(
(Ω1

X′|Z)<0 → (Ω1
Y ′ |Z)<0

)
' 0

The last isomorphism follows because Ω1
Y ′|Z is the negative weight eigenspace of Ω1

X′|Z by
construction.

Now let (M,ω) be an algebraic symplectic manifold with a Hamiltonian G action, i.e.
there is a G-equivariant algebraic map µ : M → g∨ satisfying d〈ξ, µ〉 = −ω(∂ξ, •) ∈
Γ(M,Ω1

M), where ∂ξ is the vector field corresponding to ξ ∈ g.
For any point x ∈M , we have an exact sequence

0→ LieGx → g
dµ−→ T ∗xM → Tx(G · x)⊥ → 0 (2.14)

Showing that X := µ−1(0) is regular at any point with finite stabilizer groups. Thus if the
set such points is dense in X, then X ⊂ M is a complete intersection cut out by µ. Thus
we have

Proposition 2.3.3. Let (M,ω) be a projective-over-affine algebraic symplectic manifold with
a Hamiltonian action of the reductive group G, and let X = µ−1(0) ⊂M . If Xs is dense in
X, then Property (L+) holds for the GIT stratification of X.

Example 2.3.4 (stratified Mukai flop). We return to M := Hom(V,CN) × Hom(CN , V ).
In Example 2.2.12 we considered the GIT stratification for the action of GL(V ), but this
group action is also algebraic Hamiltonian with moment map µ(a, b) = ba ∈ gl(V ). The
stratification of X = µ−1(0) is induced by the stratification of M . Thus the Yi in X consist
of

Yi =

{([
a1 0

]
,

[
b1

b2

])
,

with b1a1 = 0, b2a1 = 0,
and a1 ∈MN×i full rank

}
and Zi ⊂ Yi are those points where b2 = 0. Note that over a point in Zi, the condition
b2a1 = 0 is linear in the fiber, and so Yi → Zi satisfies Property (A).

The GIT quotient Xss/GL(V ) is the cotangent bundle T ∗G(k,N). Property (A) holds
in this example, and Property (L+) holds by Proposition 2.3.2, so Theorem 2.0.3 gives a
fully faithful embedding Db(T ∗G(k,N)) ⊂ Db(X/GL(V )) for any choice of integers wi. The
derived category Db(T ∗G(k,N)) has been intensely studied by Cautis, Kamnitzer, and Licata
from the perspective of categorical sl2 actions. We will discuss the connection between their
results and derived Kirwan surjectivity in future work.
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Extending the main theorem using Morita theory

In this section I remark that Theorem 1.2.1 extends to complete intersections in a smooth
X/G for purely formal reasons, where by complete intersection I mean one defined by global
invariant functions on X/G.

In this section I will use derived Morita theory ([7],[28]), and so I will switch to a nota-
tion more common in that subject. QC(X) will denote the unbounded derived category of
quasicoherent sheaves on a perfect stack X, and Perf(X) will denote the category of perfect
complexes, i.e. the compact objects of QC(X). All of the stacks we use are global quotients
of quasiprojective varieties, so Perf(X) are just the objects of QC(X) which are equivalent
to a complex of vector bundles.

Now let X = X/G as in the rest of this paper. Assume we have a map f : X → B
where B is a quasiprojective scheme. The restriction i∗ : Perf(X) → Perf(Xss) is a dg-⊗
functor, and in particular it is a functor of module categories over the monoidal dg-category
Perf(B)⊗.

The subcategory Gq used to construct the splitting in Theorem 1.2.1 is defined using
conditions on the weights of various 1PS’s of the isotropy groups of X, so tensoring by
a vector bundle f ∗V from B preserves the subcategory Gq. It follows that the splitting
constructed in Theorem 1.2.1 is a splitting as modules over Perf(B). Thus for any point
b ∈ B we have a split surjection

FunPerf(B) (Perf({b}),Perf(X))
i∗
// // FunPerf(B) (Perf({b}),Perf(Xss))

oo

Using Morita theory, both functor categories correspond to full subcategories of QC((•)b),
where (•)b denotes the derived fiber (•)×LB {b}. Explicitly, FunPerf(B) (Perf({b}),Perf(X)) is
equivalent to the full dg-subcategory of QC((X)b) consisting of complexes of sheaves whose
pushforward to X is perfect. Because X is smooth, and O(X)b is coherent over OX, this is
precisely the derived category of coherent sheaves Db(Coh((X)b)). The same analysis applied
to the tensor product Perf({b})⊗Perf(B) Perf(X) yields a splitting for the category of perfect
complexes.

Corollary 2.3.5. Given a map f : X→ B and a point b ∈ B, the splitting of Theorem 1.2.1
induces splittings of the natural restriction functors

Db(Coh((X)b)) i∗
// // Db(Coh((Xss)b))

pp

Perf((X)b) i∗
// // Perf((Xss)b)

qq

In the particular case of a complete intersection one has B = Ar, b = 0 ∈ B, and the derived
fiber agrees with the non-derived fiber.

As a special case of Corollary 2.3.5, one obtains equivalences of categories of matrix
factorizations in the form of derived categories of singularities. Namely, if W : X → C is
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a function, a “potential” in the language of mirror symmetry, then the category of matrix
factorizations corresponding to W is

MF(X,W ) ' Db
sing(W

−1(0)) = Db(Coh(W−1(0)))/Perf(W−1(0))

From Corollary 2.3.5 the restriction functor MF(X,W ) → MF(X,W ) splits. In particular,
if two GIT quotients Perf(Xss(L1)) and Perf(Xss(L2)) can be identified with the same sub-
category of Perf(X) as in Proposition 2.2.2, then the corresponding subcategories of matrix
factorizations are equivalent

MF(Xss(L1),W |Xss(L1)) ' MF(Xss(L2),W |Xss(L2))

Corollary 2.3.5 also applies to the context of hyperkähler reduction. Let T be a torus, or
any group whose connected component is a torus, and consider a Hamiltonian action of T on a
hyperkähler varietyX with algebraic moment map µ : X/T → t∨. One forms the hyperkähler
quotient by choosing a linearization on X/T and defining X////T = µ−1(0)∩Xss. Thus we
are in the setting of Corollary 2.3.5.

Corollary 2.3.6. Let T be an extension of a finite group by a torus. Let T act on a
hyperkähler variety X with algebraic moment map µ : X → t∨. Then the restriction functors

D(Coh(µ−1(0)/T ))→ D(Coh(µ−1(0)ss/T ))

Perf(Coh(µ−1(0)/T ))→ Perf(Coh(µ−1(0)ss/T ))

both split.

This splitting does not give as direct a relationship between Db(X/T ) and Db(X////T )
as Theorem 2.0.3 does for the usual GIT quotient, but it is enough for some applications,
for instance

Corollary 2.3.7. Let X be a projective-over-affine hyperkähler variety with a Hamiltonian
action of a torus T . Then the hyperkähler quotients with respect to any two generic lin-
earization L1,L2 are derived equivalent.

Proof. By Corollary 2.2.8 all Xss(L) for generic L will be derived equivalent. In particular
there is a finite sequence of wall crossings Perf(Xss(L+))→ Perf(Xss(L0))← Perf(Xss(L−))
identifying each GIT quotient with the same subcategory. By Corollary 2.3.6 these splittings
descend to µ−1(0), giving equivalences of both Db(Coh(•)) and Perf(•) for the hyperkähler
reductions.
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Chapter 3

Autoequivalences of derived
categories

3.1 Derived Kirwan surjectivity

In this section we fix our notation and recall the theory of derived Kirwan surjectivity devel-
oped in Chapter 2. We also introduce the category Cw and its semiorthogonal decompositions,
which will be used throughout this paper.

We consider a smooth projective-over-affine variety X over an algebraically closed field
k of characteristic 0, and we consider a reductive group G acting on X. Given a G-ample
equivariant line bundle L, geometric invariant theory defines an open semistable locus Xss ⊂
X. After choosing an invariant inner product on the cocharacter lattice of G, the Hilbert-
Mumford numerical criterion produces a special stratification of the unstable locus by locally
closed G-equivariant subvarieties Xus =

⋃
i Si called Kirwan-Ness (KN) strata. The indices

are ordered so that the closure of Si lies in
⋃
j≥i Sj.

Each stratum comes with a distinguished one-parameter subgroup λi : C∗ → G and Si
fits into the diagram

Zi
σi 00

Yi ⊂ Si := G · Yi
πi
kk

ji // X , (3.1)

where Zi is an open subvariety of Xλi fixed, and

Yi =

{
x ∈ X −

⋃
j>i

Sj

∣∣∣∣∣ limt→0
λi(t) · x ∈ Zi

}
.

σi and ji are the inclusions and πi is taking the limit under the flow of λi as t → 0. We
denote the immersion Zi → X by σi as well. Throughout this paper, the spaces Z, Y, S and
morphisms σ, π, j will refer to diagram 3.1.

In addition, λi determines the parabolic subgroup Pi of elements of G which have a limit
under conjugation by λi, and the centralizer of λi, Li ⊂ Pi ⊂ G, is a Levi component for
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Pi. One key property of the KN stratum is that Si = G ×Pi Yi, so that G equivariant
quasicoherent sheaves on Si are equivalent to Pi-equivariant quasicoherent sheaves on Yi.
When G is abelian, then G = Pi = Li, and Yi = Si is already G invariant, so the story
simplifies quite a bit.

Theorem 3.1.1 (derived Kirwan surjectivity). Let ηi be the weight of det(N∨SiX)|Zi with
respect to λi. Choose an integer wi for each stratum and define the full subcategory

Gw := {F q ∈ Db(X/G)|∀i, σ∗i F
q

has weights in [wi, wi + ηi) w.r.t. λi}.

Then the restriction functor r : Gw → Db(Xss/G) is an equivalence of dg-categories.

The weight condition on σ∗i F
q
is called the grade restriction rule and the interval [wi, wi+

ηi) is the grade restriction window. The theorem follows immediately from the corresponding
statement for a single closed KN stratum by considering the chain of open subsets Xss ⊂
Xn ⊂ · · · ⊂ X0 ⊂ X where Xi = Xi−1 \ Si.

The full version of the theorem also describes the kernel of the restriction functor r :
Db(X/G)→ Db(Xss/G). For a single stratum S we define the full subcategory

Aw :=

{
F

q ∈ Db(X/G)

∣∣∣∣ H∗(σ∗F q
) has weights in [w,w + η] w.r.t. λ
H∗(F q

) supported on S

}
we have an infinite semiorthogonal decomposition

Db(X/G) = 〈. . . ,Aw−1,Aw,Gw,Aw+1, . . .〉

This means that the subcategories are disjoint, semiorthogonal (there are no RHom’s point-
ing to the left), and that every object has a functorial filtration whose associated graded
pieces lie in these subcategories (ordered from right to left).1 These categories are not obvi-
ously disjoint, but it is a consequence of the theory that no non-zero object supported on S
can satisfy the grade restriction rule defining Gw.

Let Db(Z/L)w ⊂ Db(Z/L) denote the full subcategory which has weight w with respect
to λ, and let (•)w be the exact functor taking the summand with λ weight w of a coherent
sheaf on Z/L.

Lemma 3.1.2 (see Chapter 2). The functor ιw : Db(Z/L)w → Aw is an equivalence, and its
inverse can be described either as (σ∗F

q
)w or as (σ∗F

q
)w+η ⊗ det(NSX).

Using the equivalences ιw and r we can rewrite the main semiorthogonal decomposition

Db(X/G) = 〈. . . ,Db(Z/L)w,D
b(Xss/G)w,D

b(Z/L)w+1, . . .〉 (3.2)

1The early definitions of semiorthogonal decompositions required the left and right factors to be admis-
sible, but this requirement is not relevant to our analysis. The notion we use is sometimes referred to as a
weak semiorthogonal decomposition
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When there are multiple strata, one can inductively construct a nested semiorthogonal de-
composition using Db(Xi−1/G) = 〈. . . ,Aiw,Db(Xi/G),Aiw+1, . . .〉.

In this paper, we will consider the full subcategory

Cw := {F q ∈ Db(X/G) |H∗(σ∗F q
) has weights in [w,w + η] w.r.t. λ} ⊂ Db(X/G)

If we instead use the grade restriction window [w,w+η), then we get the subcategory Gw ⊂
Cw. The main theorem of Chapter 2 implies that we have two semiorthogonal decompositions

Cw = 〈Gw,Aw〉 = 〈Aw,Gw+1〉. (3.3)

We regard restriction to Xss as a functor r : Cw → Db(Xss/G). The subcategory Aw is the
kernel of r, but is described more explicitly as the essential image of the fully faithful functor
ιw : Db(Z/L)w → Cw as discussed above.

Lemma 3.1.3. The left and right adjoints of ιw : Db(Z/L)w → Cw are ιLw(F
q
) = (σ∗F

q
)w

and ιRw(F
q
) = (σ∗F

q
)w+η ⊗ detNSX|Z.

Proof. Letting G
q ∈ Db(Z/L)w, we have HomX/G(F

q
, ιwG

q
) ' HomS/G(j∗F

q
, π∗F

q
) and

π∗G
q ∈ Db(S/G)w. In Chapter 2, we show that Db(S/G) admits a baric decomposition, and

using the baric truncation functors

HomS/G(j∗F
q
, π∗G

q
) ' HomS/G(β<w+1j

∗F
q
, π∗G

q
)

' HomZ/L(σ∗β<w+1j
∗F

q
, G

q
)

Where the last equality uses the fact that π∗ : Db(Z/L)w → Db(S/G)w is an equivalence
with inverse σ∗. Finally, we have σ∗β<w+1j

∗F
q
= (σ∗j∗F

q
)w = (σ∗F

q
)w.

The argument for ιR is analogous, but it starts with the adjunction for j!F
q ' j!(OX)⊗

j∗F
q
, HomX/G(ιwG

q
, F

q
) ' HomS/G(π∗G

q
, det(NSX)⊗ j∗F q

).

Lemma 3.1.4. The functor r : Cw → Db(Xss/G) has right and left adjoints given respectively
by rR : Db(Xss/G) ' Gw ⊂ Cw and rL : Db(Xss/G) ' Gw+1 ⊂ Cw+1.

Now because we have two semiorthogonal decompositions in Equation (3.3), there is a
left mutation [10] equivalence functor LAw : Gw+1 → Gw defined by the functorial exact
triangle

ιwι
R
w(F

q
)→ F

q → LAwF
q
99K (3.4)

Note that restricting to Xss/G, this triangle gives an equivalence r(F
q
) ' r(LAwF

q
). Thus

this mutation implements the ’window shift’ functor

Gw+1

r &&

LAw //Gw

Db(Xss/G)
r−1=rR

99 (3.5)

meaning that LAwF
q

is the unique object of Gw restricting to the same object as F
q

in
Db(Xss/G).



CHAPTER 3. AUTOEQUIVALENCES OF DERIVED CATEGORIES 47

The category Db(Z/L)w

We will provide a more geometric description of the subcategory Db(Z/L)w. We define the
quotient group L′ = L/λ(C∗). Because λ(C∗) acts trivially on Z, the group L′ acts naturally
on Z as well.

Lemma 3.1.5. The pullback functor gives an equivalence Db(Z/L′)
'−→ Db(Z/L)0.

Proof. This follows from the analogous statement for quasicoherent sheaves, which is a con-
sequence of descent.

The categories Db(Z/L)w can also be related to Db(Z/L′). If λ : C∗ → G has the kernel
µn ⊂ C∗, then Db(Z/L)w = ∅ unless w ≡ 0 mod n. In this case we replace λ with an
injective λ′ such that λ = (λ′)n and Db(Z/L)[λ′=w] = Db(Z/L)[λ=nw]. Thus we will assume
that λ is injective.

Lemma 3.1.6. Let L ∈ Db(Z/L)w be an invertible sheaf. Then pullback followed by L ⊗ •
gives an equivalence Db(Z/L′)

'−→ Db(Z/L)w.

For instance, if there is a character χ : L→ C∗ such that χ◦λ is the identity on C∗, then
χ induces an invertible sheaf on Z/L with weight 1, so Lemma 3.1.6 applies. If G is abelian
then such a character always exists.

Remark 3.1.7. This criterion is not always met, for example when Z/L = ∗/GLn and λ is
the central C∗. What is true in general is that Z/L→ Z/L′ is a C∗ gerbe, and the category
Db(Z/L)1 is by definition the derived category of coherent sheaves on Z/L′ twisted by that

gerbe. The data of an invertible sheaf L ∈ Db(Z/L)1 is equivalent to a trivialization of this

gerbe Z/L
'−→ Z/L′ × ∗/C∗.

3.2 Window shift autoequivalences, mutations, and

spherical functors

In this paper we study balanced GIT wall crossings. Let L0 be a G-ample line bundle such
that the strictly semistable locus Xsss = Xss − Xs is nonempty, and let L′ be another G-
equivariant line bundle. We assume that Xss = Xs for the linearizations L± = L0 ± εL′ for
sufficiently small ε, and we denote Xss

± = Xss(L±). In this case, Xss(L0) − Xss(L±) is a
union of KN strata for the linearization L±, and we will say that the wall crossing is balanced
if the strata S+

i and S−i lying in Xss(L0) are indexed by the same set, with Z+
i = Z−i and

λ+
i = (λ−i )−1. This is slightly more general than the notion of a truly faithful wall crossing

in [16]. In particular, if G is abelian and there is some linearization with a stable point, then
all codimension one wall crossings are balanced.

In this case we will replace X with Xss(L0) so that these are the only strata we need to
consider. In fact we will mostly consider a balanced wall crossing where only a single stratum
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flips – the analysis for multiple strata is analogous. We will drop the superscript from Z±,
but retain superscripts for the distinct subcategories A±w . Objects in A±w are supported on
S±, which are distinct because S+ consist of orbits of points flowing to Z under λ+, whereas
S− consists of orbits of points flowing to Z under λ−. When there is ambiguity as to which
λ± we are referring to, we will include it in the notation, i.e. Db(Z/L)[λ+=w].

Observation 3.2.1. If ωX |Z has weight 0 with respect to λ±, then η+ = η− (see Chapter
2). This implies that C+

w = C−w′, G+
w = G−w′+1, and G+

w+1 = G−w′, where w′ = −η − w.

This observation, combined with derived Kirwan surjectivity, implies that the restric-
tion functors r± : G−w → Db(Xss

± /G) are both equivalences. In particular ψw := r+r
−1
− :

Db(Xss
− /G) → Db(Xss

+ /G) is a derived equivalence between the two GIT quotients. Due
to the dependence on the choice of w, we can define the window shift autoequivalence
Φw := ψ−1

w+1ψw of Db(Xss
− /G).

Lemma 3.2.2. If there is an invertible sheaf L ∈ Db(X/G) such that L|Z has weight w
w.r.t. λ+, then Φw = (L∨⊗)Φ0(L⊗). In particular, if L has weight 1, then ψ−1

v ψw lies in
the subgroup of Aut Db(Xss

− /G) generated by Φ0 and L⊗.

Proof. The commutativity of the following diagram implies that (L∨⊗)ψk(L⊗) = ψk+w

Db(Xss
− /G)
⊗L��

G−k+w
//oo

⊗L��

Db(Xss
+ /G)
⊗L��

Db(Xss
− /G) G−k

//oo Db(Xss
+ /G)

Here we are able to give a fairly explicit description of Φw from the perspective of mu-
tation. Note that because G+

w+1 = G−w′ , the inverse of the restriction G+
w+1 → Db(Xss

− /G) is
the right adjoint rR−, whereas the inverse of the restriction G−w′+1 → Db(Xss

− /G) was the left
adjoint rL− by Lemma 3.1.4.

Proposition 3.2.3. The autoequivalence Φw of Db(Xss
− /G) described by the following non-

commuting diagram, i.e. Φw = r− ◦ LA+
w
◦ rR−.

G+
w+1

LA+
w

--G+
w

r−ww

Db(Xss
− /G)

rR−=r−1
−

aa

Proof. This is essentially rewriting Diagram (3.5) using Observation 3.2.1 and its conse-
quences.
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Window shifts are spherical twists

Next we show that the window shift autoequivalence Φw is a twist corresponding to a spher-
ical functor.

This generalizes a spherical object [40], which is equivalent to a spherical functor Db(k−
vect)→ B. By describing window shifts both in terms of mutations and as spherical twists,
we show why these two operations have the “same formula” in this setting. In fact, in the
next section we show that spherical twists can always be described by mutations.

Let E := Y +∩Xss
− , it is P+-equivariant, and let Ẽ = S+∩Xss

− = G ·E. Then we consider
the diagram

E/P+ = Ẽ/G

π

��

j // Xss
− /G

Z/L

(3.6)

This is a stacky form of the EZ-diagram used to construct autoequivalences in [24]. We
define the transgression along this diagram fw = j∗π

∗ : Db(Z/L)w → Db(Xss
− /G). Note that

we have used the same letters π and j for the restriction of these maps to the open substack
E/P+ ⊂ Y +/P+, but we denote this transgression fw to avoid confusion.

Proposition 3.2.4. The window shift functor Φw is defined for F
q ∈ Db(Xss

− /G) by the
functorial mapping cone

fwf
R
w (F

q
)→ F

q → Φw(F
q
) 99K

Proof. This essentially follows from abstract nonsense. By the definition of left mutation
(3.4), and by the fact that r−r

R
− = idDb(Xss

− /G), it follows that the window shift autoequiva-

lence is defined by the cone

r−ι
+
w(ι+w)RrR−(F

q
)→ F

q → Φw(F
q
) 99K

Furthermore, by construction we have fw = r−ι
+
w , so fRw ' (ι+w)RrR−. The claim follows.

