DENDRIFORM ALGEBRAS RELATIVE TO A SEMIGROUP
MARCELO AGUIAR

ABSTRACT. Loday’s dendriform algebras and its siblings pre-Lie and zinbiel have
received attention over the past two decades. In recent literature, there has been
interest in a generalization of these types of algebra in which each individual op-
eration is replaced by a family of operations indexed by a fixed semigroup S. The
purpose of this note is twofold. First, we add to the existing work by showing that
a similar extension is possible already for the most familiar types of algebra: com-
mutative, associative, and Lie. Second, we show that these concepts arise naturally
and in a unified manner from a categorical perspective. For this, one simply has to
consider the standard types of algebra but in reference to the monoidal category of
S-graded vector spaces.

INTRODUCTION

This note is concerned with various types of algebra: the familiar commutative,
associative, and Lie algebras, as well as the related notions of zinbiel, dendriform and
pre-Lie algebras. The former two were introduced by Loday [17], the latter is more
classical and goes back to Gerstenhaber [11] and Vinberg [22]. To the former list
one may also add Poisson algebras (which combine commutative and Lie into one
structure), and to the latter, the pre-Poisson algebras of [1]. The definitions of all
these types of algebra may be found in [17] and [1], whose notation we follow.

Very recently, there has been a substantial amount of work along the following
lines. Let S be a semigroup. For each of the above types of algebra, one wishes to
construct another, in which each of the defining operations p is replaced by a family
{fta}aes of operations indexed by S. The point is to replace the defining axioms
for each type of algebras by a suitable set of new axioms. When S is the terminal
semigroup (the trivial monoid), one should recover the original type of algebra. In
the literature, these new types are called family algebras. In this note, we employ
the terminology S-relative algebras for a closely related notion. The relationship is
explained in Section 2.

The present literature has carried out this program on a case-by-case basis, by
treating each type of algebra separately. Thus, a definition of dendriform family
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algebras was introduced in [24], and definitions of pre-Lie, zinbiel and pre-Poisson
family algebras were introduced in [20]. Related notions have been considered in
[10, 25, 26]. Yet, similar analogs of commutative, associative, and Lie algebras appear
to be missing from the literature.

The purpose of this note is to provide a simple uniform perspective on the matter.
This perspective fulfills the above program in one broad stroke, by showing how to
arrive at definitions for all of the types of algebra above, and in fact for any type of
algebra defined from a linear operad, relative to S. It also provides unified proofs of
the basic relationships between the various types of algebra. The simple trick is to
upgrade the familiar definitions and proofs by formulating them in the setting of the
monoidal category of S-graded vector spaces. More precisely, one has to work with
the Kleisli coalgebras of the adjunction between vector spaces and S-graded vector
spaces. This is done in Section 2.

As an added bonus, we present definitions of S-relative commutative, associative,
and Lie algebras. This is done at first in Section 1 by hand, and then recovered from
the general perspective in Section 2.3.

Section 3 discusses other settings in which the categorical approach applies. In
Section 3.2 we sketch the interesting possibility of extending these considerations to
dimonoidal categories. This achieves the additional goal of incorporating yet another
variant of the dendriform notion in the literature, the matching dendriform algebras
of [23].

We wish to cite two additional papers that tie to the origin of the subject: [9]
and [14]. First, recall the connection between associative algebras and dendriform
algebras afforded by Rota-Baxter operators from [1]. This was extended to the S-
relative context in [24] employing Guo’s notion of Rota-Bazter family of operators.
The notion appeared in [9, page 541] after a suggestion by Guo, who further discussed
it in [14, Example 1.3(d)]. Our categorical perspective also incorporates Rota-Baxter
operators and provides proofs of the results that relate them to the various types of
algebra.

This work does not exhaust all possible ramifications. In particular, we only touch
briefly upon aspects related to free algebras in Example 27. We do not mention
dendriform trialgebras [18], their connection to Rota-Baxter operators with a weight
8], or the algebra types in [3, 12, 13]. Nevertheless, we hope the note is of use in the
further development of the subject.

We work with vector spaces over a field K. All operations under consideration are
binary and K-bilinear. As above, S denotes a fixed associative semigroup, occasionally
with a unit element (a monoid), and occasionally commutative. The operation on S
is denoted by juxtaposition.
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1. ASSOCIATIVE, COMMUTATIVE AND LIE RELATIVE TO A SEMIGROUP

In this section we provide ad hoc definitions of S-relative associative, commutative,
Lie and Poisson algebras. The operations are indexed by pairs of elements of a
semigroup S. We check that they relate to the family algebras in the literature
(dendriform, zinbiel, pre-Lie and pre-Poisson) in the expected manner. Section 2
presents these notions as particular examples of a general construction.