Consider the case where Db(Z/L)w is generated by a single exceptional object E. The
object E+ := ι+wE ∈ A+

w is exceptional, and the left mutation functor (3.4) acts on F
q ∈ G+

w+1

by
HomX/G(E+, F

q
)⊗ E+ → F

q → LA+
w

(F
q
) 99K

To emphasize the dependence on E+ we write LE+ := LA+
w

. As we have shown, LE+(F
q
)|Xss

−
is the window shift autoequivalence Φw(F

q|Xss
−

). If we restrict the defining exact triangle for
LE+(F

q
) to Xss

− we get

HomX/G(E+, F
q
)⊗ E+|Xss

−
→ F

q|Xss
−
→ Φw(F

q|Xss
−

) 99K

Define the object S = E+|Xss
−
∈ Db(Xss

− /G). The content of Proposition 3.2.4 is that
the canonical map HomX/G(E+, F

q
) → HomXss

− /G
(S, F

q|Xss
−

) is an isomorphism, so that
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Φw = LE+ |Xss
−

is the spherical twist TS by the object S. This can be verified more directly
using the following

Lemma 3.2.5. For F
q
, G

q ∈ C−w′,
RΓS−HomX/G(F

q
, G

q
) ' HomZ/L((σ∗F

q
)w′ , (σ

∗G
q ⊗ κ−)w′).

Equivalently we have an exact triangle

HomZ/L((σ∗F
q
)w′ , (σ

∗G
q ⊗ κ−)w′)→ HomX/G(F

q
, G

q
)→ HomXss

− /G
(F

q|Xss
−
, G

q|Xss
−

) 99K

Proof. Let C = 〈A,B〉 be a semiorthogonal decomposition of a pretriangulated dg-category,
and let ιA and ιB be the inclusions. Applying Hom(F, •) to the canonical exact triangle
ιBι

R
BG→ G→ ιAι

L
AG 99K gives the exact triangle

HomB(ιLBF, ι
R
BG)→ HomC(F,G)→ HomA(ιLAF, ι

L
AG) 99K

assuming B is left admissible. The lemma is just a special case of this fact for the semiorthog-
onal decomposition C−w′ = 〈G−w′ ,A−w〉, using the description of the adjoint functors in Lemma
3.1.3.

In summary, we have given a geometric explanation for the identical formulas for LE+

and TS: the spherical twist is the restriction to the GIT quotient of a left mutation in the
equivariant derived category.

Example 3.2.6. LetX be the crepant resolution of theAn singularity. It is the 2 dimensional
toric variety whose fan in Z2 has rays spanned by (1, i), for i = 0, . . . , n+ 1, and which has
a 2-cone for each pair of adjacent rays. Removing one of the interior rays corresponds to
blowing down a rational curve P1 ⊂ X to an orbifold point with Z/2Z stabilizer. This
birational transformation can be described by a VGIT in which Z/L′ ' ∗. The spherical
objects corresponding to the window shift autoequivalences are OP1(m).

Remark 3.2.7. Horja [24] introduced the notion of an EZ-spherical object F
q ∈ Db(E/P+)

for a diagram Z/L′
q←− E/P+

j−→ Xss
− /G – his notion is equivalent to the functor j∗(F

q⊗q∗(•))
being spherical 3.2.10. Proposition 3.2.4 amounts to the fact that OE/P+ is an EZ-spherical
object for this diagram. By the projection formula q∗L is EZ-spherical for any invertible
sheaf L on Z. The twist functors corresponding to different choices of L are equivalent.

Remark 3.2.8. Our results also extend results in [39, 17]. The first work formally intro-
duced grade restriction windows to the mathematics literature and showed that window
shift equivalences are given by spherical functors in the context of gauged Landau-Ginzburg
models. (See subsection 3.3.) In the second work, the authors study window shift autoequiv-
alences associated to Grassmannian flops, using representation theory of GL(n) to compute
with homogeneous bundles.
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All spherical twists are mutations

We have shown that the window shift Φw is a twist Cone(fwf
R
w → id) corresponding to a

functor fw : Db(Z/L)w → Db(Xss
− /G). Now we show that this fw is spherical [2], and in

fact any autoequivalence of a dg-category arising from mutations as Φw does is a twist by a
spherical functor. Conversely, any spherical functor between dg-categories with a compact
generator arises from mutations.

Using the equalities of Observation 3.2.1, we have the following semiorthogonal decom-
positions of C+

w = C−w′ , all coming from (3.3):

〈A+
w ,G

+
w+1〉

LA+
w +3

KS

L
G+
w+1

〈G+
w ,A+

w〉
L
G+
w +3 〈A−w′ ,G+

w〉
LA−

w′ +3 〈G+
w+1,A−w′〉 (3.7)

where we conclude a fortiori that each semiorthogonal decomposition arises from the previ-
ous one by left mutation. Each mutation gives an equivalence between the corresponding
factors in each semiorthogonal decomposition, and the autoequivalence Φw, interpreted as
an autoequivalence of G+

w , is obtained by following the sequence of mutations.

Remark 3.2.9. The braid group Bn on n strands acts by mutations on the set of semiorthog-
onal decompositions of length n (with admissible factors). The fact that the first and last
semiorthogonal decompositions in 3.7 are equal means that this semiorthogonal decompo-
sition has a nontrivial stabilizer in B2 under its action on length two semiorthogonal de-
compositions of Cw. We would like to point out that this may be a way to produce inter-
esting autoequivalences more generally. Let Gn be the groupoid whose objects are strong
semiorthogonal decompositions (i.e. all factors are admissible subcategories) of length n and
whose morphisms are braids that take one to another by mutation. Let e = 〈A1, . . . ,An〉 be
a semiorthogonal decomposition in the category of interest. Then AutGn(e) is a subgroup of
Bn and for each i there is a representation

Aut(e)→ Aut(Ai),

the group of exact autoequivalences of Ai up to isomorphism of functors. By construction
the autoequivalences in the image of this representation are compositions of mutations. In
the situation above B2 = Z and Aut(〈G+

w ,A+
w〉) ⊂ B2 is the index four subgroup.

Let us recall the definition of spherical functor.

Definition 3.2.10 ([2]). A dg-functor S : A → B of pre-triangulated dg-categories is
spherical if it admits right and left adjoints R and L such that

1. the cone FS of id→ RS is an autoequivalence of A, and

2. the natural morphism R→ FSL induced by R→ RSL is an isomorphism of functors.
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If S is spherical, the cone TS on the morphism SR → id is an autoequivalence called the
twist corresponding to S.

Suppose that C is a pre-triangulated dg category admitting semiorthogonal decomposi-
tions

C = 〈A,B〉 = 〈B,A′〉 = 〈A′,B′〉 = 〈B′,A〉.
Denote by i q the inclusion functors. Since A,B,A′,B′ are admissible, i q admits right and
left adjoints iRq and iLq , respectively. We can use these functors to describe the mutations

LA = iLB′iB : B → B′, RA = iRB iB′ : B′ → B,

with analogous formulae for the other mutations.

Theorem 3.2.11. The functor S : A → B given by S = iLBiA is spherical. Moreover, the
spherical twist TS : B → B is obtained as the mutation

TS ∼= LA′ ◦ LA.

Proof. We must produce left and right adjoints for S, then check the two parts of the
definition. Clearly the right adjoint to S is R = iRAiB. In order to compute the left adjoint,
we first apply iLB to the triangle

iB′i
R
B′ → idC → iA′i

L
A′ 99K .

Since iLBiA′ = 0 we see that the map

LA′iRB′ = iLBiB′i
R
B → iLB

is an isomorphism. Using the fact that LA′ and RA′ are biadjoint, it follows that L =
iLAiB′RA′ .

To establish (1), we will express FS in terms of mutations. Begin with the triangle,

idC → iBi
L
B → iA′i

R
A′ [1] 99K . (3.8)

Then apply iRA on the right and iA on the left to get a triangle

idA → iRAiBi
L
BiA = RS → iRAiA′i

R
A′iA[1] = RB′RB[1] 99K .

Since iA is fully faithful, the first map is the unit of the adjunction between S and R so we
see that FS ∼= RB′RB[1]. Hence it is an equivalence. A very similar computation shows that
TS ∼= LA′LA.

We now verify (2), that the composition R→ RSL→ FSL is an isomorphism. The map
R→ FSL is the composite

R = iRAiB → (iRAiB)(iLBiB′i
R
B′iA)(iLAiB′i

R
B′iB)→

RSL = (iRAiB)(iLBiA)(iLAiB′i
R
B′iB)→ FSL = iRAiA′i

R
A′iAi

L
AiB′i

R
B′iB
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where the middle map comes from the isomorphism iLBiB′i
R
B′iA → S = iLBiA that we discussed

in the preceding paragraphs. The first map is obtained by applying RLA′ and RA′ to the
left and right, respectively of the unit morphism idB′ → (iRB′iA)(iLAiB′). To get the last map
one applies iRA and iAi

L
AiB′i

R
B′iB to the left and right, respectively of the map iBi

L
B → iA′i

R
A′ [1]

from the triangle (3.8).
In order to understand the morphism R→ RSL, consider the commutative diagram

iLBiB′
id ◦ε //

= %%

iLBiB′i
R
B′iB′

id ◦ε◦ id//

id ◦η◦ id
��

iLBiB′i
R
B′iAi

L
AiB′

id ◦η◦ id
��

iLBiB′
id ◦ε◦ id // iLBiAi

L
AiB′

In this diagram, units and counits of adjunctions are denoted ε and η, respectively. The
map R → RSL is obtained by applying iRAiB and iRB′iB on the left and right, respectively,
to the clockwise composition from the upper left to the lower right. On the other hand
the counterclockwise composite from the upper left to the lower right comes from the unit
morphism idC → iAi

L
A by applying iLB and iB′ on the right and left, respectively. Therefore

we get R→ RSL by applying iRAiBi
L
B and iB′i

R
B′iB to the left and right of this unit morphism,

respectively.
Next, consider the commutative diagram

iBi
L
B

id ◦ε //

��

iBi
L
BiAi

L
A

��
iA′i

R
A′ [1] id ◦ε// iA′i

R
A′iAi

L
A[1]

We have established now that the map R→ FSL is obtained from the clockwise composition
in this diagram by applying iRA and iB′i

R
B′iB on the left and right, respectively. Let us examine

what happens when we apply these functors to the whole commutative diagram. From the
triangle (3.8) and the fact that iRAiB′ = 0 we see that the left vertical map becomes an
isomorphism. Moreover, the unit map fits into the triangle

iBi
R
B → idC → iAi

L
A 99K

and since iRA′iB = 0 it follows that the bottom horizontal map becomes an isomorphism as
well. So R→ FSL is an isomorphism.

Remark 3.2.12. There are other functors arising from the sequence of semiorthogonal
decompositions in the statement of Theorem 3.2.11, such as iRB′iA : A → B′, which are
spherical because they are obtained from S by composing with a suitable mutation. The
corresponding spherical twist autoequivalences can also be described by mutation in C.

We can also obtain a converse to this statement. Suppose that A
q

and B
q

are dg-
algebras over k. Write D(•) for the derived category of right dg modules over •. We
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begin with a folklore construction. Let F
q

be an A
q − B q

bimodule defining a dg functor
F : D(A

q
)→ D(B

q
) given by F (M

q
) = M

q ⊗A F q
. Define a new dg algebra

CF =

(
A

q
F

q
0 B

q) .
More precisely, as a complex CF = A

q ⊕ F q ⊕B q
and the multiplication is given by

(a, f, b)(a′, f ′, b′) = (aa′, af ′ + fb′, bb′).

By construction C
q
F has a pair of orthogonal idempotents eA = (1, 0, 0) and eB = (0, 0, 1).

Every module splits as a complex M
q
= M

q
A⊕M

q
B, where M

q
A := M

q
eA is an A

q
module and

M
q
B := M

q
eB is a B

q
module. In fact the category of right C

q
F modules is equivalent to the

category of triples consisting of M
q
A ∈ D(A

q
), M

q
B ∈ D(B

q
), and a structure homomorphism

of B
q

modules MA ⊗A F
q → M

q
B, with intertwiners as morphisms. In order to abbreviate

notation, we will denote the data of a module over C
q
F by its structure homomorphism

[F (M
q
A)→M

q
B]

Let A,B ⊂ D(C
q
) be the full subcategories of modules of the form [F (M

q
A) → 0] and

[F (0) → M
q
B] respectively. Then A ' D(A

q
), B ' D(B

q
), and the projection D(C

q
F ) → A

(resp. B) given by [F (M
q
A)→M

q
B] 7→M

q
A (resp. M

q
B) is the left (resp. right) adjoint of the

inclusion. We have semiorthogonality B ⊥ A and a canonical short exact sequence

[F (0)→M
q
B]→ [F (M

q
A)→M

q
B]→ [F (M

q
A)→ 0] 99K

and therefore D(C
q
F ) = 〈A,B〉.

Lemma 3.2.13. Suppose that G
q

is a B
q − A q

bimodule such that ⊗G q
is right adjoint to

⊗F q
. Then there is an equivalence Φ : D(C

q
F )→ D(C

q
G) such that Φ restricts to the identity

functor between the subcategories of D(C
q
F ) and D(C

q
G) which are canonically identified with

D(A
q
).

Proof. Note that the adjunction allows us to identify a module over C
q
F by a structure

homomorphism M
q
A → G(M

q
B) rather than a homomorphism F (M

q
A) → M

q
B. Letting M =

[M
q
A → G(M

q
B)] ∈ D(C

q
F ), we define

Φ(M)A = Cone(M
q
A → G(M

q
B))[−1] Φ(M)B = MB[−1]

with the canonical structure homomorphism G(M
q
B)→ Φ(M)A defining an object in D(C

q
G).

This construction is functorial.
For N = [G(NB)→ NA] ∈ D(C

q
G), the inverse functor assigns

Φ−1(N)A = Cone(G(N
q
B)→ N

q
A) Φ−1(N)B = N

q
B[1]

with the canonical structure homomorphism Φ−1(N)A → G(N
q
B[1]) defining an object of

D(C
q
F ) (again using the adjunction between F and G).
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Remark 3.2.14. If F
q
and G

q
are perfect bimodules, then D(•) can be replaced with Perf(•)

in the above lemma.

Consider a functor S : D(A
q
)→ D(B

q
), given by a A

q −B q
bimodule S

q
, with right and

left adjoints R,L given by bimodules R
q
and L

q
respectively. Fix morphisms A

q → S
q⊗B qR q

,
etc., representing the units and co-units of the adjunctions. Note that from these choices we
can produce a bimodule F

q
S representing FS and a quasi-isomorphism R

q → L
q ⊗A q F q

S.

Theorem 3.2.15. If S is spherical then there is a pre-triangulated dg category C which
admits semiorthogonal decompositions

C = 〈A,B〉 = 〈B,A′〉 = 〈A′,B′〉 = 〈B′,A〉.

such that S is the inclusion of A followed by the projection onto B with kernel A′, as in the
previous theorem.

Proof. Let S ′ = S[−1], R′ = R[1], and L′ = L[1] and note that the same adjunctions hold.
We will show that C = D(C

q
S′) admits the desired semiorthogonal decomposition. The reason

for introducing S ′, R′, and L′ is the following. We observe that S ' iLB ◦ iA. Indeed, A′ is the
full subcategory of D(C

q
S[−1]) of objects [S[−1](M

q
A)→M

q
B] where the structural morphism

is an isomorphism. So we see that for any M
q
A there is a triangle

[S[−1](M
q
A)→ S[−1](M

q
A)]→ [S[−1](M

q
A)→ 0]→ [S ′(0)→ S(M

q
A)] 99K

Hence including A and projecting to B away from A′ gives S.
It follows from Lemma 3.2.13 that there are equivalences

D(C
q
R′)

Ψ1 --
D(C

q
S′)

Φ1

mm

Ψ2 --
D(C

q
L′)

Φ2

mm

By construction, D(C
q
S′) admits a semi-orthogonal decomposition 〈A,B〉. We define two

more full subcategories using the above equivalences. Let A′ = Φ2 D(A
q
) and B′ = Ψ1 D(B

q
).

Then we have the semiorthogonal decompositions

D(C
q
S′) = 〈B′,A〉 = 〈A,B〉 = 〈B,A′〉.

All that remains is to show that we have a semiorthogonal decomposition D(C
q
S′) =

〈A′,B′〉 as well. We will produce an autoequivalence of D(C
q
S′) which carries A to A′ and B

to B′, establishing the existence of the remaining semiorthogonal decomposition.
The equivalence FS gives rise to another equivalence, X : D(C

q
L′) → D(C

q
R′). Let P

q
be

a C
q
L′-module. We define

X(P
q
)A = FS(P

q
A) = P

q
A ⊗A q F q

S and X(P
q
)B = P

q
B.
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Starting with the structural morphism P
q
B ⊗B q L q

[1] → P
q
A we produce the structural mor-

phism
R′(P

q
B)

'−→ FS(L′(P
q
B))→ FS(P

q
A).

This is invertible because FS is an equivalence and we have an isomorphism F−1
S R′ → L′.

Consider the autoequivalence Ψ1XΨ2 of D(C
q
S′). We observe by a straightforward com-

putation that
Ψ1XΨ2(B) = B′.

Now, we compute Ψ1XΨ2(A). First, Ψ2(A) ⊂ D(C
q
L′) is the full subcategory of objects

isomorphic to objects of the form [L′(S ′(M
q
A))→M

q
A], where the structure morphism is the

counit of adjunction. Next we compute that

X[L′(S ′(M
q
A))→M

q
A] = [R′(S ′(M

q
A))→ FS(M

q
A)]

where the structure morphism is the composition of the map R′(S ′(M
q
A)) → FSL

′(S ′(M
q
A))

with the map FS(L′S ′(M
q
A))→ FS(M

q
A) induced by the counit morphism. This map is just

the map coming from the triangle

R′S ′ = RS → FS → id[1] 99K

defining FS. Therefore, after applying Ψ1 we get

[S ′(M
q
A)[1]→ S ′(M

q
A)[1]]

where the structure morphism is the identity. This is exactly the condition defining the
category A′ = Φ2(D(A

q
)). Thus D(C

q
S′) admits the fourth semi-orthogonal decomposition

D(C
q
S′) = 〈A′,B′〉.

Remark 3.2.16. If S
q
, R

q
, and L

q
are perfect bimodules then we may replace D(•) with

Perf(•) in the above theorem. If A
q

and B
q

are smooth and proper, then all cocontinuous
functors between Perf(A

q
) and Perf(B

q
) are represesented by perfect bimodules.

Remark 3.2.17. There is an alternate formula for the twist. Suppose that we have

C = 〈A,B〉 = 〈B,A′〉 = 〈A′,B′〉 = 〈B′,A〉

as above. Then TS = iLB ◦ LA. (Compare with 3.2.3, where r plays the role of the quotient
functor iLB.)
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3.3 Monodromy of the quantum connection and

fractional grade restriction rules

In the remainder of this paper, we will refine the above construction of autoequivalences of
Db(Xss/G) from a variation of GIT quotient. We generalize the grade restriction rules of

Theorem 3.1.1 in order to produce additional derived autoequivalences (see Corollary 3.3.12).
Our motivation is to explain additional autoequivalences predicted by homological mirror
symmetry (HMS). We first review how HMS leads to autoequivalences, as studied in [40,
24, 25], then we frame these predictions in the context of variation of GIT quotient. We
would like to emphasize that the following discussion of mirror symmetry is not meant to
introduce new ideas of the authors – we only hope to frame existing ideas regarding HMS in
the context of GIT.

For simplicity we consider a smooth projective Calabi-Yau (CY) variety V of complex
dimension n. HMS predicts the existence of a mirror CY manifold V̂ such that Db(V ) '
Db Fuk(V̂ , β), where β represents a complexified Kähler class and Db Fuk(V̂ , β) is the graded
Fukaya category. The category Db Fuk does not depend on the complex structure of V̂ . Thus
if V̂ is one fiber in a family of compact CY manifolds V̂t over a base M, the monodromy
representation π1(M) → π0(Sympgr(V̂ , β)) acting by symplectic parallel transport leads to
an action π1(M) → Aut Db Fuk(V̂ , β). Via HMS this gives an action π1(M) → Aut Db(V )
(see [40] for a full discussion).

Hodge theoretic mirror symmetry predicts the existence of a normal crossings compact-
ification M(V̂ ) of the moduli space of complex structures on V̂ along with a mirror map
M(V̂ )→ K(V ) to a compactification of the “complexified Kähler moduli space” of V . Dif-
ferent regions of K(V ) correspond to different birational models of V , but locally K(V ) looks
like the open subset of H2(V ;C)/2πiH2(V ;Z) whose real part is a Kähler class on V .2 Mirror
symmetry predicts that the mirror map identifies the B-model variation of Hodge structure
Hn(V̂t) overM with the A-model variation of Hodge structure, which is locally given by the
quantum connection on the trivial bundle

⊕
Hp,p(V ) × K(V ) → K(V ) (See Chapter 6 of

[14] for details).
Finally, one can combine Hodge theoretic mirror symmetry and HMS: Let γ : S1 → K(V )

be the image of a loop γ′ : S1 →M(V̂ ) under the mirror map. Symplectic parallel transport
around γ′ of a Lagrangian L ⊂ V̂t corresponds to parallel transport of its fundamental class in
the B-model variation of Hodge structure Hn(V̂t). Thus mirror symmetry predicts that the
automorphism Tγ ∈ Aut(Db(V )) corresponds to the the monodromy of quantum connection
around γ under the twisted Chern character ch2πi defined in [25].

From the above discussion, one can formulate concrete predictions in the context of
geometric invariant theory without an explicit mirror construction. For now we ignore the
requirement that V be compact (we will revisit compact CY’s in Section 3.3), and we restrict
our focus to a small subvariety of the Kähler moduli space in the neighborhood of a “partial

2Technically, the complexified Kähler moduli space is locally K(V )/Aut(V ), but this distinction is not
relevant to our discussion.
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large volume limit.” Assume that V = Xss
− /G is a GIT quotient of a smooth quasiprojective

X and that Xss
− /G 99K X

ss
+ /G is a balanced GIT wall crossing with a single stratum and

ωX |Z has weight 0, as we studied in Section 3.2.
The VGIT is determined by a 1-parameter family of G-ample bundles L0 + rL′, where

r ∈ (−ε, ε). In fact we consider the two parameter space

U := {τ0c1(L0) + τ ′c1(L′)|<(τ0) > 0 and <(τ ′)/<(τ0) ∈ (−ε, ε)}

This is a subspace of H2(Xss
− /G;C)/2πiH2(Xss

− /G;Z) obtained by gluing K(Xss
− /G) to

K(Xss
+ /G) along the boundary where <(τ ′) = 0. Because we are working modulo 2πiZ,

it is convenient to introduce the exponential coordinates q0 = e−τ0 and q′ = e−τ
′
. In these

coordinates, we consider the partial compactification Ū as well as the annular slice Uq0 :

Ū := {(q0, q
′) ∈ C× C∗ ||q0| < 1 and |q′| ∈ (|q0|ε, |q0|−ε)}

Uq0 := {q0} × C∗ ∩ Ū . (3.9)

In this setting, mirror symmetry predicts that the quantum connection on U converges
to a meromorphic connection on some neighborhood of U0 = {0}×C∗ ⊂ Ū which is singular
along U0 as well as a hypersurface∇ ⊂ Ū . To a path in U \∇ connecting a point in the region
|q′| < 1 with the region |q′| > 1, there should be an equivalence Db(Xss

− /G) ' Db(Xss
+ /G)

coming from parallel transport in the mirror family.
Restricting to Uq0 , one expects an autoequivalence of Db(Xss

− /G) for every element of
π1(Uq0 \ ∇), which is freely generated by loops around the points ∇ ∩ Ūq0 and the loop
around the origin. We will refer to the intersection multiplicity of ∇ with the line {0} ×C∗
as the expected number of autoequivalences produced by the wall crossing. For a generic q0

very close to 0, this represents the number of points in ∇ ∩ Uq0 which remain bounded as
q0 → 0.

For the example of toric CY manifolds, the compactification of the Kähler moduli space
and the hypersurface ∇ have been studied extensively. In Section 3.3, we compute these
intersection multiplicities, which will ultimately inspire the construction of new autoequiva-
lences of Db(Xss

− /G) in section 3.3.

Remark 3.3.1 (Normalization). In the discussion above, making the replacements aL0 and
bL′ for positive integers a, b, and reducing ε if necessary, does not effect the geometry of
the VGIT at all, but it replaces U with the covering corresponding to the map q0 7→ qa0 ,
q′ 7→ (q′)b. The covering in the q0 direction has no effect on the expected number of autoe-
quivalences defined above, but the covering q′ 7→ (q′)b would multiply the expected number
of autoequivalences by b. Fortunately, the VGIT comes with a canonical normalization:
When possible we will assume that L′|Z ∈ Db(Z/L)1, and in general we will choose L′ which
minimizes the magnitude of the weight of L′|Z with respect to λ. Multiplying L0 if necessary,
we can define the VGIT with ε = 1.

Remark 3.3.2. To simplify the exposition, we have ignored the fact that Xss
− /G is not

compact in many examples of interest. To fix this, one specifies a function W : Xss
− /G→ C
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whose critical locus is a compact CY V , and the predictions above apply to the quantum
connection of V on the image of Ū under the map H2(Xss

−/G) → H2(V ). We will discuss
how autoequivalences of Db(Xss

− /G) lead to autoequivalences of Db(V ) in Section 3.3.

Remark 3.3.3. The region U connects two large volume limits q0, q
′ → 0 and q0, (q

′)−1 →
0. It is possible to reparameterize U in terms of the more traditional large volume limit
coordinates around either point ([14], Chapter 6).

The toric case: Kähler moduli space and discriminant in rank 2

A Calabi-Yau (CY) toric variety can be presented as a GIT quotient for a linear action of
a torus T → SL(V ) on a vector space V [15]. Write X∗(T ) and X∗(T ) for the groups of
characters and cocharacters of T , respectively. The GIT wall and chamber decomposition
on X∗(T )R = X∗(T ) ⊗ R can be viewed as a fan known as the GKZ fan. The toric variety
defined by this fan provides a natural compactification K of the complexified Kähler space
X∗(T )⊗C∗. A codimension-one wall in X∗(T )R, which corresponds to a balanced GIT wall
crossing, determines an equivariant curve C ' P1 in K connecting the two large volume limit
points determined by the chambers on either side of the wall. The curve Ū0 corresponding
to this VGIT (3.9) is exactly the complement of the two torus fixed points in C.

Such a CY toric variety arises in mirror symmetry as the total space of a toric vector
bundle for which a generic section defines a compact CY complete intersection (See Section
3.3, and [14] for a full discussion). In this case, the toric variety defined by the GKZ fan
also provides a natural compactification of the complex moduli space of the mirror M.
Although the mirror map M → K is nontrivial, it is the identity on the toric fixed points
(corresponding to chambers in the GKZ fan) and maps a boundary curve connecting two
fixed points to itself. It follows that our analysis of the expected number of autoequivalences
coming from the VGIT can be computed in M.

The boundary ofM, corresponding to singular complex degenerations of the mirror, has
several components. In addition to the toric boundary, there is a particular hypersurface
called the reduced discriminantal hypersurface ∇ in M (see [20]), which we simply call the
discriminant. It is the singular locus of the GKZ hypergeometric system. For simplicity we
will analyze the case when T is rank 2. We will compute the expected number of autoequiv-
alences as the intersection number between C and the normalization of the discriminant. It
turns out that this intersection number is equal to the length of a full exceptional collection
on the Z/L′ appearing in the GIT wall crossing.

Let V = Cm and (C∗)2 ∼= T ⊂ (C∗)m be a rank two subtorus of the standard torus acting
on V . We can describe T by a matrix of weights,(

a1 a2 · · · am
b1 b2 · · · bm

)
,
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representing the embedding (t, s) 7→ (ta1sb1 , . . . , tamsbm). We assume that all columns are
non-zero. The CY condition means that we have

m∑
i=1

ai =
m∑
i=1

bi = 0.

Now, up to an automorphism of V we may assume that the matrix of weights has the
following form (

ai
bi

)
=
(
d1

1χ1 · · · d1
n1
χ1 · · · dr1χr · · · drnrχr

)
where χj =

( αj
βj

)
and χ1, . . . χr are ordered counterclockwise by the rays they generate in the

plane. Using the fact that a wall between GIT chambers occurs when there exists a strictly
semistable point, one can determine that the rays of the GKZ fan are spanned by −χj. The
GIT chambers, the maximal cones of the GKZ fan, are the cones σi = cone(−χi,−χi+1),
i < r, and σr = (−χr,−χ1). The discriminant admits a rational parameterization, called
the Horn uniformization, f : P(X∗(T )C) 99K ∇ of the following form. Set di =

∑ni
j=1 d

i
j. For

a Laurent monomial xλ ∈ C[T ] we have

f ∗(xλ) =
∏
i,j

(dijχi)
−dij(χi,λ) = dλ

∏
i

χ
−di(χi,λ)
i , dλ :=

∏
i,j

(dij)
−dij(χi,λ)

where we view X∗(T ) as a set of linear functions on X∗(T )C. It follows from the CY
condition that f ∗(xλ) has degree zero as a rational function on X∗(T )C and that M is
proper. Therefore, f actually defines a regular map P(X∗(T )C) ∼= P1 → M. We define Ci
to be equivariant curve in M defined by the codimension one wall R≥0 · (−χi).

Proposition 3.3.4. If −χi is not among the χj, then the length of P(X∗(T )C)×M Ci is di.

Proof. Ci is covered by the open sets corresponding to σi−1 and σi. Let Ui be the chart
corresponding to σi. Recall that the coordinate ring of Ui is

C[σ∨i ] = C{xλ : ∀χ ∈ σi, (χ, λ) ≥ 0} ⊂ C[X∗(T )].

Observe that (χ, λ) ≥ 0 for all χ ∈ σi if and only if (χi, λ), (χi+1, λ) ≤ 0. Next, we must com-
pute the ideal of Ci in the charts Ui and Ui+1. Since −χi spans the wall under consideration
the ideal of Ci will be

Ii = C{xλ : (χi, λ) < 0} ∩ C[U•].

Let pj = {χj = 0} ∈ P(X∗(T )C). Then f(pj) ∈ Ui if and only if for all λ such that
(χi, λ), (χi+1, λ) ≤ 0 we have (χj, λ) ≤ 0. So if χj 6= χi, χi+1 then f(pj) /∈ Ui and f−1(Ui∩∇)
is supported on {pi, pi+1}.

Then there clearly exists a λ such that (χi+1, λ) = 0 but (χi, λ) < 0. This means that
in fact f−1(Ui ∩ ∇) is supported on pi. So we can compute the length of f−1(Ui ∩ ∇) after
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restricting to P(X∗(T )C) \ {pj}j 6=i where its ideal is generated by {χ−di(χi,λ)
i }λ∈σ∨i . Finally,

we note that
min{(χi, λ) : λ ∈ σ∨i } = 1

and therefore the length of f−1(∇ ∩ Ui) is di. By an analogous argument we see that
f−1(∇∩ Ui) = f−1(∇∩ Ui−1).

Remark 3.3.5. Observe that the image of f avoids the torus fixed points. Indeed, the torus
fixed point in Ui lies on Ci \ Ui−1, but ∇∩ Ci ⊂ Ui ∩ Ui−1.

Codimension one wall crossings are always balanced [16], but we include the analysis of
the Hilbert-Mumford numerical criterion in order to explicitly identify the Z/L′ when we
cross the wall spanned by −χi where −χi is not also a weight of T acting on V . For any
character the KN stratification is determined by data {(Zj, λj)}rj=0 (see Section 3.1).

Proposition 3.3.6. Let {(ZR
j , λ

R
j )}lj=0 and {(ZL

j , λ
L
j )}sj=0 be the data of stratifications im-

mediately to the right and left of the wall spanned by −χi, respectively. Then

1. λR0 = −λL0 and (χi, λ
•
0) = 0,

2. ZR
0 = ZL

0 = V λ0 \ 0, and

3.
⋃
j>0 S

R
j =

⋃
j>0 S

L
j .

Proof sketch. (See [16] for details.) Let χ be a character near −χi (as rays), ‖ · ‖ be a norm

on X∗(T )R, and µχ(λ) = (χ,λ)
‖λ‖ . In this situation the KN stratification is defined inductively.

First, there is a primitive cocharacter λmax which maximizes µχ. The most unstable stratum
has core Zmax = V λmax = 0 and Smax = ⊕i,(χi,λmax)≥0⊕j Vi,j. The linearization χ determines
a choice of generator for the line perpendicular to χj. For each j we let λj be the primitive
cocharacter satisfying (i) (χj, λj) = 0, and (ii) µχ(λ) ≥ 0. We arrange these in decreasing
order according to the value of µχ(λ•): λj1 , . . . , λjn . If V λjk is not entirely contained in
S<k = Smax ∪

⋃
i<k Si then we put Zk = V λjk \ S<k and Sk =

(
⊕i,(χi,λjk )≥0 ⊕jVi,j

)
\ S<k.

Clearly then, the KN stratification only depends on the sequence of λ q. Now, as χ varies
across the wall, λmax varies, but Zmax and Smax remain unchanged. Furthermore, µχ(λj)
remains positive unless j = i and moreover the ordering on λj for j 6= i does not change.
On the other hand µχ(λi) changes sign so that −λi replaces λi as the cocharacter attached
to the least unstable stratum. The proposition follows.

Note that V λ±0 = ⊕jVi,j. The action of T on V λ0 factors through χi and the weights are
simply di1, . . . , d

i
ni

which are all positive. Therefore the stack Z0/C∗ is a weighted projective
space. Its derived category is understood thanks to the following.

Theorem (Theorem 2.12 of [5]). Db(P(di1, . . . , d
i
ni

)) has a full exceptional collection of di

line bundles. In particular K0(P(di1, . . . , d
i
ni

)) is free of rank di.
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In conclusion, we see that the length of a full exceptional collection on Z0/L0 associated
to a wall i is equal to the intersection multiplicity of f : P1 → ∇ with the curve Ci.

Example 3.3.7. Consider the T = (C∗)2 action on A8 given by

(t, s) 7→ (t, t, t, s, s, s, t−2, t−1s−3).

The wall and chamber decomposition of R2 associated to this action is given in the following
diagram.

W2

W1

W3

I

II III

IV

Chamber I corresponds to the total space of O(−2, 0)⊕O(−1,−3) over P2×P2, and for
this reason we will return to this example in subsection 3.3. By Horn uniformization, the
discriminant is parameterized by

[u : v] 7→
(
− 4

u+ 3v

u
,−(u+ 3v)3

v3

)
.

We will compute the intersection number at wall W3. This corresponds to the character
(−1,−3). No other characters are a rational multiple of this one. Therefore, we should get
intersection number 1. We compute the dual cones to chambers II and III, and indicate
the ideal of C3 in the diagram below. The nested grey regions correspond to the monomials
in the dual cones and in the ideal of C3. The red, orange, and blue lines divide the plane
into regions corresponding to monomials where u,v, and (u + 3v) respectively appear with
positive or negative exponents. It is clear that only (u+ 3v) always appears with a positive
exponent. Clearly, it appears in x with exponent 1 and therefore the intersection number
`(C3 ∩∇) is one.

Fractional grade restriction rules

In order to construct additional derived equivalences, we introduce fractional grade restric-
tion rules given a semiorthogonal decomposition Db(Z/L)w = 〈E0, E1〉, the data of which we
will be denoted e. This will be of particular interest when Db(Z/L)w has a full exceptional
collection.
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II III

u u−1

v−3

v3

(u+ 3v)

(u+ 3v)−1

Figure 3.1: The dual cones to chambers II and III and the ideal defining C3.

The equivalence of Lemma 3.1.2 gives a semiorthogonal decomposition A+
w = 〈E+

0 , E+
1 〉,

where E+
i = ιw(Ei). We can refine the semiorthogonal decompositions (3.3)

C+
w = 〈E+

0 , E+
1 ,G

+
w+1〉 = 〈G+

w , E+
0 , E+

1 〉

Because E+
0 and E+

1 are left and right admissible in C+
w respectively, we can make the following

Definition 3.3.8. Given the semiorthogonal decomposition e, we define the full subcategory
G+
e = (E+

1 )⊥∩⊥(E+
0 ) ⊂ C+

w . In other words, it is defined by the semiorthogonal decomposition

C+
w = 〈E+

0 ,G
+
e , E+

1 〉

Because E+
0 , and E+

1 generate the kernel of the restriction functor r+, it follows formally that
r+ : G+

e → Db(Xss
+ /G) is an equivalence of dg-categories.

The mutation equivalence functor factors

G+
w+1 LE+1

//

LA+
w

,,G+
e LE+0

//G+
w

In order for these intermediate mutations to induce autoequivalences of Db(Xss
− /G), we

must show that G+
e is also mapped isomorphically onto Db(Xss

− /G) by restriction. We let
κ± denote the equivariant line bundle det(NS±X)|Z) = (j±)!OX |Z .

Lemma 3.3.9. Let F
q ∈ C+

w , then whether F
q ∈ G+

e is determined by the “ fractional grade
restriction rule”:

(σ∗F
q
)w ∈ ⊥(E0) and (σ∗F

q ⊗ κ+)w ∈ (E1)⊥ (3.10)
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Proof. By definition F
q ∈ G+

e if and only if Hom(F
q
, ιw(E0)) = 0 and Hom(ιw(E1), F

q
) = 0.

By Lemma 3.1.3, the left and right adjoint of ιw can be expressed in terms of σ∗F
q
. We use

that (σ∗F
q
)w+η ⊗ κ+ = (σ∗F

q ⊗ κ+)w.

One can think of G+
e as a refined version of the usual category G+

w . Previously, we had
an infinite semiorthogonal decomposition Db(Z/L) = 〈. . . ,Db(Z/L)w,D

b(Z/L)w+1, . . .〉, and
the grade restriction rule amounted to choosing a point at which to split this semiorthogonal
decomposition, then requiring σ∗F

q
to lie in the right factor and σ∗F

q⊗ κ+ to lie in the left
factor. Lemma 3.3.9 says the same thing but now we use the splitting

Db(Z/L) = 〈〈. . . ,Db(Z/L)w−1, E0〉, 〈E1,D
b(Z/L)w+1, . . .〉〉.

The canonical bundle for a quotient stack Z/L is ωZ/L = ωZ ⊗ det l∨. 3 We say that
Serre duality holds for Z/L if the category Db(Z/L) is Hom-finite and ⊗ωZ/L[n] is a Serre
functor for some n, i.e. Hom

q
Z/L(F

q
, G

q ⊗ ωZ/L[n]) ' Hom
q
Z/L(G

q
, F

q
)∨. Because all objects

and homomorphism split into direct sums of weights spaces for λ, and ωZ/L ∈ Db(Z/L)0,
this is equivalent to Serre duality holding in the subcategory Db(Z/L)0 ' Db(Z/L′). Thus
whenever Z/L′ is a compact DM stack, Serre duality holds for Z/L.

Proposition 3.3.10. Let ωX/G|Z ' OZ, and assume that Serre duality holds for Z/L, then
r− : G+

e → Db(Xss
− /G) is an equivalence of dg-categories. More precisely G+

e = G−e′, where
e′ denotes the data of the semiorthogonal decomposition

Db(Z/L)[λ−=w′] = 〈E1 ⊗ ωZ/L ⊗ κ∨+, E0 ⊗ κ∨+〉

Proof. First note that e ′ is actually a semiorthogonal decomposition by Serre duality: it is
the left mutation of e tensored with κ∨+.

Applying Serre duality to the characterizaton of G+
e in Lemma 3.3.9, and using the fact

that (•)[λ+=w] = (•)[λ−=w′+η], it follows that F
q ∈ G+

e if and only if

(σ∗F
q ⊗ κ−)[λ−=w′] ∈ (E0 ⊗ ω∨Z/L ⊗ κ−)⊥ and (σ∗F

q
)[λ−=w′] ∈ ⊥(E1 ⊗ ωZ/L ⊗ κ∨+)

This is exactly the characterization of G−e′ , provided that κ− ⊗ ω∨Z/L ' κ∨+.

Consider the weight decomposition with respect to λ+, Ω1
X |Z = (Ω1

X)+⊕ (Ω1
X)0⊕ (Ω1

X)−.
Then ωZ/L ' det((Ω1

X)0) ⊗ det(g0)∨, and κ∨± ' det((Ω1
X)±) ⊗ det(g±)∨, where g± denotes

the subspace of g with positive or negative weights under the adjoint action of λ+. Hence
ωX/G|Z ' κ∨+ ⊗ ωZ/L ⊗ κ∨−, so when ωX/G|Z ' OZ we have κ∨+ ' κ− ⊗ ω∨Z as needed.

Corollary 3.3.11. Let ωX/G|Z ' OZ equivariantly, let Serre duality hold for Z/L, and
assume we have a semiorthogonal decomposition Db(Z/L)w = 〈E0, . . . , EN〉. If we define
H+
i as the mutation Cw = 〈E+

0 , . . . ,H+
i , E+

i , . . . , E+
N 〉, then r− : H+

i → Db(Xss
− /G) is an

equivalence.

3This is the same as ωZ if L is connected.
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Proof. Apply Proposition 3.3.10 to the two term semiorthogonal decomposition 〈A0,A1〉,
where A0 = 〈E0, . . . , Ei−1〉 and A1 = 〈Ei, . . . , EN〉.

As a consequence of Corollary 3.3.11 and the results of Section 3.2, one can factor the
window shift Φw as a composition of spherical twists, one for each semiorthogonal factor
Ei. For concreteness, we narrow our focus to the situation where Db(Z/L)w admits a full
exceptional collection 〈E0, . . . , EN〉. In this case the E+

i of Corollary 3.3.11 are generated by
the exceptional objects E+

i := j+
∗ (π+)∗Ei. The categoryH+

i is characterized by the fractional
grade restriction rule

HomZ/L((σ∗F
q
)[λ+=w], Ej) = 0, for j < i, and

HomZ/L

(
Ej, (σ

∗F
q ⊗ κ+)[λ+=w]

)
= 0, for j ≥ i

(3.11)

Corollary 3.3.12. Let ωX/G|Z ' OZ and let Db(Z/L)w = 〈E0, . . . , EN〉 have a full excep-
tional collection. Then the objects Si := fw(Ei) = j+

∗ (π+)∗Ei|Xss
−
∈ Db(Xss

− /G) are spherical,
and Φw = TS0 ◦ · · · ◦ TSN .

As noted, this follows for purely formal reasons from Corollary 3.3.11 and the results of
subsection 3.3, but for the purposes of illustration we take a more direct approach.

Proof. We use Lemma 3.2.5 and the fact that (σ∗E+
i )[λ−=w′] = (σ∗E+

i )[λ+=w+η] = Ei⊗ κ∨+ to
compute

RΓS−Hom(E+
i , F

q
) ' HomZ/L(Ei, σ

∗(F
q
)w′+η ⊗ κ− ⊗ κ+)

' HomZ/L(Ei, σ
∗(F

q
)w′+η ⊗ ωZ/L ⊗ ω−1

X/G)

Now let ωX/G ' OZ . Serre duality implies that

HomZ/L(Ei, σ
∗(F

q
)w′+η ⊗ ωZ) = HomZ/L(σ∗(F

q
)w′+η, Ei)

∨.

Thus by (3.11), the canonical map HomX/G(E+
i , F

q
) → HomXss

− /G
(Si, F

q|Xss
−

) is an isomor-

phism for F
q ∈ H+

i+1. This implies the commutative diagram

G+
w+1

L
E+
N //

r−

��

H+
N

L
E+
N−1 //

r−

��

· · ·
L
E+
1 //H+

1

L
E+
0 //

r−

��

G+
w

r−

��

Db(Xss
− /G)

TSN // Db(Xss
− /G)

TSN−1 // · · ·
TS1// Db(Xss

− /G)
TS0 // Db(Xss

− /G)

Where TSi is the twist functor Cone(Hom(Si, F
q
) ⊗ Si → F

q
). By 3.3.10, the functors r−

are equivalences, and therefore so are TSi .

Corollary 3.3.12, suggests a natural interpretation in terms of monodromy as discussed in
the beginning of this section. Let Uq0 be the annulus (3.9), with |q0| small, and let p0, . . . , pN
be the points of Uq0 \ ∇ which remain bounded as q0 → 0. Consider an ordered set of
elements [γ0], . . . , [γN ] of π1(Uq0 \ ∇) such that
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1. γi lie in a simply connected domain in Uq0 containing p0, . . . , pN , and

2. there is a permutation σi such that the winding number of γi around pj is δj,σi .

It is natural to guess that the monodromy representation π1(Uq0 \ ∇) → Aut Db(Xss
− /G)

predicted by mirror symmetry assigns TSi to [γi]. In particular, it would be interesting to
compare the monodromy of the quantum connection with the action of TSi under the twisted
Chern character.

|q′| = 1

TS0

TS1

TS2 Φw

Figure 3.2: Loops in Uq0 \ ∇ corresponding to monodromy of the quantum connection of
Xss
− /G, giving a pictorial interpretation of Corollary 3.3.12.

Evidence for this interpretation of Corollary 3.3.12 is admittedly circumstantial. In 3.3,
we verified that the number of autoequivalences predicted by mirror symmetry is the same
as the length of a full exceptional collection on Db(Z/L′) for toric flops of CY toric varieties
of Picard rank 2. Letting q0 → 0, the points p0, . . . , pn converge to 1 ∈ U0. Horja [24]
studied the monodromy of the quantum connection and the corresponding autoequivalences
for the boundary curve U0, and his work can be used to verify our interpretation of the loop
corresponding to Φw.

Furthermore, if we fix a simply connected domain D ⊂ Uq0 containing p0, . . . , pN and let
Diff(D \ {p0, . . . , pN}, ∂D) denote the topological group of diffeomorphisms which restrict

to the identity on the boundary, then BN+1 ' π0 Diff(D \ {p0, . . . , pN}, ∂D) is a braid group
which acts naturally on ordered subsets of π1(Uq0) satisfying (3.3). The braid group also acts
formally by left and right mutations on the set of full exceptional collections Db(Z/L)w =
〈E0, . . . , EN〉, and these two actions are compatible (See Figure 3.3).

Factoring spherical twists

The arguments used to establish fractional window shift autoequivalences extend to the
general setting of Section 3.2. Suppose that S : E → G is a spherical dg functor between
pre-triangulated dg categories. Assume that E and G have generators and that S and its
adjoints are representable by bimodules. Recall that since S is a spherical functor, the
functor

FS = Cone
(

id→ RS
)

is an equivalence.
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Figure 3.3: Dictionary between action of B3 on loops in D \ {p0, p1, p2} and on full excep-
tional collections of Db(Z/L)w – Loops (γ0, γ1, γ2) correspond to full exceptional collection
〈E0, E1, E2〉. After acting by a generator of B3, γ′1 = γ2. The corresponding full exceptional
collection is the right mutation 〈E0, E2, RE2E1〉. Note that [γ0 ◦ γ1 ◦ γ2] = [γ′0 ◦ γ′1 ◦ γ′2],
consistent with the fact that the twists TEi for any full exceptional collection compose to
Φw.

∂D

γ2

γ1

γ0 γ′2

∂D

γ′1

γ′0

We will now discuss a sufficient condition for a spherical twist to factor into a composition
of other spherical twists. In the following, angle brackets will be used to denote the category
generated by a pair (tuple) of semiorthogonal subcategories of the ambient category as well
as to assert that a given category admits a semiorthogonal decomposition.

Theorem 3.3.13. Suppose that E = 〈A,B〉 and assume that the cotwist functor FS : E → E
has the property that there is a semiorthogonal decomposition

E = 〈FS(B),A〉.

Then the restrictions SA = S|A and SB = S|B are spherical and

TS = TSA ◦ TSB .

By Theorem 3.2.15 there exists a dg category C such that

C = 〈E ,G〉 = 〈G, E ′〉 = 〈E ′,G′〉 = 〈G′, E〉

where S, the spherical functor, is the composite iLGiE . We use the two mutation equivalences
RG,LG′ : E → E ′ to induce decompositions E ′ = 〈A′R,B′R〉 = 〈RG(A),RG(B)〉 and E ′ =
〈A′L,B′L〉 := 〈LG′(A),LG′(B)〉 respectively. Then due to the identity FS ' RG′RG[1], the
hypothesis in the statement of Theorem 3.3.13 is equivalent to the existence of a semiorthog-
onal decomposition

E ′ = 〈B′R,A′L〉 (3.12)

We will need the following

Lemma 3.3.14. Under the hypothesis of Theorem 3.3.13, (A′L)⊥ = ⊥A and ⊥(B′R) = B⊥ as
subcategories of C.

Proof. We deduce that (A′L)⊥ =⊥A from the following sequence of mutations

C = 〈A,B,G〉 = 〈G,A′R,B′R〉 = 〈G,B′R,A′L〉 = 〈B,G,A′L〉. (3.13)
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where the appearance of A′L follows from (3.12). Similarly for ⊥(B′R) = B⊥ we consider

C = 〈G′,A,B〉 = 〈A′L,B′L,G′〉 = 〈B′R,A′L,G′〉 = 〈B′R,G ′,A〉. (3.14)

Proof of Theorem 3.3.13. By assumption we have the semiorthogonal decomposition 3.12,
which implies that B′R is left admissible and A′L is right admissible in C. Furthermore Lemma
3.3.14 implies that (A′L)⊥ ∩ ⊥B′R = ⊥A ∩ B⊥, and we call this category Ge. Thus we have
semiorthogonal decompositions

C = 〈B′R,Ge,A′L〉 = 〈A,Ge,B〉.

In particular we have a semiorthogonal decomposition B⊥ =⊥B′R = 〈Ge,A′L〉
Combining this with the semiorthogonal decompositions (3.13) and (3.14) we obtain

⊥A = 〈B,G〉 = 〈Ge,B〉 = 〈B′R,Ge〉 = 〈G,B′R〉, and

B⊥ = 〈A,Ge〉 = 〈G′,A〉 = 〈A′L,G′〉 = 〈Ge,A′L〉.

An analogous analysis of ⊥A = 〈B,G〉 gives the sequence of semiorthogonal decompositions.
Thus Theorem 3.2.11 implies that the functors SB := iLG iB : B → G and S̃A := iLGeiA :

A → Ge are spherical. Note that the left adjoints iLG to the inclusions iG : G → 〈B,G〉 and to
iGe : CGe → 〈A,Ge〉 are the restrictions of the corresponding adjoints for the inclusions into
C, so there is no ambiguity in writing iLG and iLGe without further specification.

G
LB=iLGe iG

++�TSB Ge
LA=iLG′ iGe

++

LB′
R

=iLG iGe

kk �TS̃A G ′
LA′

L
=iLGe iG′

kk (3.15)

Let φ : Ge → G denote the isomorphism iLG iGe = LB′R whose inverse is φ−1 = iRGeiG.

One checks that SA := iLG iA is equivalent to φ ◦ S̃A : A → G and is thus spherical, and
TSA ' φ ◦ TS̃A ◦ φ

−1. Following the various isomorphisms in the diagram (3.15) shows that

TSA ◦ TSB = φ ◦ TS̃A ◦ φ
−1 ◦ TSB = LB′RLA′LLALB = TS

Example 3.3.15. Let X be a smooth projective variety, and j : Y ↪→ X a smooth divisor.
Then the restriction functor S = j∗ : Db(X) → Db(Y ) has a right adjoint R = j∗ and a left
adjoint L = j∗(• ⊗ OY (Y )[−1]). The cotwist FS = Cone(id → j∗j

∗) ' • ⊗ OX(−Y )[1] is
an equivalence, and FSL ' R by the projection formula. The corresponding spherical twist
autoequivalence of Db(Y ) is

TS(F
q
) = Cone(j∗(j∗F

q
))⊗OY (Y )[−1]→ F

q
) ' F

q ⊗OY (Y )

In the special case where Y is an anticanonical divisor, so that FS ' • ⊗ ωX [1]. Then for
any semiorthogonal decomposition Db(X) = 〈A,B〉 we have Db(X) = 〈FS(B),A〉 by Serre
duality, so Theorem 3.3.13 applies.
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Example 3.3.16. An example studied in [2] is that of a hypersurface j : Y ↪→ X where
π : Y ' P(E) → M is a projective bundle of rank r ≥ 1 over a smooth projective variety
M . Then j∗π

∗ : Db(M) → Db(X) is spherical iff OY (Y ) ' π∗L ⊗ Oπ(−r). In this case
the cotwist is tensoring by a shift of L, so if L ' ωM , then Theorem 3.3.13 applies to any
semiorthogonal decomposition Db(M) = 〈A,B〉

Autoequivalences of complete intersections

Suppose Xs ⊂ X is defined by the vanishing of a regular section s of a vector bundle V∨.
In this section, we will use a standard construction to produce autoequivalences of D(Xs)
from variations of GIT for the total space of V . This forms a counterpart to [6, Sections 4,5],
where equivalences between different complete intersections are considered.

We are interested in the case where the total space of V is Calabi-Yau. If X = Pn and V
is completely decomposable, this is equivalent to Xs being Calabi-Yau. Since Xs is defined
by a regular section, the Koszul complex (∧•V , ds) is a resolution of OXs . The key ingredient
in this discussion is an equivalence of categories between D(Xs) and a category of generalized
graded matrix factorizations associated to the pair (V , s).

We call the data (X,W ) where X is a stack equipped with a C∗ action factoring through
the squaring map and W is a regular function of weight 2 a Landau-Ginzburg (LG) pair. Let
π : V → X be the vector bundle structure map. There is an obvious action of C∗ on V by
scaling along the fibers of π. We equip V instead with the square of this action, so that λ
acts as scaling by λ2. Since s is a section of V∨, it defines a regular function W on V that
is linear along the fibers of π. By construction it has weight 2 for the C∗ action. The total
space of V|Xs is C∗-invariant and when we equip Xs with the trivial C∗ action we obtain a
diagram

V|Xs
i //

π

��

V

Xs

of LG pairs where the potentials on V|Xs and Xs are zero.
The category of curved coherent sheaves on an LG pair D(X,W ) is the category whose

objects are C∗-equivariant coherent sheaves F equipped with an endomorphism d of weight 1
such that d2 = W ·id; and whose morphisms are obtained by a certain localization procedure.
(For details, see [42].) The maps in the above diagram induce functors

D(Xs) = D(Xs, 0) π∗ // D(V|Xs , 0)
i∗ // D(V ,W )

whose composite i∗π
∗ is an equivalence.

Suppose that V is a smooth quasiprojective variety with an action of a reductive algebraic
group G × C∗, where C∗ acts through the squaring map. Let W be a regular function on
V which is G invariant and has weight 2 for C∗. Suppose that L is a G × C∗ equivariant
line bundle so that (V ,W ) ∼= (V ss(L)/G,W ) equivariantly for the C∗ action. For simplicity
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assume that V u(L) consists of a single KN stratum S with 1 PSG λ. Let Z be the fixed
set for λ on this stratum and Y its blade. Write σ : Z → V for the inclusion. As above
we define full subcategories of D(V/G,W ). Let Gw ⊂ D(V/G,W ) be the full subcategory
of objects isomorphic to objects of the form (E , d) where σ∗E has λ-weights in [w,w + η).
We also define the larger subcategory Cw where the weights lie in [w,w + η]. The analysis
for the derived category can be adapted to the category of curved coherent sheaves [6]
and we see that Gw is admissible in Cw. The maps i : Y → V and p : Y → Z induce
functors p∗ : D(Z/L,W |Z) → D(Y/P,W |Y ) and i∗ : D(Y/P,W |Y ) → D(V/G,W ). Let
D(Z/L,W |Z)w be the full subcategory of curved coherent sheaves concentrated in λ-weight
w. Then i∗p

∗ : D(Z/L,W |Z)w → D(V/G,W ) is fully faithful and has image Aw.
We now consider a balanced wall crossing which exchanges λ = λ+ with λ−1 = λ− and

S = S+ for S−. Then we obtain wall crossing equivalences. Since Cw and Gw are defined by
weight conditions, as above we see that C+

w = C−−w−η and G−w is the left orthogonal to Aw.
Therefore, the window shift autoequivalence in this context is still realized by a mutation.

Example 3.3.17. We consider a K3 surface Xs obtained as a complete intersection of
type (2, 0), (1, 3) in X = P2 × P2. It is well known that line bundles on a K3 surface are
spherical. We will see that the window shift automorphisms of D(Xs) coming from VGIT as
above are the compositions of spherical twists around OXs(i, 0) then OXs(i+ 1, 0) or around
OXs(0, i),OXs(0, i+ 1), and OXs(0, i+ 2).

Let V = O(−2, 0)⊕O(−1,−3). Recall that the total space of V is a toric variety which
can be obtained as a GIT quotient of A8 by (C∗)2 under the action

(t, s) 7→ (t, t, t, s, s, s, t−2, t−1s−3).

We also recall that the wall and chamber decomposition of R2 associated to this action is
given in the following diagram.

W2

W1

I

II III

IV

Chamber I corresponds to totV and we will analyze the autoequivalences of Xs that come
from the walls W1 and W2. The window shift autoequivalences of Db(totV) coming from
W1 do not factor because the associated Z/L is not compact. However, in the presence of a
potential, Z/L becomes compact. In fact, the associated Landau-Ginzburg model actually
admits a full exceptional collection. To proceed we must compute the KN stratifications
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near the walls. Write V• for the locus defined by the vanishing of the variables occurring in
•. (So Vx is the locus where all of the xi are zero.) We obtain the table below.

Near W1

Chamber I Chamber IV
λ0 0 Vxy

(0,−1) Vyq \ Vx Vy \ Vx
(−1, 0) Vxpq \ Vxy Vx \ Vxy

λ0 0 Vyp
(0,−1) Vyq \ Vx Vy \ Vx
(1, 0) Vxpq \ Vxy Vpq \ Vy

Near W2

Chamber I Chamber II
λ0 0 Vxy

(−1, 0) Vxpq \ Vxy Vx \ Vxy
(0,−1) Vyq \ Vx Vy \ Vx

λ0 0 Vx
(−1, 0) Vxpq \ Vxy Vx \ Vxy
(0, 1) Vyq \ Vx Vq \ Vx

Table 3.1: The Kirwan-Ness stratification for T acting on A8

Consider the potential W = pf + gq ∈ C[xi, yi, p, q]
2
i=0, where f ∈ C[xi] is homogeneous

of degree 2 and g ∈ C[xi, yi] is homogeneous of degree (1, 3). In order to define an LG pair,
we must also specify a second grading on C[xi, yi, p, q]. We define the LG weights of p and
q to be 2. Assume that f defines a smooth rational curve in P2. In order to proceed, we
need to introduce a particular type of curved coherent sheaf. Consider a line bundle L on
an LG pair which is equivariant for the C∗ action. Given sections a ∈ Γ(L) and b ∈ Γ(L∨)
of weight 1, we form a curved coherent sheaf for the potential b(a):

O
a ** L,
b

ii i.e. d =

(
0 b
a 0

)
,

and denote it by {a, b}. We also write Otriv = {1,W} (where 1,W are weight 1 section and
co-section of O(−1)LG). This object is isomorphic to zero in the category of curved coherent
sheaves.

Let us analyze what happens near W1. First, we have computed that for the least unstable
stratum

Z1/L1 = (Vxpq \ Vxy)/T ∼= P2/C∗.

Next, we notice that W |Z1 = 0 and that Z1 is contained in the fixed set for the LG C∗ action.
Therefore the category D(Z1/L1,W |Z1)

∼= D(P2/C∗) and for any w we have D(P2/C∗)w ∼=
D(P2). It is well known that D(P2) admits a full exceptional collection of length 3. For



CHAPTER 3. AUTOEQUIVALENCES OF DERIVED CATEGORIES 72

example D(P2) = 〈O,O(1),O(2)〉. By the curved analog of Proposition 3.2.4, we compute
the spherical object associated to O(i) on P2 by pulling it back to Vpq \Vy, pushing it forward
to V \ Vy, then restricting it to V = (V \ Vx ∪ Vy)/T . The locus Vpq restricts to the zero
section of V , which we also denote by X. The object corresponding to O(i) on Z1/L1 is the
line bundle OX(0, i), viewed as a curved coherent sheaf supported on the zero section. This
object corresponds to an object of D(Xs). To compute this object we observe that there are
short exact sequences

0 // Otriv ⊗ {q, g} // {p, f} ⊗ {q, g} // Op=0 ⊗ {q, g} // 0

0 // (Op=0)triv // Op=0 ⊗ {q, g} // OS // 0

This implies that OX(0, i) is equivalent to {p, f} ⊗ {q, g} ⊗ O(0, i) in D(V ,W ). Using the
analogous short exact sequences for f and g we see that it is also equivalent to OV|Y (0, i).
However, this is the image of OXs(0, i) under the equivalence D(Xs) ∼= D(V ,W ).

Next, we consider the wall W2. In this case, we have

Z2/L2 = (Vyq \ Vx)/T ∼= (totOP2(−2))/C∗.

Moreover W |Z2 = pf . So we have D(Z2/L2,W |Z2)
∼= D(C/C∗), where C ⊂ P2 is the rational

curve defined by f . This means that for any fixed w, D(Z2/L2,W |Z2)w
∼= D(P1). Of course,

we have D(P1) = 〈O,O(1)〉. We play a similar game to compute the objects in D(Y )
corresponding to these line bundles. First, OC(i) corresponds to the curved coherent sheaf
O totOC(−2)(i) on Z2/L2. We push this forward and restrict to V to get the line bundle O(i, 0)
on the locus {q = f = 0}. By considering short exact sequences as in the previous case, we
see that these objects correspond to the objects OXs(i, 0) in D(Xs).
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Chapter 4

Stratifications of algebraic stacks

In this chapter we investigate extensions of the KN stratification of the unstable locus in
geometric invariant theory. Our goal is to give the KN stratification an “intrinsic”, or mod-
ular, interpretation. We show that the strata are open substacks of connected components
of the mapping stack X(Θ) = Hom(Θ,X), where X = X/G.

We begin by studying the stack Θ itself, and in particular we establish a general classifi-
cation of principal G bundles and families of principal G bundles on Θ. We use this to show
that if X is locally a quotient of a finite type k scheme by a locally affine action of a linear
group, then the mapping stack X(Θ) is also algebraic, and in fact is locally a quotient stack
as well.

Next we describe a method of constructing stratifications of an arbitrary local quotient
stack which mimic the stratifications in GIT in that the strata are identified with open
substacks of connected components of X(Θ). The role that the Hilbert-Mumford numerical
invariant plays in stratifying the unstable locus in GIT can be generalized by a numerical
invariant which depends on a choice of cohomology classes l ∈ H2(X;Q) and b ∈ H4(X;Q).

We show how this concept can be applied to the moduli of vector bundles over a curve
to recover the Shatz stratification of the moduli of unstable bundles. We also show how
to reformulate Kempf’s original proof of the existence of the KN stratification intrinsically,
which leads to criteria under which the classes l and b define a stratification.

4.1 The stack Θ

In this section we observe some basic properties of Θ := A1/Gm. First of all, Θ has two
geometric points, the generic point 1 ∈ A1 and the special point 0 ∈ A1. We will discuss
quasicoherent sheaves over Θ as well as its cohomology when k = C. Our most important
result is the description of the moduli of principal G-bundles over Θ, which plays a key role
in Section 4.2 where we establish that X(Θ) is an algebraic stack.
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Quasicoherent sheaves on Θ

We review the properties of the category of quasicoherent sheaves on Θ. It is equivalent to
the category of equivariant quasicoherent sheaves on A1, which in turn is equivalent to the
category of graded modules over the graded ring k[t], where t has degree −1.1

Proposition 4.1.1. The category of quasicoherent sheaves on Θ is equivalent to the category
of diagrams of vector spaces of the form

· · · → Vi → Vi−1 → · · ·

The equivalence assigns a vector space with a decreasing filtration to the module
⊕

Vi with
Vi in degree i, and multiplication by tk acts by the inclusion Vi ⊂ Vi−k. Coherent sheaves
correspond to filtered vector spaces such that Vi stabilizes for i� 0 and Vi = 0 for i� 0.

Remark 4.1.2. The proposition implies that the corresponding derived categories are equiv-
alent as well. The maps Vi → Vi−1 need not be injective – injectivity corresponds to the
quasicoherent sheaf being torsion free. Note that any object of the derived category D(Θ)
can be represented by a complex of torsion free sheaves, i.e. an honest filtered complex.

Quasicoherent sheaves over ∗/Gm are just graded vector spaces. The restriction to the
origin of a quasicoherent sheaf on Θ corresponds to taking the associated graded of the filtered
vector space. Likewise, restriction to the open substack Θ − {0} ' Spec(k) corresponds to
taking the colimit lim−→(Vi).

Θ is a quotient of an affine variety by a reductive group, so the push forward to Spec(k)
is exact. Thus if · · ·V q

i → V
q
i−1 → · · · is a complex of filtered vector spaces, the derived

global section functor on Θ corresponds to taking the complex V
q

0 .

Lemma 4.1.3. Let π : Θ → Spec(k), then π∗ has a left adjoint π!, and π∗ has a right
adjoint π!. These functors extend to adjoint functors for the respective functors on the
derived category D(Θ).

Proof. It is straightforward to verify that

π!(V q) = coker(V1 → lim−→Vi), and π!(W ) = (k[t±]/k[t])⊗k W

The functor π! is exact, hence extends to the derived category. The functor π! extends to
the derived category via torsion free replacement, and can be expressed as

π!(V
qq ) = cone(V

q
1 → lim−→V

q
i )

1It is perhaps more natural from an algebraic perspective to consider graded modules over a positively
graded ring. Reflecting the gradings M i := M−i gives an equivalence between the categories of graded
modules over the negatively and positively graded polynomial rings. The negative grading is more natural
from the geometric perspective, where the Gm acts by scaling on A1.
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Quasicoherent sheaves on Θ× X

The description of D(Θ) extends to D(Θ×X) as well, where X is an arbitrary stack. Let C
be the diagram · · · → • → • → · · · , then

Proposition 4.1.4. The category of quasicoherent sheaves on Θ × X is equivalent to the
category of diagrams of quasicoherent sheaves on X of the form · · · → Vi → Vi−1 → · · · .
Likewise we have an equivalence of dg-categories D(Θ× X) ' Fun(C,D(X)).

Proof. This is a general version of the Rees construction. Pulling back to A1 × X and
pushing forward to X identifies quasicoherent sheaves over Θ × X with the category of
graded quasicoherent modules over the graded algebra OX[T ] with T in degree −1. The
quasicoherent sheaves Vi on X correspond to the degree i piece of a graded OX[T ] module,
and the maps Vi → Vi−1 correspond to multiplication by T . The identification D(Θ× X) '
Fun(C,D(X)) follows from this description of quasicoherent sheaves. One can also realize

this as a consequence of the Morita theory of [7] and the description of D(Θ) as the category
of representations of C.

Topology of Θ

Pic(Θ) ' Z consists of line bundles of the form OΘ(n) which correspond to the free k[t]
module with generator in degree −n. In particular Γ(Θ,OΘ(n)) = 0 for n > 0 and
Γ(Θ,OΘ(n)) ' k for n ≤ 0. Note that unlike Pic(∗/Gm

∗), the invertible sheaf O(1) can
be taken as a canonical generator. It is distinguished from O(−1) because it has no nonva-
nishing global sections.

Assume for the moment that k = C. Then Θ has an underlying topological stack whose
weak homotopy type [34] is that of the homotopy quotient C×BC∗ EC∗, which deformation
retracts onto BC∗ ' CP∞. In particular we have

H∗(Θ;R) = H∗C∗(C;R) ' R[[q]]

Unlike ∗/C∗, which has an automorphism acting as multiplication by −1 on H2, the group
H2(Θ;R) has a canonical generator q := c1(OΘ(1)), and the K-theory K0(Θ) is canonically
isomorphic to Z[u±] where u = [OΘ(1)]. The fact that we can canonically identify H2(Θ;Q)
with Q will be essential in our construction of stratifications of algebraic stacks in Section
4.3.

Principal G-bundles on Θ

Using Proposition 4.1.4, one can show that a vector bundle on Θ × X is the same as a
descending sequence of vector bundles · · ·Vi+1 ⊂ Vi ⊂ · · · such that Vi/Vi+1 is a vector
bundle for all i, Vi = 0 for i� 0, and Vi stabilizes for i� 0. However, here we take another
approach to vector bundles on Θ which generalizes to arbitrary principal G-bundles and to
families of G-bundles. Throughout this section k will be an algebraically closed field and
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G will denote a smooth affine group scheme over k. If S and X are a schemes over k, we
will use the notation XS to denote the S scheme S ×X, and we use similar notation for the
pullback of stacks over k.

For a scheme S, we use the phrase G-bundle over S, principal G-bundle over S, and
G-torsor over S interchangeably to refer to a scheme E → S along with a right action of GS

(left action of Gop
S ) such that E ×S GS → E ×S E is an isomorphism and E → S admits a

section étale locally. We can equivalently think of E as the sheaf of sets which it represents
over the étale site of S.2 By definition a principal G-bundle is a morphism S → ∗/G.
Similarly one can define a principal G-bundle over a stack to be a map X→ ∗/G.

Lemma 4.1.5. Let S be a k scheme. A principal G-bundle over Θ×S is a principal bundle
E → A1 × S with a Gm action on E which is compatible with the action on A1 under
projection and which commutes with the right action of G on E.

Proof. This is an straightforward interpretation of the descent property of the stack ∗/G
and will be discussed in general in section 4.2 below (See Diagram 4.2).

If E → A1 is a principal G-bundle with compatible Gm action, we will often say “E is a
G-bundle over Θ” even though more accurately, E/Gm is a G-bundle over Θ.

Given a one parameter subgroup λ : Gm → G, we define the standard G-bundle Eλ :=
A1 × G where G acts by right multiplication and t · (z, g) = (tz, λ(t)g). We will show that
every G-bundle over Θ is isomorphic to Eλ for some one parameter subgroup. In fact we will
obtain a complete description of the groupoid of principal G-bundles over Θ as a corollary
of the following main result

Proposition 4.1.6. Let S be a connected finite type k-scheme and let E be a G-bundle
over ΘS := Θ × S. Let λ : Gm → G be a 1PS conjugate to the one parameter subgroup
Gm → Aut(Es) ' G for some s ∈ S(k) thought of as the point (0, s) ∈ A1

S. Then

1. There is a unique reduction of structure group E ′ ⊂ E to a Pλ-torsor such that Gm →
Aut(E ′s) ' Pλ is conjugate in Pλ to λ, and

2. the restriction of E ′ to {1}× S is canonically isomorphic to the sheaf on the étale site
of S mapping T/S 7→ Iso((Eλ)ΘT , E|ΘT ).

Proof. (Eλ)ΘS = Eλ × S/Gm is a G-bundle over ΘS, and Iso((Eλ)ΘS , E) is a sheaf over ΘS

representable by a (relative) scheme over ΘS. In fact, if we define a twisted action of Gm on
E given by t ? e := t · e · λ(t)−1, then

Iso((Eλ)ΘS , E) ' E/Gm w.r.t. the ? -action (4.1)

2For general G a sheaf torsor may only be represented by an algebraic space E → S, but E is always a
scheme when G is affine, see [32, III-Theorem 4.3].
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as sheaves over ΘS.3

The twisted Gm action on E is compatible with base change. Let T → S be an S-
scheme. From the isomorphism of sheaves (4.1), there is a natural bijection between the set

of isomorphisms (Eλ)A1
T

'−→ E|A1
T

as Gm-equivariant G-bundles and the set of Gm-equivariant

sections of E|A1
T
→ A1

T with respect to the twisted Gm action.

The morphism E|A1
T
→ A1

T is separated, so a twisted equivariant section is uniquely
determined by its restriction to Gm × T , and by equivariance this is uniquely determined
by its restriction to {1} × T . Thus we can identify Gm-equivariant sections with the set of
maps T → E such that lim

t→0
t ? e exists and T → E → A1

S factors as the given morphism

T → {1} × S → A1
S.

If we define the subsheaf of E over A1
S

E ′(T ) :=
{
e ∈ E(T )|Gm × T

t?e(x)−−−→ E extends to A1 × T
}
⊂ E(T ),

then we have shown that E ′|{1}×S(T ) ' Iso((Eλ)ΘT , E|ΘT ). Next we show in several steps
that the subsheaf E ′ ⊂ E over A1

S is a torsor for the subgroup Pλ ⊂ G, so E ′ is a reduction
of structure group to Pλ.

Step 1: E ′ is representable: E → S is affine and Gm invariant, so the action of Gm is locally
affine. The functor E ′ is exactly the functor of Lemma 1.1.5, so Theorem 1.1.4 implies
that E ′ is representable by a disjoint union of Gm equivariant locally closed subschemes
of E.

Step 2: Pλ ⊂ G acts simply transitively on E ′ ⊂ E: Because E is a G-bundle over A1
S, right

multiplication (e, g) 7→ (e, e · g) defines an isomorphism E ×G→ E ×A1
S
E. The latter

has a Gm action, which we can transfer to E ×G using this isomorphism.

For g ∈ G(T ), e ∈ E(T ), and t ∈ Gm(T ) we have t ? (e ·g) = (t ?e) · (λ(t)gλ(t)−1). This
implies that the Gm action on E×G corresponding to the diagonal action on E×A1

S
E

is given by
t · (e, g) = (t ? e, λ(t)gλ(t)−1)

3To see this, note that a map T → ΘS corresponds to a Gm-bundle P → T along with a Gm equivariant
map f : P → A1 × S. Then the restrictions (Eλ × S)T and E|T correspond (via descent for G-bundles) to
the Gm-equivariant bundles f−1(Eλ × S) and f−1E over P . Forgetting the Gm-equivariant structure, the
G-bundle Eλ × S is trivial, so an isomorphism f−1(Eλ × S)→ f−1E as G-bundles corresponds to a section
of f−1E, or equivalently to a lifting

E

��
P

f //

f̃

;;

A1 × S

to a map f̃ : P → E → A1 × S. The isomorphism of G-bundles defined by the lifting f̃ descends to an
isomorphism of Gm-equivariant G-bundles f−1(Eλ × S)→ f−1E if and only if the lift f̃ is equivariant with
respect to the twisted Gm action on E.
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The subfunctor of E × G corresponding to E ′ ×A1
S
E ′ ⊂ E ×A1

S
E consists of those

points for which limt→0 t · (e, g) exists. This is exactly the subfunctor represented by
E ′×Pλ ⊂ E×G. We have thus shown that E ′ is equivariant for the action of Pλ, and
E ′ × Pλ → E ′ ×A1

S
E ′ is an isomorphism of sheaves.

Step 3: p : E ′ → A1
S is smooth: Proposition 1.1.6 implies that E ′ and EGm ⊂ E ′ are both

smooth over S. The restriction of the tangent bundle TE/S|EGm is an equivariant locally
free sheaf on a scheme with trivial Gm action, hence it splits into a direct sum of vector
bundles of fixed weight with respect to Gm. The tangent sheaf TE′/S|EGm ⊂ TE/S|EGm

is precisely the subsheaf with weight ≥ 0. By hypothesis TE/S → p∗TA1
S/S

is surjective,
and p∗TA1

S/S
|EGm is concentrated in nonnegative weights, therefore the map

TE′/S|EGm = (TE/S|EGm )≥0 → p∗TA1
S/S
|EGm = (p∗TA1

S/S
|EGm ))≥ 0

is surjective as well.

Thus we have shown that TE′/S → p∗TA1
S/S

is surjective when restricted to EGm ⊂ E ′,

and by Nakayama’s Lemma it is also surjective in a Zariski neighborhood of EGm . On
the other hand, the only equivariant open subscheme of E ′ containing EGm is E ′ itself.
It follows that TE′/S → p∗TA1

S/S
is surjective, and therefore that the morphism p is

smooth.

Step 4: p : E ′ → A1
S admits sections étale locally: We consider the Gm equivariant G-bundle

E|{0}×S. After étale base change we can assume that E|{0}×S admits a non-equivariant
section, hence the Gm-equivariant structure is given by a homomorphism (Gm)S′ →
GS′ . Lemma 4.1.8 implies that after further étale base change this homomorphism
is conjugate to a constant homomorphism. Thus E|{0}×S′ is isomorphic to the trivial
equivariant Gm-bundle (Eλ)A1

S
= A1

S ×G→ A1
S with Gm acting by left multiplication

by λ(t).

It follows that E|{0}×S′ admits an invariant section with respect to the twisted Gm

action. In other words (EA1
S′

)Gm → {0} × S ′ admits a section, and EGm ⊂ E ′, so we

have shown that E ′ → A1
S′ admits a section over {0}×S ′. On the other hand, because

p : E ′ → A1
S′ is smooth and Gm-equivariant, the locus over which p admits an étale

local section is open and Gm-equivariant. It follows that p admits an étale local section
over every point of A1

S′ .

Remark 4.1.7. In fact we have shown something slightly stronger than the existence of
étale local sections of E ′ → A1

S in Step 4. We have shown that there is an étale map S ′ → S
such that E ′|S′ → A1

S′ admits a Gm-equivariant section.

We now prove that families of one parameter subgroups of G are étale locally constant
up to conjugation, which was the key fact in Step 4.
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Lemma 4.1.8. Let S be a connected k-scheme of finite type and let φ : (Gm)S → GS be
a homomorphism of group schemes over S. Let λ : Gm → G be a 1PS conjugate to φs for
some s ∈ S(k). Then the subsheaf

F (T ) =
{
g ∈ G(T )|φT = g · (idT , λ) · g−1 : (Gm)T → GT

}
⊂ GS(T )

is an Lλ-torsor. In particular φ is étale-locally conjugate to a constant homomorphism.

Proof. Verifying that F×Lλ → F×SF given by (g, l) 7→ (g, gl) is an isomorphism of sheaves
is straightforward. The more important question is whether F (T ) 6= ∅ étale locally.

As in the proof of Proposition 4.1.6 we introduce a twisted Gm action on G × S by
t ? (g, s) = φs(t) · g · λ(t)−1. Then G × S → S is Gm invariant, and the functor F (T ) is
represented by the map of schemes (G× S)Gm → S. By Proposition 1.1.6, (G× S)Gm → S
is smooth, and in particular it admits a section after étale base change in a neighborhood
of a point s ∈ S(k) for which (G × S)Gms = (G × {s})Gm 6= ∅. By construction this set
is nonempty precisely when φs is conjugate to λ, so by hypothesis it is nonempty for some
s ∈ S(k).

By the same reasoning every point has an étale neighborhood on which φ is conjugate
to a constant homomorphism determined by some one parameter subgroup. Because S is
connected and locally finite type it follows that φ must be conjugate to the same 1PS λ in
each of these étale neighborhoods. Thus (G× S)Gm → S admits a global section after étale
base change.

One immediate consequence of Proposition 4.1.6 is a classification of principal G-bundles
over Θ.

Corollary 4.1.9. Every G-bundle over Θ is isomorphic to Eλ for some one parameter
subgroup λ : Gm → G. In addition, Eλ0 ' Eλ1 if and only if λ0 and λ1 are conjugate, and
Aut(Eλ) ' Pλ as an algebraic group.

Proof. This is essentially exactly statement (2) of Proposition 4.1.6 applied to the case S =
Spec k, combined with the observation that E ′|{1} is trivializable because k is algebraically

closed.

In fact Proposition 4.1.6 induces a stronger version of this correspondence – it identifies
the category of G-bundles over ΘS and the category of Pλ torsors over 1× S by restriction.
Furthermore, this identification holds for all k-schemes S in addition to those of finite type.

Corollary 4.1.10. As a stack over the étale site of k-schemes, we have

∗/G(Θ) '
⊔
[λ]

∗/Pλ

where [λ] ranges over all conjugacy classes of 1PS λ : Gm → G. The maps ∗/Pλ → ∗/G(Θ)
classify the G-bundles Eλ over Θ.
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Proof. The objects Eλ define a 1-morphism
⊔

[λ] ∗/Pλ → ∗/G(Θ) of stacks over the site of
all k-schemes, and 4.1.6 implies that this is an equivalence of stacks over the sub-site of
k-schemes of finite type. The functor ∗/G(Θ) is limit preserving by the formal observation

Hom(lim←−
i

Ti, ∗/G(Θ)) ' Hom(lim←−
i

Ti ×Θ, ∗/G) ' lim←−
i

Hom(Ti ×Θ, ∗/G)

where the last equality holds because ∗/G is an algebraic stack locally of finite presentation.
The stack

⊔
[λ] ∗/Pλ is locally of finite presentation and thus limit preserving as well. Every

affine scheme over k can be written as a limit of finite type k schemes, so the isomorphism
for finite type k-schemes implies the isomorphism for all k-schemes.

Scholium 4.1.11. As a stack over the étale site of k-schemes, we have ∗/G(∗/Gm) '⊔
[λ] ∗/Lλ where [λ] ranges over all conjugacy classes of 1PS λ : Gm → G. The maps

∗/Lλ → ∗/G(∗/Gm) classify the trivial G-bundles G→ Spec k with Gm equivariant structure
defined by left multiplication by λ(t).

Proof. For S of finite type over k, the proof of Proposition 4.1.6 carries over unchanged for
G-bundles over (∗/Gm) × S, showing that étale locally in S they are isomorphic to S × G
with Gm acting by left multiplication by λ(t) on G. In fact, we had to essentially prove
this when we considered the Gm-equivariant bundle E|{0}×S in Step 4 of that proof. The
amplification of the statement from finite type k schemes to all k schemes is identical to the
proof of Corollary 4.1.10.

4.2 The stack X(Θ)

In this section we introduce the mapping stack X(Θ) in the case when X ' X/G is a global
quotient of a k-scheme X by a locally affine action (Definition 1.1.2) of a linear group G.
We establish an explicit description of X(Θ) as a disjoint union of quotient stacks of locally
closed sub-schemes of X by parabolic subgroups of G. We also describe a relationship
between X(Θ) and the stacks X(∗/Gm) and X.

By definition, as a weak functor into groupoids we have

X(Θ)(T ) := Hom(Θ× T,X)

where Hom denotes category of natural transformations of presheaves of groupoids, or equiv-
alently the category of 1-morphisms between stacks.

This definition makes sense for any presheaf of groupoids, but if X is a stack, then we
can describe X(Θ)(T ) more explicitly in terms of descent data [45]. We consider the first 3
levels of the simplicial scheme determined by the action of Gm on A1 × T

Gm ×Gm × A1 × T
µ //
σ //
a
// Gm × A1 × T

σ //
a
// A1 × T (4.2)

Where µ denotes group multiplication, σ denotes the action of Gm on A1, and a forgets the
leftmost group element. Then the category X(Θ)(T ) has
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• objects: η ∈ X(A1 × T ) along with a morphism φ : a∗η → σ∗η satisfying the cocycle
condition σ∗φ ◦ a∗φ = µ∗φ

• morphisms: f : η1 → η2 such that φ2 ◦ a∗(f) = σ∗(f) ◦ φ1 : a∗η1 → σ∗η2

It follows from this description, for instance, that the functor Hom(Θ× T,X)→ Hom(A1 ×
T,X) is faithful.

As with any Hom-stack, one has a universal evaluation 1-morphism ev : Θ× X(Θ)→ X
as well as the projection π : Θ× X(Θ)→ X(Θ). In addition we have morphisms

X(∗/Gm)
σ
22 X(Θ)

r0oo r1 // X (4.3)

where r0,r1 are the restriction of a morphism to the points 0, 1 ∈ A1 respectively. Note that
the restriction to the point 1 ∈ A1 is actually the restriction of the evaluation morphism to
the open substack X ' (A1 − {0})/Gm × X(Θ) ⊂ Θ × X(Θ). The morphism σ is induced
by the projection Θ → ∗/Gm. The composition ∗/Gm → Θ → ∗/Gm is equivalent to the
identity morphism, so r0 ◦ σ ' idX(∗/Gm).

We recall some notation established in Section 1.1. If G is a linear group acting on X
in a locally affine manner (Definition 1.1.2) and λ is a one parameter subgroup, then Xλ

denotes the fixed locus of X with respect to λ(Gm). Also, given a connected component
Z ⊂ Xλ we can define the blade YZ,λ consisting of points contracted to Z under the action
of λ. We also have the subgroup LZ,λ ⊂ Lλ of elements preserving Z and the corresponding
finite index subgroup PZ,λ ⊂ Pλ.

Lemma 4.2.1. There is a map of stacks Θ × (YZ,λ/PZ,λ) → X/G which maps the k-point
defined by (z, x) ∈ A1×Y to the k-point defined by λ(z) ·x ∈ X. By definition this defines a
morphism YZ,λ/PZ,λ → X(Θ). Likewise there is a map ∗/Gm × Z/LZ,λ → X defining a map
Z/LZ,λ → X(∗/Gm).

Proof. We will drop the subscripts Z and λ. A morphism Θ× (Y/P )→ X/G is a Gm × P -
equivariant G-bundle over A1× Y along with a G-equivariant and Gm×P invariant map to
X.

Consider the trivial G-bundle A1 × Y × G, where G acts by right multiplication on the
rightmost factor. This principal bundle acquires a Gm × P -equivariant structure via the
action

(t, p) · (z, x, g) = (tz, p · x, λ(tz)pλ(z)−1g)

This expression is only well defined when z 6= 0, but it extends to a regular morphism
because limz→0 λ(z)pλ(z)−1 = l exists. It is straightforward to check that this defines an
action of Gm × P , that the action commutes with right multiplication by G, and that the
map A1 × Y ×G→ X defined by

(z, x, g) 7→ g−1λ(z) · x
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is Gm × P -invariant.
The morphism ∗/Gm × Z/LZ,λ → X/G is simpler. It is determined by the group homo-

morphism Gm × LZ,λ → G given by (t, l) 7→ λ(t)l ∈ G which intertwines the inclusion of
schemes Z ⊂ X.

Note that for g ∈ G, the subscheme g ·Z is a connected component of Xλ′ where λ′(t) =
gλ(t)g−1. Furthermore, g ·YZ,λ = YgZ,λ′ and we have an equivalence YZ,λ/PZ,λ → Yg·Z,λ′/PZ,λ′
which commutes up to 2-isomorphism with the morphisms to X(Θ) constructed in Lemma
4.2.1.

Theorem 4.2.2. Let X = X/G be a guotient of a k-scheme X by a locally affine action
(Definition 1.1.2) of a linear group G. The natural morphism YZ,λ/PZ,λ → X(Θ) from
Lemma 4.2.1 identifies YZ,λ/PZ,λ with a connected component of X(Θ), and in fact these
morphisms induce isomorphisms

X(Θ) '
⊔
[Z,λ]

YZ,λ/PZ,λ, and X(∗/Gm) '
⊔
[Z,λ]

Z/LZ,λ

The disjoint unions are taken over equivalence classes of pairs [Z, λ] where Z is a connected
component of Xλ and the equivalence relation on such pairs is generated by [Z, λ] ∼ [g ·
Z, gλg−1].

Proof. The map X→ ∗/G induces a functor X(Θ)→ ∗/G(Θ), and we shall use the descrip-
tion of the latter from Corollary 4.1.10 to prove the theorem. Consider the fiber product
X(Θ)×∗/G(Θ) Spec k where the morphism Spec k → ∗/G(Θ) is induced by the G-bundle Eλ
over Θ.

By definition the groupoid of T points of the fiber product [45] consists of Gm-equivariant
G bundles E → A1 × T along with a G-equivariant and Gm-invariant map E → X and an
isomorphism of equivariant G-bundles E ' (Eλ)T . Of course the data of the G bundle is
redundant once we fix an isomorphism with (Eλ)T , so we have(

X(Θ)×∗/G(Θ) Spec k
)

(T ) ' {Gm-equivariant maps A1 × T → X} = ΦX(T )

where Gm acts on X via λ, and the functor ΦX is exactly the functor introduced in Theorem
1.1.4. It follows from that theorem that X(Θ) ×∗/G(Θ) Spec k is represented by the scheme

Y =
⊔
Z YZ,λ, where the coproduct ranges over all connected components Z ⊂ Xλ.

Note that Aut(Eλ) = Pλ acts naturally on this fiber product. The quotient of
⊔
YZ,λ

by the action of Pλ is the disjoint union of YZ,λ/PZ,λ where Z ranges over a choice of rep-
resentatives for each orbit of the action of Pλ on the set of connected components. This is
equivalent to a set of representatives for each orbit of the action of Lλ on the set of connected
components π0(Xλ).

Corollary 4.1.10 implies that the quotient (X(Θ)×∗/G(Θ)Spec k)/Pλ is the preimage under

the canonical morphism X(Θ) → ∗/G(Θ) of the connected component ∗/Pλ corresponding
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to the conjugacy class of λ. It follows that YZ,λ/PZ,λ are the connected components of
X(Θ). From this description it follows that pairs [Z, λ] and [Z ′, λ′] define the same connected
component of X(Θ) if and only if λ′ = gλg−1 and Z ′ = g · Z. One can check that these
inclusions YZ,λ/PZ,λ → X(Θ) agree with those of Lemma 4.2.1.

The same argument as above implies the statement for X(∗/Gm) with little modification.
By Scholium 4.1.11 the mapping stack ∗/G(∗/Gm) is isomorphic to

⊔
∗/Lλ. The morphism

X(∗/Gm) → ∗/G(∗/Gm) is representable, and the preimage of the connected component

∗/Lλ is the global quotient Xλ/Lλ, which can be further decomposed into connected com-
ponents.

From this explicit description of the stack X(Θ) we obtain explicit descriptions of the
morphisms r0 and r1 from the diagram (4.3) and deduce some basic properties.

Corollary 4.2.3. The morphism r0 : X(Θ)→ X(∗/Gm) is finite type with connected fibers.
On each connected component, r0 corresponds to the projection YZ,λ → Z mapping x 7→
lim
t→0

λ(t) · x, which interwines the group homomorphism PZ,λ → LZ,λ.

Corollary 4.2.4. On the connected component of X(Θ) corresponding to [Z, λ], the restric-
tion morphism r1 : X(Θ) → X is equivalent to the inclusion YZ,λ which intertwines the
inclusion of groups PZ,λ ⊂ G. In particular it is representable and proper over an open
substack of X.

Furthermore, we can study the morphism W(Θ) → X(Θ) induced by a morphism of
stacks W→ X.

Proposition 4.2.5. Let W and X be quotients of k-schemes by locally affine group actions,
and let f : W→ X be a morphism. We consider the induced morphism f̃ : W(Θ)→ X(Θ).

1. If f is representable by algebraic spaces (respectively schemes), then so is f̃ .

2. If f is representable by open immersions, then so is f̃ , and f̃ identifies W(Θ) with the
preimage of W ⊂ X under the composition X(Θ)

r0−→ X(∗/Gm)→ X.

3. If f is representable by closed immersions, then so is f̃ , and f̃ identifies W(Θ) with
the closed substack r−1

1 W ⊂ X(Θ).

Proof. Let S → X(Θ) be an S-point defined by a morphism ΘS → X. Then the fiber product
ΘS×XW→ ΘS is representable and is thus isomorphic to E/Gm for some algebraic space E
with a Gm-equivariant map E → A1

S. The fiber of W(Θ)→ X(Θ) over the given S-point of
X(Θ) corresponds to the groupoid of sections of E/Gm → A1

S/Gm, which form a set. Thus
W(Θ) is equivalent to a sheaf of sets as a category fibered in groupoids over X(Θ). Because
W(Θ) and X(Θ) are algebraic, the morphism W(Θ) → X(Θ) is relatively representable by
algebraic spaces.

Now if X = X/G and f is representable by schemes, it follows that W = W/G for
some scheme W with a G-equivariant map W → X. Let S be a connected k scheme, then
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Theorem 4.2.2 implies that a morphism S → X(Θ) corresponds to a Pλ-bundle E → S along
with a Pλ-equivariant map E → Yλ, where Yλ is the scheme whose existence is guaranteed
by Hesselink’s Theorem 1.1.4.

To show that if W ⊂ X is an open substack, it is necessary and sufficient to show
that for any one parameter subgroup, the functor ΦW (T ) ⊂ ΦX(T ) is an open subfunctor.
Let f : A1

T → X be a Gm-equivariant morphism, and consider the open subscheme S =
f−1(W )∩{0}×T ⊂ T . Then the Gm-equivariant morphism A1

S → A1
T → X factors through

W because any equivariant open subset of A1
S containing {0} × S must be all of A1

S itself.
On the other hand, it is straightforward to show that if T ′ → T is such that A1

T ′ → A1
T → X

factors through W , then T ′ → T factors through S. Thus S ⊂ T represents the preimage of
W(Θ) under T → X(Θ), so we have an open immersion.

The argument for closed immersions is similar – we must show that ΦW (T ) ⊂ ΦX(T ) is
a closed subfunctor. Let f : A1

T → X be a Gm-equivariant morphism and define the closed
subscheme S = f−1(W )∩{1}×T ⊂ T . Then the morphism A1

S → A1
T → X factors through

W , because f−1W is a closed subscheme of A1
T containing Gm × S, and A1

S is the scheme
theoretic closure of Gm × S in A1

T . In addition if T ′ → T is such that A1
T ′ → A1

T → X
factors through W , the T ′ → T factors through S. Thus in this case ΦW ⊂ ΦX is a closed
subfunctor.

Corollary 4.2.6. If X is an algebraic stack over k which can be covered by a possibly infinite
family of open substacks which are quotients of k-schemes by locally affine actions of linear
groups, then X(Θ) is an algebraic stack. In fact it is also a union of open substacks which
are quotient stacks. If X is locally of finite type, then so is X(Θ).

Proof. This is an immediate consequence of Part (2) of Proposition 4.2.5.

Modular examples of X(Θ)

We have shown that X(Θ) is an algebraic stack locally of finite type whenever X is locally a
quotient stack (for a locally affine group action). This allows us to study X(Θ) for algebraic
stacks X representing common moduli problems in algebraic geometry.

For example, let Σ be a connected projective k scheme and G a linear group. The stack
BunG(Σ) of principal G-bundles on Σ is a weak functor valued in groupoids defined by

BunG(Σ) : T 7→ {G-bundles on T × Σ} (4.4)

This can alternatively be described as the Hom-stack Hom(Σ, ∗/G)(T ) = Hom(T ×Σ, ∗/G).
When Σ is projective, the stack BunG(Σ) is algebraic and locally of finite type. This can
be deduced from the fact that BunGLR(Σ) is algebraic and locally finite type, and choosing
a faithful representation G ⊂ GLR, the morphism BunG(Σ) → BunGLR(Σ) is representable
and finite type.

Lemma 4.2.7. Let X = BunG(Σ), then a geometric point of X(Θ), i.e. a morphism f :
Θ→ BunG(Σ) is equivalent to either of the following data
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1. an equivariant G-bundle on A1 × Σ, where G∗m acts on the first factor

2. a 1PS λ : Gm → G, and a principal Pλ-bundle, E over X

and under the second identification the point f(1) ∈ BunG(Σ) is the extension of structure
group from Pλ to G. The second identification works in families as well, hence we have

X(Θ) =
⊔
[λ]

BunPλ(Σ)

Proof. The first description follows from descent on the action groupoid of Gm on A1 × X
and the fact that the functor 4.4 defines a stack (see Diagram (4.2)). The second description
follows from the formal observation

Hom(Θ,Hom(Σ, ∗/G)) ' Hom(Σ×Θ, ∗/G) ' Hom(Σ,Hom(Θ, ∗/G))

and the description of Hom(Θ, ∗/G) = ∗/G(Θ) from Corollary 4.1.10.

Example 4.2.8. A closely related example is the stack Coh(X) of coherent sheaves on X.
A map from Θ corresponds to a coherent sheaf along with a choice of filtration. This follows
from the description of QCoh(Θ×X) in Proposition 4.1.4.

Example 4.2.9. One can consider the stack of polarized projective varieties. Here a map
from Θ to the moduli stack corresponds to a test configuration as used by Donaldson to
define the notion of K-stability.

4.3 Θ-stratifications

Now that we have described the stack X(Θ), we return to the theory of stratifications in geo-
metric invariant theory. We shall present a unified framework for constructing stratifications
which generalize the KN stratification of the unstable locus in GIT.

Let X be a projective over affine variety with a reductive group action. Recall from
Section 1.1 that after fixing a G-ample line bundle L and an invariant bilinear form | • | on
g, we have a sequence of open G-equivariant subvarieties Xss = X0 ⊂ X1 ⊂ · · · ⊂ XN = X,
where the complement Si = Xi \Xi−1 are the KN strata.

Combining the description of X(Θ) from Theorem 4.2.2 with the description of the KN
strata given in Section 1.1, we see that

Proposition 4.3.1. The KN stratum Si/G is isomorphic to a connected component of
Xi/G(Θ). The closed immersion of stacks Si/G ↪→ Xi/G corresponds to the canonical
morphism r1 : Xi/G(Θ)→ Xi/G.

This motivates the following definition
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Definition 4.3.2. A Θ-stratum S ⊂ X is a closed substack of a stack X which is identified
with a connected component of X(Θ) by the canonical morphism r1 : X(Θ)→ X. Likewise,
a Θ-stratification of X is a family family of open substacks X0 ⊂ X1 ⊂ · · · such that Xi\Xi−1

is a union of Θ-strata and X =
⋃
iXi.

4

In GIT the Θ-stratification is determined by an ordered list of connected components
of X(Θ). We denote these with a superscript X(Θ)i = YZi,λi/PZi,λi . The morphism r1 :
X(Θ)i → X corresponds to the immersion YZi,λi ↪→ X which intertwines the inclusion
PZi,λi ⊂ G. Under the identification Y/P ' G ×P Y/G, the morphism r1 corresponds
the G equivariant map G ×P Y → X. Thus r1 is representable, but it need not be an
immersion, and it need not be proper.

Example 4.3.3. To see that r1 need not be an immersion, consider the simplest example
∗/G(Θ) =

⊔
∗/Pλ. The fiber of the morphism r1 : ∗/G(Θ)→ ∗/G over the cover ∗ → ∗/G

is
⊔
G/Pλ. Hence r1 is not an immersion.

In fact, r1 is a local immersion whenever X is a global quotient by an abelian group.
However we see that r1 need not be proper

Example 4.3.4. Let V = Spec k[x, y, z] be a linear representation of Gm where x, y, z have
weights −1, 0, 1 respectively, and let X = V − {0} and X = X/Gm. The fixed locus is the
punctured line Z = {x = z = 0} ∩X, and the connected component of X(Θ) corresponding
to the pair [Z, λ(t) = t] is the quotient S/Gm where

S = {(x, y, z)|z = 0 and y 6= 0}

S ⊂ X is not closed. Its closure contains the points where x 6= 0 and y = 0. These points
would have been attracted by λ to the “missing” point {0} ∈ V which has been removed in
X. It follows that S/Gm → X/Gm is not proper.

In light of these potential pathologies, the main result on the KN stratification in GIT
can be interpreted as the statement that for the connected components X(Θ)i = YZi,λi/PZi,λi
selected by the Hilbert-Mumford criterion, we have

1. The substack
⋃
j>i

r1(X(Θ)j) ⊂ X is closed, and

2. r1 : X(Θ)i → X is a closed immersion over the open substack X \
⋃
j>i

r1(X(Θ)j).

Thus the problem of generalizing the KN stratification in GIT rests on an intrinsic description
of a method of selecting connected components of X(Θ) so that these properties hold.

One caveat is that the stratum Si/G does not correspond to a unique connected compo-
nent of X(Θ). Consider the map A1 → A1 given by t 7→ tn. This is not equivariant with

4It is possible to modify this notion for applications in which the natural indexing set of the stratification
is some other partially ordered set, rather than the natural numbers.
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respect to Gm, but it intertwines the group homomorphism z 7→ zn and therefore defines

a map Θ
×n−→ Θ for every n > 0. For any algebraic stack X, we can let the monoid N×

act on X(Θ) by pre-composing a morphism ΘS → X with the n-fold ramified covering map

ΘS
×n−→ ΘS.

The action of N× on X(Θ) descends to the set of connected components π0X(Θ) as

well. The composition X(Θ)
×n−→ X(Θ)

r1−→ X is naturally isomorphic to r1, so if S ⊂ X
is a Θ-stratum identified with the connected component X(Θ)i, it is also isomorphic to
any connected component of X(Θ) in the orbit of X(Θ)i under the action of N×. So to be
precise, the GIT stratification is determined by a sequence of elements of the set π0X(Θ)/N×

satisfying the properties above.

Definition 4.3.5. A numerical invariant for the stack X is a map µ : π0X(Θ)/N× →
R ∪ {−∞}. We can define the stability function Mµ : X(k)→ R ∪ {−∞} as

Mµ(p) = sup {µ(f) |f : Θ→ X with f(1) ' p ∈ X(k)}

where we are considering µ to be a locally constant function on X(Θ).

In the remainder of this section, we will assume that k = C, because our method for
constructing numerical invariants makes use of the cohomology of the topological stack un-
derlying the analytification of X.

Example 4.3.6. Our quintessential example of a numerical invariant is defined using coho-
mology classes l ∈ H2(X;Q) and b ∈ H4(X;Q). Given a map f : Θ → X the pullback f ∗l
and f ∗b are cohomology classes in H2(Θ) = Q ·q and H4(Θ) = Q ·q2 respectively. We assume
that b is positive definite in the sense that f ∗b ∈ Q≥0 · q2 and strict inequality holds if the
group homomorphism Gm → Aut f(0) has finite kernel. We define the numerical invariant

µ(f) = f ∗l/
√
f ∗b ∈ R (4.5)

For points for which the homomorphism Gm → Aut f(0) is trivial, we define µ = −∞. The
value of µ(f) agrees for any two maps Θ→ X corresponding to points in the same connected
component of X(Θ).5

Given a numerical invariant, one can attempt to define a Θ stratification of X indexed
by real numbers r ≥ 0

Xr = X \
⋃

µ(X(Θ)i)>r

r1(X(Θ)i) (4.6)

5Consider a morphism f : Θ × S → X, where S is a connected scheme of finite type over C. Then
H∗(Θ× S) ' H∗(Θ)⊗H∗(S) under the Künneth decomposition, and for any C-point s ∈ S the restriction
morphism H∗(Θ×S)→ H∗(Θ×{s}) = H∗(Θ) can be identified with the projection onto H∗(Θ)⊗H0(S) '
H∗(Θ). Thus the restriction of fs : Θ→ H∗(X) induces the same homomorphism f∗s : H∗(X)→ H∗(Θ) for
any point s ∈ S.
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In other words, the C-points of Xr are precisely those C-points of X for which Mµ(p) > r.
While this definition has the advantage of being very general, it ignores several possible
problems: 1) Xr does not need to be an open substack as defined, 2) in between Xr0 ⊂ Xr1

there could be infinitely many values of r at which Xr jumps, and 3) if the connected
component X(Θ)i has numerical invariant µ = r, the morphism X(Θ)i → Xr need not be in
immersion and need not be proper.

Nevertheless the KN stratification in geometric invariant theory arises from a numerical
invariant of the form (4.5).

Lemma 4.3.7. The numerical invariant (1.3) used to define the KN stratification can be
expressed in terms of a class l ∈ H2(X;Q) and b ∈ H4(X;Q) as in (4.5), and the KN
stratification is defined by (4.6).

Proof. The Hilbert-Mumford criterion uses the numerical invariant −weightLf(0)/|λ|, where
|•| denotes an invariant inner product on the lie algebra g. The numerator can be interpreted
as 1

q
f ∗c1(L) ∈ Q.

For the denominator, the G invariant bilinear form | • | on g can be interpreted as a class
in H4(∗/G;C) under the identification H∗(∗/G;C) ' (Sym(g∨))G. The class is rational if
it takes rational values on elements of g corresponding to one-parameter subgroups. We
pull this back to a class b ∈ H4(X/G) under the map X/G → ∗/G. For a morphism
f : Θ→ X/G, the pullback f ∗b is the pullback of the class in H4(∗/G) under the composition
Θ→ X/G→ ∗/G. We therefore have f ∗b = |λ|2q2 ∈ H4(Θ).

Thus we have identified the Hilbert-Mumford numerical invariant with an invariant of
the form (4.5). It is straightforward to verify that (4.6) agrees with the usual definition of
the KN stratification.

In light of this reformulation of semistability and the KN stratification in GIT, we have
the following

Question 4.3.8. Which existing notions of semistability for moduli problems in algebraic
geometry can be described by a class in H2 and H4 of a moduli stack? Given classes in H2

and H4, under what conditions does the stability function Mµ define a Θ-stratification on
the unstable locus?

In future work we hope to answer this question more fully.

Vector bundles on a curve

Continuing our investigation of the construction of Θ-stratifications, we now study the stack
BunG(Σ) of principal G-bundles on Σ, where Σ is a smooth algebraic curve and G = SLR or

GLR. We will show how the notion of slope semistability as well as the Shatz stratification
[41] of BunG(Σ) can be recovered from a choice of class in H4 and H2. This example serves
as proof-of-concept for constructing Θ-stratifications using the intrinsic formulation of the
Hilbert-Mumford criterion.
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We shall make use of the natural equivalence between the categories of GLR-bundles and
locally free sheaves of rank R on Σ, and between SLR-bundles and locally free sheaves with
trivial determinant. We define the slope of a locally free sheaf ν(E) := deg(E)/ rank(E).6 A
locally free sheaf E on Σ is called slope semistable if, for all locally free subsheaves F ⊂ E
with locally free quotient one has ν(F) < ν(E).7

Any unstable locally free sheaf has a unique filtration (up to indexing) such that the
associated graded sheaves gri(E•) = Ei/Ei+1 are semistable, and the slope ν(gri(E•)) is strictly
increasing in i. This is known as the Harder-Narasimhan (HN) filtration. Typically, the
indices of the subsheaves Ei are not taken as part of the data of the HN filtration, but one
consequence of our analysis below is that the indices are canonical up to scaling Ei 7→ Eni,
so we will see that there is a canonical f : Θ→ BunG(Σ) up to the n-fold coverings Θ→ Θ
which is “maximally destabilizing” for E . By Proposition 4.1.4, we can interpret this as saying
that for every unstable p ∈ BunG(Σ), there is a map f : Θ → BunG(Σ) with f(1) ' [E ]
which corresponds to the HN filtration of E .

To any map Θ→ BunG(Σ), corresponding to a filtered vector bundle E•, we associate the
sequence (Ri, Di) := (rank(Ei), deg(Ei)) ∈ Z2 which is a topological invariant, in the sense
that these integers are locally constant on X(Θ), where X = BunG(Σ). We also define R =
rank E and D = deg E . Because Ei = Ei+1 for all but finitely many values of i, we can encode

this data more concisely (but equivalently) as a finite sequence α = {(rj, dj, wj)|j = 1, . . . , p}
where wj ranges over indices for which grwj E• 6= 0, rj = rank grwj E•, and dj = deg grwj E•.
Given this data we can reconstruct the sequence (Ri, Di) with the

(Ri, Di) =

 ∑
j|wj≥i

rj,
∑
j|wj≥i

dj


To such a sequence, we associate the polytope Pol(α), which is the convex hull of points
(Ri, Di) ∈ R2 for i ∈ Z. Note that because our filtration is decreasing, the points (Ri, Di)
move from right to left in the (r, d)-plane as i varies from −∞ to ∞.

Shatz showed in [41] that the moduli of unstable locally free sheaves on Σ whose HN
filtration has a particular polytope (note that the polytope does not depend on the indexing
of the filtration) is a locally closed substack Sα of BunG(Σ). Furthermore, the closure of
Sα is the union of Sβ for all β such that Pol(α) ⊂ Pol(β). Our goal is to find a numerical
invariant µ on BunG(Σ) such that the associated stability function Mµ([E ]) (Definition 4.3.2)

6The slope is more commonly denoted µ, but we have chosen the letter ν to avoid confusion with the
notion of a numerical invariant on a stack X.

7For an arbitrary reductive G, a G-bundle E → Σ is semistable if for any one parameter subgroup λ of
G and any reduction of structure group to Pλ, the line bundle on Σ associated to any dominant character
of Pλ has deg ≤ 0 [37]. In the case of G = GLR or SLR, a reduction of structure group to Pλ corresponds to
a decreasing filtration · · · ⊂ Ei+1 ⊂ Ei ⊂ · · · E where rank gri(E•) is the dimension of the eigenspace of λ of
weight i in the fundamental representation of G. One can show that an unstable bundle can be detected by
considering two-step filtrations 0 ⊂ F ⊂ E , and that this notion of stability agrees with the notion of slope
semistability.
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is a function of the polytope of the HN filtration of E , and Mµ should be strictly monotone
increasing with respect to inclusion of polytopes.

Cohomology classes on BunG(Σ) can be constructed geometrically via “transgression”
along the universal diagram

T × Σ //

πT

��

BunG(Σ)× Σ //

π

��

∗/G

T
f // BunG(Σ)

(4.7)

If we choose a coherent sheaf F on Σ and a representation V of G, then we have the
cohomology class8

chRπ∗(F ⊗ VEuniv) ∈ Heven(BunG(Σ);Q)

where ch denotes the Chern character and VEuniv = Euniv ×G V is the locally free sheaf on
BunG(Σ)× Σ associated to the representation V by the universal G-bundle Euniv.

Proposition 4.3.9. Let
√
K be a square root of the canonical bundle on Σ, and let kp be the

structure sheaf of a point p ∈ Σ. Let G = GLR or SLR, and let V be the vector representation
V = CR and W := V ⊗R⊗det−1(V ). Consider the numerical invariant µ defined by Equation
(4.5) using the cohomology classes

l :=
−1

RR
ch1(Rπ∗(

√
K ⊗WEuniv)) ∈ H2(BunG(Σ);Q), and

b := 2 ch2(Rπ∗(kp ⊗ VEuniv)) ∈ H4(BunG(Σ);Q)

Then for a locally free sheaf E, Mµ([E ]) > 0 if and only if E is slope unstable, and if the
Harder-Narasimhan filtration of a locally free sheaf E has graded pieces with slopes νj and

ranks rj, then Mµ([E ]) =
√∑

j ν
2
j rj − ν2R > 0.

Remark 4.3.10. When G = SLR, the cohomology class − ch1(Rπ∗(
√
K ⊗ VEuniv)) in

H2(BunG(Σ);Q) induces the same numerical invariant on BunG(Σ) as the class l.

We will prove this Proposition in the next section, but first we will analyze the stability
function Mµ([E ]).

If E• is a vector bundle with decreasing filtration, the sequence of points (Ri, Di) can
be linearly interpolated in a canonical way to a continuous piecewise linear function hE• :
[0, R] → R such that Di = hE•(Ri). Note that hE• does not depend on the indexing of the
filtration.

8Using Grothendieck-Riemann-Roch this can also be expressed as the cohomological pushforward of
cohomology classes on BunG(Σ) × Σ, namely we can write this cohomology class as [Σ] ∩ ((1 + 1

2c1(K)) ·
ch(F ) · ch(V )).
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Corollary 4.3.11. Let E be a locally free sheaf of rank R and degree D. If hE• : [0, R]→ R
is the piecewise linear function associated to the Harder-Narasimhan filtration of E, then

Mu([E ]) =

√∫ R

0

(h′E•(x))2dx− ν2R (4.8)

This stability function is strictly monotone increasing with respect to inclusion of Shatz poly-
topes. Therefore Mµ([E ]) recovers the Shatz stratification of the unstable locus of BunG(Σ)
via the formula (4.6).

Proof. The integral in (4.8) is simply a reinterpretation of the sum
∑
ν2
j rj in the expression

for Mµ([E ]) – each term ν2
j rj corresponds to an interval of length rj on which h′E•(x) = νj is

constant.
We must show that this expression is monotone increasing with respect to inclusion

of polytopes. If h1, h2 : [0, R] → R are continuous piecewise linear functions with h′i(x)
decreasing and with h1(x) ≤ h2(x) with equality at the endpoints of the interval, then we

must show that
∫ R

0
(h′1(x))2 <

∫ R
0

(h′2(x))2. First by suitable approximation with respect to
a Sobolev norm it suffices to prove this when hi are smooth functions with h′′ < 0.9 Then
we can use integration by parts∫ R

0

(h′2)2 − (h′1)2dx =

∫ R

0

(h′2 + h′1)(h′2 − h′1)dx

= (h′2 − h′1)(h2 − h1)|R0 −
∫ R

0

(h2 − h1)(h′′2 + h′′1)dx

The first term vanishes because h1 = h2 at the endpoints, and the second term is strictly
positive unless h1 = h2.

Proof of Proposition 4.3.9

Before proving Proposition 4.3.9, we compute the cohomology classes f ∗l and f ∗b more
explicitly for a morphism f : Θ→ BunG(Σ). Given a coherent sheaf F on Σ, we apply base
change on the diagram 4.7 to compute

f ∗ chRπ∗(F ⊗ VEuniv) = ch (R(πΘ)∗(F ⊗ VE))

Where E = f ∗Euniv is the G-bundle classified by f . Thus we must compute the K-theoretic
pushforward to Θ of the classes [F � VE] ∈ K0(Θ× Σ) where F =

√
K or F = kp.

By Proposition 4.1.6 a G-bundle E on Θ× Σ corresponds to a one-parameter subgroup
λ, and a G-bundle on Σ with a reduction of structure group to Pλ. In fact, the E admits a

9One can probably prove the inequality without appealing to analysis by using a discrete integration by
parts argument.
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canonical reduction to a Pλ bundle E ′ on Θ×S. The subspaces Vλ≥i are subrepresentations of
Pλ, hence the associated locally free sheaf V := VE = VE′ on Θ×Σ is filtered by the associated
locally free sheaves Vi := (Vλ≥i)E′ . One the other hand, V uniquely corresponds to the data
of the restriction E = V|{1}×Σ along with the decreasing filtration Ei = Vi|{1}×Σ. If a locally
free sheaf V on Θ×Σ is concentrated in weight w, then we have V ' E(−w) = OΘ(−w)� E
for some w. Thus we have the following identity in K0(Θ× Σ)

[VE] =
∑
i

[OΘ(−i)� gri E•] =
∑
i

u−i[gri E•]

where the classes [gri E•] are pulled back from Σ (and given the trivial C∗ action) and u is
the class of the trivial line bundle with C∗ action of weight 1 (equivalently the invertible
sheaf whose fiber at {0} has weight −1). Thus we have for any coherent sheaf F on Σ,

ch(Rπ∗[F ⊗ VE]) = ch

(∑
i

u−iχ(Σ, F ⊗ gri E•)

)
=
∑
i

e−iqχ(Σ, F ⊗ gri E•) (4.9)

in H∗(Θ) = Q[[q]], where E• is the filtered locally free sheaf on Σ corresponding (via Propo-
sition 4.1.4) to the locally free sheaf VE on Θ× Σ.

Lemma 4.3.12. Let G = GLR or SLR and let l and b be the cohomology classes on BunG(Σ)
introduced in Proposition 4.3.9. Let f : Θ → BunG(Σ) be a morphism with f(1) ' [E ],
which corresponds to a descending filtration E• of E. We let rj = rank grwj(E•) and dj =
deg grwj(E•) as wj ranges over weights in which gri(E•) 6= 0. Then the cohomology class b is
positive definite, meaning that f ∗b ≥ 0 with equality if and only if the induced homomorphism
Gm → Aut f(0) is trivial. The numerical invariant is

µ(f) :=
f ∗l√
f ∗b

=

∑p
j=1 wjdj − ν

∑p
j=1wjrj√∑p

j=1w
2
j rj

Proof. We apply Equation (4.9) to the standard representation V = CR and F = kp to
compute the class

f ∗b =
∑
i

i2q2χ(kp ⊗ gri E) =
∑
i

w2
j rjq

2

This expression is nonnegative, and it vanishes if and only if the filtration of E is trivial and
concentrated in weight 0, which corresponds to the homomorphism Gm → Aut(gr E•) being
trivial.

In order to compute f ∗l we consider the representation W = V ⊗R ⊗ det−1(V ). Now f
classifies a principal G-bundle E over Θ× Σ with f(1) ' [E ] and we have

[WE] = u
∑
iri [det(E)−1] ·

(∑
u−i[gri E ]

)R
∈ K0(Θ× Σ)
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Using Riemann-Roch we see that χ(
√
K⊗•) = ch1(•)∩ [Σ], which is a derivation over the

ring homomorphism ch0 : K0(Σ)→ Z. Furthermore, R(πΘ)∗(
√
K⊗•) : K0(Θ×Σ)→ K0(Θ)

is the Z[u±]-linear extension of this derivation. This allows us to evaluate

R(πΘ)∗[
√
K ⊗WE] = u−

∑
wjrj

[
(−D)(

∑
u−wjrj)

R +R(
∑

u−wjrj)
R−1(

∑
u−wjdj)

]
Taking the Chern character gives

chR(πΘ)∗[
√
K ⊗WE] = e

∑
wjrjq(

∑
e−wjqrj)

R(
∑

e−wjqdj − ν
∑

e−wjqrj)

The last factor vanishes when q = 0, thus the coefficient of q in this power series is

f ∗l =
−1

RR
ch1Rπ∗[

√
K ⊗WE] =

1

RR

(
e
∑
wjrjq(

∑
e−wjqrj)

R
)∣∣∣

q=0
(
∑

wjdj − ν
∑

wjrj)

=
∑

wjdj − ν
∑

wjrj

Remark 4.3.13. If G = SLR, then a morphism f : Θ → BunG(Σ) with f(1) ' [E ] is a
decreasing filtration of E with indexing such that

∑
i i rank(gri E•) = 0. The requirement on

the ranks of the graded pieces expresses the fact that a 1PS in SLR is a choice of weight
decomposition of CR with precisely the same rank constraint. In this case f ∗l =

∑
wjdj, and

one can compute that
∑
wjdj =

∑
i−iqχ(

√
K ⊗ gri E•) = −f ∗ ch1Rπ∗[

√
K ⊗ VE] as well.

Therefore we could have used the cohomology class − ch1Rπ∗[
√
K⊗VE] ∈ H2(BunSLR(Σ);Q)

instead of the class l.

Remark 4.3.14. Note that given a filtration of E , one can simultaneous shift the indexing
Ei 7→ Ei+k. f ∗l is unchanged by this shift as a result of the fact that Z0(GLR) acts trivially on
W . If this were not the case, then any bundle could be made unstable by suitably shifting a
filtration. This is why the class − ch1Rπ∗(

√
K⊗VE) is not suitable for defining a numerical

invariant when G = GLR.

The numerical criterion for semistability implied by the cohomology class f ∗l says that a
vector bundle E on Σ of rank R and degree D is semistable iff for every decreasing filtration
of E we have

∑
i(deg(gri E•)− ν rank(gri E•)) ≤ 0. If we have a single subbundle F ⊂ E , we

consider this as a filtration where grb E• = F and gra E• = E/F with b > a. The numerical
criterion says that if E is semistable then

0 ≥ b (degF − ν rankF) +RRa (deg E/F − ν rank E/F)

= (b− a) rank(F)

(
degF
rankF

− ν
)

So a slope unstable bundle is also unstable with respect to the numerical invariant µ. The
converse, that a bundle with Mµ([E ]) > 0 is slope unstable, will follow from our explicit
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analysis of the filtration which maximizes µ over all f : Θ → BunG(Σ) with f(1) ' E ,
assuming that there is at least one filtration such that µ(f) > 0, i.e. assuming E is unstable.

Given a filtration of E we have some flexibility to re-index, which gives different f :
Θ→ BunG(Σ). As above we denote the data of the filtration by the sequence (rj, dj, wj) for
j = 1, . . . , p. The different choices of indexing in the filtration correspond precisely to choices
of wj subject to the inequality w1 < · · · < wp (and the constraint w1r1 + · · · + wprp = 0 if
G = SLR). As discussed above this data can be visualized as a piecewise linear path in the
(r, d)-plane from the point (R0, D0) = (R,D) to the point (Rp, Dp) = (0, 0). The slope of
the jth segment is νj := dj/rj for j = 1, . . . , p. The path is strictly convex if ν1 < · · · < νp.

Lemma 4.3.15. If 0 ⊂ Ewp ⊂ · · · ⊂ Ew1 = E is a decreasing filtration of E such that
µ ≥ 0 and νj ≥ νj+1 for some j, then discarding the sub-bundle Ewj+1

from our filtration and
relabelling

w′j :=
wjrj + wj+1rj+1

rj + rj+1

does not decrease µ. If necessary, we can scale the wj without affecting µ so that w′j is an
integer.

Proof. We draw the relevant vertices of the path in the (r, d)-plane corresponding to the
filtration E•.

[Ewj ]

[Ewj+2
]

ν′=
dj+dj+1
rj+rj+1

νj+1=
dj+1
rj+1

[Ewj+1
]

νj=
dj
rj

We denote µ = L/
√
B, then discarding Ewj+1

and relabelling w′j as above, the numerator
and denominator change by

∆L = w′j(dj + dj+1)− wjdj − wj+1dj+1

= wj(ν
′rj − dj) + wj+1(ν ′rj+1 − dj+1)

∆B = (w′j)
2(rj+1 + rj)− w2

j rj − w2
j+1rj+1

= − rjrj+1

rj + rj+1

(wj − wj+1)2

Note that ∆B ≤ 0. Also (ν ′rj−dj)+(ν ′rj+1−dj+1) = 0, so ∆L = (wj+1−wj)(ν ′rj+1−dj+1).
By hypothesis ν ′rj+1 − dj+1 ≥ 0, so ∆L ≥ 0, and assuming µ ≥ 0 to begin with we see that
µ′ ≥ µ.

Thus if we are trying to maximize µ over all destabilizing filtrations of E , it suffices to
consider only those flags whose corresponding path in the (r, d)-plane are convex, meaning
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ν1 < · · · < νp, because we can discard sub-bundles in any destabilizing filtration until it
satisfies this property. Next we find the optimal indexing for a given strictly convex filtration

Lemma 4.3.16. Let Ewp ( · · · ( Ew1 be a filtration of E such that ν1 < · · · < νp, then µ(f)
is maximized by assigning the indices wj ∝ νj − ν, where ν = D/R. The maximum is thus

µ =
√

(
∑

νjdj)− νD =
√

(
∑

ν2
j rj)− ν2R

Remark 4.3.17. For the group SLR, we must maximize µ subject to the constraint
∑
wirj =

0. However, this condition is automatically satisfied by the assignments wj ∝ νj − ν. There-
fore, this lemma applies equally to both G = GLR and SLR.

Proof. We can think of the numbers r1, · · · , rp as defining an inner product ~a ·~b =
∑
ajbjrj.

Then given an indexing of the filtration ~w = (w1, · · · , wp), the numerical invariant can be
expressed as

µ =
1

|~w|
~w · (~ν − ν~1)

where ~ν = (ν1, · · · , νp) and ~1 = (1, . . . , 1). From linear algebra we know that this quantity
is maximized when ~w ∝ ~ν − ν~1, and the maximum value is |~ν − ν~1|. In the case when
ν1 < · · · < νp the assignment ~w ∝ ~ν − ν~1 satisfies the constraints w1 < w2 < · · · < wp.

We have thus completed the proof of Proposition 4.3.9.

4.4 Existence and uniqueness of generalized

Harder-Narasimhan filtrations

In Section 4.3, we gave an a posteriori description of the stratification of the unstable locus
in GIT intrinsically in terms of classes l ∈ H2(X;Q) and b ∈ H4(X;Q). In this section,
we study the problem of when two such classes on an arbitrary stack can be used to define
a Θ-stratification. We revisit the original construction of the stratification of the unstable
locus in V/G where V is an affine variety and G a reductive group.

In this case for any point p ∈ X = V/G there is a unique f : Θ→ X with an isomorphism
f(1) ' p which maximizes the numerical invariant. In order to investigate this theorem from
an intrinsic perspective, we first introduce a combinatorial tool for studying the set of all
such maps f : Θ→ X.

A combinatorial structure describing degenerations of a point in a
stack

Let p ∈ X(k) be a point in an algebraic stack. We have seen that the Hilbert-Mumford
numerical criterion can be formulated intrinsically as a maximization of a numerical invariant
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µ(f) over the set of isomorphism classes of maps f : Θ → X with f(1) ' p. We denote
the fiber product X(Θ)p = X(Θ) ×r1,X Spec k, which parameterizes Θ → X with a choice
of isomorphism f(1) ' p. It is a scheme,10 but we will sometimes abuse notation and
use X(Θ)p to refer to its set of k-points. The numerical invariant is locally constant and
manifestly invariant under the action of Aut(p) on X(Θ)p, so instability is equivalent to µ
attaining a positive value on the set X(Θ)p/Aut(p).

Even in simple examples, this set is infinite, so the existence and uniqueness of a maxi-
mizer for µ is not immediate. However, we will show that X(Θ)p/Aut(p) are the “rational”
points of a certain topological space and that µ extends to a continuous function on this
space, which will allow us to address the problem of maximization. In fact, this space will
typically be the geometric realization of a simplicial complex, but we will introduce a different
combinatorial structure which is better suited to our application.

Definition 4.4.1. We define a category of integral simplicial cones C to have

• objects: nonnegative integers [n] with n ≥ 0,

• morphisms: a morphism φ : [k] → [n] is an injective group homomorphism Zk → Zn
which maps the standard basis of Zk to the cone spanned by the standard basis of Zn.

We define the category of fans
Fan := Fun(Cop,Set)

For F ∈ Fan we use the abbreviated notation Fn = F ([n]). Unless otherwise specified, we
assume that all of our fans are connected, which we take to mean F0 = {∗}.

For any F ∈ Fan, we can define two notions of geometric realization. First form the
comma category (C|F ) whose objects are elements σ ∈ Fn and morphisms ξ1 → ξ2 are given
by morphisms φ : [n1] → [n2] with φ∗ξ2 = ξ1. There is a canonical functor (C|F ) → Top
assigning ξ ∈ Fn to the cone (Rn)+ spanned by the standard basis of Rn. Using this we can
define the geometric realization of F

|F | := colim
(C|F )

(Rn)+

This is entirely analogous to the geometric realization functor for simplicial sets. We think
of an object F ∈ Fan as an abstraction of the usual notion of a fan in a vector space.

Given a map φ : [k] → [n] in C, the corresponding linear map φ : Rk → Rn is injective.
Thus φ descends to a map ∆k−1 → ∆n−1, where ∆n−1 = ((Rn)+ − {0}) /R×+ is the standard
(n − 1)-simplex realized as the space of rays in (Rn)+. Thus for any F ∈ Fan we have a

10We have only shown that the morphism r1 : X(Θ)→ X is representable when X is locally a quotient of
a k-scheme by a locally affine action of a linear group. However, one can directly check that the groupoid
which is the fiber of r1 over an S-point of X is equivalent to a set (i.e. trivial automorphism groups). Thus
we can always consider X(Θ)p as a set without making use of the representability results of section 4.2
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functor (C|F )→ Top assigning ξ ∈ Fn to ∆n−1. We define the projective realization of F to
be

P(F ) := colim
(C|F )

∆n−1

Construction 4.4.2. A subset K ⊂ RN which is invariant under multiplication by R+ =
{t ≥ 0} is called a cone in RN . Given a set of cones Kα ⊂ RN , we define

R∗({Kα})n :=
{

injective homomorphisms φ : Zn → ZN |∃α s.t. φ(ei) ⊂ Kα,∀i
}

(4.10)

The sets R∗({Kα})n naturally define an object of Fan.

Remark 4.4.3. We use the phrase classical fan to denote a collection of rational polyhedral
cones in RN such that a face of any cone is also in the collection, and the intersection of
two cones is face of each. We expect that if Kα ⊂ Rn are the cones of a classical fan Σ, it is
possible to reconstruct Σ from the data of R∗({Kα}).

Lemma 4.4.4. Let Kα ⊂ RN be a finite collection of cones and assume that there is a
simplicial classical fan {σi} in RN such that each Kα is the union of some collection of σi.
Then the canonical map |R∗({Kα})| →

⋃
Kα is a homeomorphism. Furthermore, P(F ) '

SN−1 ∩
⋃
αKα via the evident quotient map RN − {0} → SN−1.

Proof. Consider the fans F = R∗({Kα}) and F ′ = R∗({σi}). By hypothesis F ′ is a subfunctor
of F : Cop → Set. Hence we have a functor of comma categories (C|F ′)→ (C|F ) and thus a
map of topological spaces |F ′| → |F | which commutes with the map to RN .

Note that the map |F ′| → |F | is surjective on points because any point on a cone in Kα

is contained in a cone σi for some σi. If the composition |F ′| → |F | →
⋃
αKα =

⋃
σi were

a homeomorphism it would follow that |F ′| → |F | was injective on points as well, and one
could use the inverse of |F ′| →

⋃
αKα to construct and inverse for |F | →

⋃
αKα. Thus it

suffices to prove the lemma for a simplicial fan in RN .
For a single simplicial cone σ ⊂ RN of dimension n whose ray generators v1, . . . , vn form

a basis for the lattice span(v1, . . . , vn) ∩ ZN , the fan R∗(σ) ⊂ R∗(RN) is equivalent to the
representable fan h[n]([k]) = HomC([k], [n]). The category (C|h[n]) has a terminal object
which is the linear map Rn → RN mapping the standard basis vectors to the ray generators
of σ. It follows that |R∗(σ)| → σ is a homeomorphism.

By subdividing our rational simplicial fan Σ = {σi} in RN , we can assume that the ray
generators of each σi form a basis for the lattice generated by σi ∩ ZN . Let σmax

1 , . . . , σmax
r

be the cones of Σ which are maximal with respect to inclusion and let ni be the dimension
of each. Then

⊔
h[ni] → F is a surjection of functors. In fact if we define σ′ij := σmax

i ∩ σmax
i ,

then by definition this is a cone of Σ as well, and we let nij denote its dimension. By
construction

F = coeq

(⊔
i,j

hnij ⇒
⊔
i

hni

)
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as functors Cop → Set. Our geometric realization functor commutes with colimits, so it
follows that

|F | = coeq

(⊔
i,j

σ′ij ⇒
⊔
i

σmax
ij

)
Which is homeomorphic to

⋃
σi under the natural map |F | → RN .

Example 4.4.5. Objects of Fan describe a wider variety of structures than classical fans.
For instance if K1 and K2 are two simplicial cones which intersect but do not meet along
a common face, then R∗(K1, K2) will not be equivalent to R∗({σi}) for any classical fan
Σ = {σi}.

Example 4.4.6. While objects of Fan are more general than classical fans, the definition is
broad enough to include some pathological examples. For instance, if K ⊂ R3 is the cone
over a circle, then |R∗(K)| consists of the rational rays of K equipped with the discrete
topology and is not homeomorphic to K. If K ⊂ R2 is a convex cone generated by two
irrational rays, then |R∗(K)•| is the interior of that cone along with the origin. There are
also examples of fans whose geometric realizations are not Hausdorff, such as multiple copies
of the standard cone in R2 glued to each other along the set of rational rays.

We now return to our application. Let X = X/G be the quotient of a k-scheme by a
locally affine action of a linear group G. We consider the iterated mapping stacks

X(Θn) := Hom(Θn,X) ' Hom(Θ,Hom(Θ, · · · ,X(Θ)))

It follows from iterated applications of Theorem 4.2.2 that X(Θn) is an algebraic stack, and
in fact its connected components are quotient stacks of locally closed subschemes of X by
subgroups of G. Θn = An/Gn

m, and restricting a morphism to the point (1, . . . , 1) ∈ An

defines a representable morphism r1 : X(Θn)→ X.
As before we let X(Θn)p denote the fiber of the morphism r1 over p ∈ X(k). It is a

scheme, and it is locally of finite type over k if X is.

Definition 4.4.7. We define the degeneration fan for a point p ∈ X as

D(X, p)n := {f ∈ X(Θn)p(k) |Gn
m → Aut(f(0, . . . , 0)) has finite kernel} (4.11)

Where the homomorphism Gn
m → Aut(f(0, . . . , 0)) is induced by f under the identification

Aut((0, . . . , 0)) = Gn
m in Θn. Likewise we define the reduced degeneration fan consisting of

the orbit sets D̃(X, p)n := D(X, p)n/Aut(p).

Lemma 4.4.8. The sets D(X, p)n define a functor Cop → Set, as do the sets D̃(X, p)n.

Proof. A morphism φ : [k]→ [n] in C is represented by a matrix of nonnegative integers φij
for i = 1, . . . , n and j = 1, . . . , k. One has a map of stacks Θk → Θn defined by the map
Ak → An

(z1, . . . , zk) 7→ (zφ111 · · · zφ1kk , . . . , zφn11 · · · zφnkk )
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which is intertwined by the group homomorphism Gk
m → Gn

m defined by the same formula.
Pre-composition gives a morphism X(Θn)→ X(Θk) which commutes with r1 up to natural

isomorphism. Thus one gets a morphism φ∗ : X(Θn)p → X(Θk)p. It is straightforward to
check that this construction is functorial.

The set D(X, p)n admits an action by the group Aut(p) which commutes with all of the
pullback maps φ∗, so D̃(X, p)n defines a fan as well.

Remark 4.4.9. One can also consider the fan of connected components π0X(Θn)p, but we
will not use this notion here.

Example 4.4.10. If G = T is a torus, then D(∗/T, ∗)n is the set of all injective homomor-
phisms Zn → Zr where r = rankT . This fan is equivalent to R∗(Rr) where Rr ⊂ Rr is
thought of as a single cone. Because this cone admits a simplicial subdivision, Lemma 4.4.4
implies that |D(∗/T, ∗)| ' Rr and P(D(∗/T, ∗)) ' Sr−1.

Proposition 4.4.11. Let T be a torus acting on a variety X, let p ∈ X(k), and define
T ′ = T/Aut(p). Define Y ⊂ X to be the closure of T · p and Ỹ → Y its normalization.
Ỹ is a toric variety for the torus T ′ and thus determines a classical fan consisting of cones
σi ⊂ N ′R, where N ′ is the cocharacter lattice of T ′. Let π : NR → N ′R be the linear map
induced by the surjection from the character lattice of T . Then the cones π−1σi ⊂ NR define
a classical fan, and

D(X/T, p) ' D̃(X/T, p) ' R∗({π−1(σi)})

Proof. The map Y/T → X/T is a closed immersion, so by Proposition 4.2.5 the map
D(Y/T, p) → D(X/T, p) is an isomorphism, so it suffices to consider the case when X
is the closure of a single open orbit, i.e. X = Y .

A morphism of stacks f : An/Gn
m → Y/T along with an isomorphism f(1) ' p is

determined uniquely up to unique isomorphism by the group homomorphism ψ : Gn
m =

Aut((0, . . . , 0))→ T . Given such a group homomorphism ψ, the morphism f is determined
by the equivariant map

f(t1, . . . , tk) = ψ(t) · f(1) = ψ(t) · p ∈ Y

This map is defined on the open subset Gn
m ⊂ An, and if it extends equivariantly to all of An

then the extension is unique because Y is separated. We will use the term “equivariant mor-
phism” f : An → Y to denote the data of the morphism along with a group homomorphism
ψ : Gn

m → T which intertwines it.
In the language of fans, this observation says that D(Y/T, p) is a sub-fan of the fan

D(∗/T, ∗) ' R∗(NR) discussed in Example 4.4.10. The open orbit T · p ⊂ Y is smooth,
so the map from the normalization Ỹ → Y is an isomorphism over this open subset. The
projection Ỹ → Y is finite, and Ỹ has a unique T action covering the T action on Y . If an
equivariant morphism An → Y lifts to Ỹ , it does so uniquely because Ỹ → Y is separated.
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Now fix an equivariant morphism f : An → Y with f(1, . . . , 1) = p. Using the T action
on Y we can extend this to a morphism

T × An → T × Y → Y

which is equivariant with respect to the action of T × Gn
m and is dominant. Thus the

morphism factors through Ỹ by the universal property of the normalization. We can then
restrict this lift to get an equivariant lift An×{1} ⊂ An×T → F̃ of our original f : An → Y .
Thus we have shown that the canonical map

D(Ỹ /T, p)n → D(Y/T, p)n

is a bijection. It thus suffices to prove the proposition when Y is normal.
If Y is normal, then it is a toric variety under the action of T ′, and it is determined by

a fan Σ = {σi} in N ′R = N ′ ⊗Z R. Equivariant maps between toric varieties preserving a
marked point in the open orbit are determined by maps of lattices such that the image of
any cone in the first lattice is contained in some cone of the second [19]. Applying this to
the toric variety An under the torus Gn

m and to Y under the torus T ′, equivariant maps from
An to Y correspond exactly to homomorphisms φ : Zn → N ′ such that the image of the
standard cone in ZN lies in some cone of Σ.

Because the T action on Y factors through T ′, a group homomorphism Gn
m → T deter-

mines a map Θn → Y/T if and only if the composite Gn
m → T ′ determines a map Θn → Y/T ′.

Thus D(Y/T, p)n consists of injective group homomorphisms φ : Zn → N such that the im-
age of the standard basis under the composite Zn → N → N ′ lies in some cone of Σ. This
is exactly R∗({π−1σi})n.

Example 4.4.12. Let X be an affine toric variety defined by a rational polyhedral cone
σ ⊂ Rn and let p ∈ X be generic. Then D(X/T, p)• ' R∗(σ) as defined in (4.10), and
Aut(p) is trivial so D̃(X/T, p)• ' D(X/T, p)•. For instance, D(An/Gn

m, (1, . . . , 1))• = h[n],
the fan represented by the object [n] ∈ C.

Example 4.4.13. Let X = ∗/G where G is a reductive group, and let p be the unique
k point. Then by Proposition 4.1.6, we have X(Θ)p '

⊔
G/Pλ, where λ ranges over all

conjugacy classes of one parameter subgroups of G. Thus if k is an uncountable field, the set
X(Θ)p is uncountable as well. However, the points of D̃(X, p)1 = X(Θ)p(k)/G(k) are exactly
the conjugacy classes of nontrivial one-parameter subgroups.

Kempf’s optimality argument revisited

Now that we have a combinatorial framework in which to study X(Θ)p, we revisit Kempf’s
construction of the stratification of the nullcone of V/G where V is an affine k-scheme of
finite type and G is reductive [29].

For this section we let k = C so that we may discuss the classical topological stack
underlying X. The underlying topological stack of an algebraic stack X locally of finite type
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over C is defined by taking a presentation of X by a groupoid in schemes and then taking
the analytification, which is groupoid in topological spaces. The cohomology is then defined
as the cohomology of the classifying space of this topological stack [34]. For global quotient
stacks X = X/G this agrees with the equivariant cohomology H∗Gan(Xan) = H∗K(Xan) where
K ⊂ G is a maximal compact subgroup.

Lemma 4.4.14. Recall that H2l(Θ;Q) = Q · ql. Given a cohomology class η ∈ H2l(X) we
define η̂(f) = 1

ql
f ∗η ∈ Q for any f : Θ → X. Then η̂ extends uniquely to a continuous

function η̂ : |D(X, p)•| → R which is homogeneous of degree l with respect to scaling, i.e.
η̂(etx) = eltη̂(x). The function η̂ is Aut(p) invariant, and thus descends to a continuous
function η̂ : |D̃(X, p)•| → R as well.

Proof. The geometric realization is a colimit, so a continuous function |F | → R is defined
by a family of continuous functions (Rn)+ → R for each ξ ∈ Fn which is compatible with
the continuous maps (Rk)+ → (Rn)+ for each morphism in (C|F ).

In order to define such a family of functions for F = D(X, p)• it suffices to show that
a cohomology class η ∈ H2l(Θn;Q) defines a unique continuous function on (Rn)+ which is
homogeneous of degree l and takes the value η̂(f) on the map f : Θ → Θn determined by
each integer lattice point in the standard cone of Rn. Furthermore this function should be
natural in the sense that if φ : Zk → Zn is injective, φR : (Rk)+ → (Rn)+ is the corresponding
map on cones, and we use φ : Θk → Θn to denote the corresponding morphism as well, then
η̂ ◦ φR = φ̂∗η.

Such an identification between cohomology classes and homogeneous (polynomial) func-
tions on affine space is accomplished by the Cartan model for the equivariant cohomology
of Θn. One computes

H2l(Θn;R) ' H2l(∗/Gn
m;R) ' Syml(Rn)∨

Where Rn in the final expression is interpreted as the lie algebra of the compact group
(S1)n ⊂ Gn

m. Furthermore a homomorphism φ : Zk → Zn induces a morphism Θk → Θn,
and the pullback map in cohomology H2l(Θn;R) → H2l(Θk;R) agrees with the restriction
of degree l polynomials along the linear map φ : Rk → Rn

Let p ∈ X(k), and consider two elements of f, g ∈ X(Θ)p. Let U = A1−{0}. We consider
f and g as morphisms U × A1/G2

m → X and A1 × U/G2
m → X respectively with a fixed

isomorphism of their restrictions to U × U/G2
m ' ∗, so we can glue them to define

f ∪ g : A2 − {0}/G2
m → X

This is a morphism from the toric variety defined by the two rays R · e1 and R · e2 in R2.
The morphism f ∪ g extends over the point {0} ∈ A2 if and only if the two rays determined
by f and g lie on a common cone in D(X, p)•.
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Definition 4.4.15. Let F : Cop → Set be a fan. An open subset W ⊂ P(F•) is convex if
any two f, g ∈ F1 which correspond to points in W lie in a common cone. This is equivalent
to the canonical map

X(Θ2)→ X(Θ)× X(Θ) = Hom(A2 − {0}/G2
m,X)

being surjective onto the subset set corresponding to points in W ×W .

Lemma 4.4.16. Let G be a reductive group acting on an affine k-scheme V of finite type.
Let l ∈ H2(V/G) be any cohomology class. Then the subset

{x ∈ P(D(X, p)•)|l̂(x) > 0}

is convex for every p ∈ V .

Proof. First note that V admits an equivariant embedding V ⊂ AN , where G acts linearly
on AN , so by Part (3) of Proposition 4.2.5 it suffices to prove the claim for AN itself. By
Proposition 4.2.2, f and g are given by one parameter subgroups λf and λg such that
limt→0 λf (t) · p exists, and likewise for λg. Note that Pλf ∩ Pλg must contain a maximal

torus T for G [11]. Therefore we can find pf ∈ Pλf such that pfλf (t)p
−1
f ∈ T , and this

new one parameter subgroup defines the same point of X(Θ)p. We can likewise choose a
representative of g given by a one parameter subgroup of T .

Thus we can assume that λf and λg commute i.e. that that the point f ∪ g is defined by
a map A2 − {0} → V taking (1, 1) 7→ p and a group homomorphism G2

m → G intertwining
this map. This homomorphism has finite kernel as long as λf 6= λng for any n ∈ Z. Note

that if λf = λng , then l̂(f) = nl̂(g). Because l̂(f), l̂(g) > 0, it follows that n ≥ 1 and
[f ] = [g] ∈ P(D(X, p)•).

The fact that the point x ∈ AN defines a map A2 − {0}/G2
m → AN/G2

m is equivalent
the the fact that the point p, as a vector in AN , lies in the span of G2

m eigenspaces which
are positive with respect to both copies of Gm. This in turn implies that the map extends
to all of A2, and the fact that V ⊂ AN is closed implies that the map factors through V as
well.

Remark 4.4.17. Note that for f, g ∈ X(Θ)p, the morphism A2/G2
m → V/G extending the

morphism f ∪ g is actually defined by a map A2 → V and a group homomorphism G2
m → G

intertwining this map.

In this framework, Kempf’s argument [29] for the uniqueness of a maximal destabilizing
1PS is quite simple. We choose an l ∈ H2(X;Q) and b ∈ H4(X;Q) which is positive definite
in the sense that f ∗b ∈ Q>0 · q2 ⊂ H4(∗/Gm) for any map f : ∗/Gm → X with finite kernel.
This implies that b̂ > 0 everywhere except for the cone point of |F |. We define the numerical

invariant µ = l̂/
√
b̂, which is well defined away from the cone point. Both the numerator
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and denominator are homogeneous of weight 1 with respect to scalar multiplication, so the
function descends to the projective realization

µ =
l̂√
b̂

: P(D(X, p)•)→ R (4.12)

Proposition 4.4.18. Let X = V/G be an affine quotient stack of finite type over C, and let
l ∈ H2(X;Q) and b ∈ H4(X;Q) be positive definite. Then for each p ∈ V either µ(f) ≤ 0 for
all rational points x ∈ P(D(X, p)•), or else there is a unique rational point x ∈ P(D(X, p)•)
which maximizes µ. Such a point corresponds to a morphism f : Θ → X with isomorphism
f(1) ' p which is uniquely determined up to the identification f ∼ fn for n ≥ 0.

Proof. The existence of a maximizer follows from analyzing the fan D̃(X, p)• rather than
D(X, p)•. We will show in Lemma 4.4.19 that there is a finite collection of cones σi ∈
D̃(X, p)ni such that the corresponding map⊔

h[ni]([1])
tσi−−→ D̃(X, p)1

is surjective. The function µ restricted to P(
⊔
hni) =

⊔
P(hni) '

⊔
∆ni−1 must attain a

maximum because it is continuous. Thus µ attains a maximum on P(D̃(X, p)•), and because
P(D(X, p)•)→ P(D̃(X, p)•) is surjective, the function µ attains a maximum on P(D(X, p)•)
as well.

Now let f, g :∈ D(X, p)1 with µ(f), µ(g) > 0. Lemma 4.4.16 states that we can find a
morphism e : A2/G2

m → X such that f and g are the restriction of e to two different rays in
R2. e corresponds to a morphism of fans e : h[2] → D(X, p)• and hence a morphism

e : ∆1 = P(h[2])→ P(D(X, p)•)

The restriction µ ◦ e to ∆1 is equal to ê∗l/
√
ê∗b, where e∗l, e∗b ∈ H∗(A2/G2

m;Q). Thus µ ◦ η
is the function induced on ∆1 by the quotient of a positive, rational, linear function by the
square root of a positive definite rational quadratic form on (R2)+−{0}. It is an elementary
exercise in convex geometry that such a function attains a maximum at a unique rational
point. Thus the maximizer for µ on P(D(X, p)•) is unique and rational.

In order to complete the proof, we prove the following

Lemma 4.4.19. Let X be a variety with an action of a reductive group G. Then there is

a finite collection of cones σi ∈ D(X, p)ni such that the corresponding morphism
⊔
h[ni]

tσi−−→
D̃(X, p)• is surjective on 1-cones.

Proof. By an argument exactly parallel to Proposition 4.1.6, one can show that giving a
map Θn → X = X/G is equivalent to specifying a group homomorphism φ : Gn

m → G and
a point x ∈ X under which limt→0(tk1 , . . . , tkn) · x exists for all ki ≥ 0. The pairs (φ, x)
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and (gφg−1, gx) define 1-morphisms Θn → X which are isomorphic, and they thus define the
same element of D̃(X/G, p)n.

Let T ⊂ G be a maximal torus. Every homomorphism φ : Gn
m → G is conjugate to

one which factors through T . It follows that D(X/T, p)n → D̃(X/G, p)n is surjective for all
n. Thus it suffices to prove the Lemma for G = T . Lemma 4.4.11 describes D(X/T, p)•
explicitly as R∗({π−1σi}) where π : NR → N ′R is a linear map and σi is a fan of strictly convex
rational polyhedral cones in N ′R. Our claim follows from the fact that each cone π−1(σi) can
be covered by finitely many simplicial cones.

Remark 4.4.20. The existence of a finite collection of cones in D(X, p)• which generate all
of D(X, p)1 is the weakest notion of finiteness that suffices to prove Proposition 4.4.18. It is
evident from the proof of Lemma 4.4.19 that

⊔
P(hni) → P(D̃(X, p)•) is surjective as well,

but for general fans this is not equivalent.
Note, however, that the strongest notion would be for the map

⊔
i h[ni] → D̃(X, p)• to

be surjective as a natural transformation of functors, but this is not the case. Even the fan
R∗(σ), where σ ⊂ RN is a strictly convex rational polyhedral classical cone, does not admit
a surjection from a finite collection of cones unless σ was simplicial.

In future work, we hope to apply this intrinsic reformulation of Kempf’s existence and
uniqueness argument to prove the existence and uniqueness of Harder-Narasimhan filtrations
for moduli problems where the question has not yet been investigated, such as the moduli
of polarized varieties.

In these examples, and already in the case of quotients X/G where X is projective rather
than affine, the convexity property of Lemma 4.4.16 fails to hold. Nevertheless the basic
idea of Kempf’s argument in Proposition 4.4.18 can be extended to this setting. For such
stacks, classes l ∈ H2(X;Q) and b ∈ H4(X;Q) must satisfy an additional convexity property
in order for the analogue of Proposition 4.4.18 to hold.
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