1.1. Associative and dendriform algebras. Let S be an associative semigroup.

Definition 1. An S-relative associative algebra consists of a vector space A equipped
with an operation -, 5 for each pair (o, 8) € S? and such that

(1) (Za8Y) apny 2 =T apy (Y 8y 2)
forall z,y,z€ A, a,5,v€ S.
Example 2. Let ¢: S x S — K be a semigroup 2-cocycle:
c(a, B)e(af, ) = cla, B7)e(B,7).
We may turn any associative algebra A into an S-relative associative algebra defining
Tapy = cla, B)ry.

Consider now a vector space D equipped with two operations <, and >, for each
a € S and such that

(2a) (x<ay)<pgz2=2 <43 (Y<p2+Yy>q2),
(2b) (ZL’ >a y) <B 2 =T >q (y <B Z),
(2¢) (X <gY+T>aY) >ap 2 =20 >4 (Y>35 2),

for all x,y,2 € D and o, € S. D is then called a dendriform family algebra in
20, 24, 25, 26].

Proposition 3. Let D be as above. Defining
(3) Toagly=2T>qy+T<gy
turns D into an S-relative associative algebra.

Proof. In (2a) replace (o, 8) for (5,7). In (2b) replace § for v and keep a. Adding
these equations to (2c) one obtains (1). O
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1.2. Commutative and zinbiel algebras. Assume now that the semigroup S is
commutative.

Definition 4. An S-relative commutative algebra is an S-relative associative algebra
A that satisfies in addition

(4) Toafy =Y pal
forall z,ye A, a, € S.

Consider now a vector space Z equipped with an operation =, for each a € S and
such that

(5) T (Y g 2) = (T xay) *ap 2+ (Y #5 T) *ap 2
for all z,y,2z€ Z and «, 5 € S. Z is then called a left zinbiel family algebra in [20].
Lemma 5. Let Z be as above. Then
(6) T (Y *p 2) = Y *g (T %a 2)
forallz,y,z€ A, a, € S.
Proof. Replacing (z,y) for (y,z) and («, ) for (8, «) in (5) one finds
Yy#p (220 2) = (Y3 7) *pa 2 + (T *a Y) *pa 2.
Comparing to (5) and recalling that S is commutative, (6) follows. O

Proposition 6. Let D and Z be a dendriform and a zinbiel family algebra, respec-
tively.

(i) Suppose x >4 y = x <4 y for all x,y € D, a € S. Then defining x +, y =
T >o Yy turns D into a left zinbiel family algebra.

(ii) Defining © <o Y = Y*o & and T >, Yy = T #o y turns Z into a dendriform
family algebra. Moreover, x >,y =y <4 .

Proof. Consider (ii): (2a) and (2c) follow from (5) and (2b) follows from (6). The
proof of (i) is similar (and appears in [20, Proposition 5.2]). O

Proposition 7. Let Z be as above. Defining
(7) Toqpl =T Y+ Y*3T
turns Z into an S-relative commutative algebra.

Proof. 1t follows from Propositions 3 and 6(ii) that (7) turns Z into an S-relative
associative algebra. Axiom (4) for commutativity follows immediately from (7). O
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1.3. Lie and pre-Lie algebras. We continue to assume that S is commutative.

Definition 8. An S-relative Lie algebra consists of a vector space L equipped with

an operation [—, —], 4 for each pair (a, ) € S* and such that

(8&) [QU, y]a,ﬁ + [y7x:|ﬁ,a = 07

8b [:c, ,z] +[z,x , ] +[ , 2 ,x] =0,
( ) [ y]a,ﬁ By [ ]'\/,a Y a8 [y ]ﬁ,ﬁ/ By,

for all x,y,z€e L, o, B,7€ S.

Consider now a vector space P equipped with an operation o, for each o € S and
such that

(9) 204 (Y05 2) = (T 0a y) Cap 2 =y 0p (¥ 0a 2) = (Y05 T) 0pa 2

for all z,y,z€ P and o, 5 € S. P is then called a left pre-Lie family algebra in [20].
Proposition 9. Let P be as above. Defining

(10) (2,9l 3 =TCay—yopz

turns P into an S-relative Lie algebra.

Proof. To establish (8b) one employs the 3 instances of (9) obtained from it by cyclic
permutations of (x,y, z) and («, #,7). Axiom (8a) follows immediately from (10). O

1.4. Poisson and pre-Poisson algebras. We continue to assume that S is com-
mutative.

Definition 10. An S-relative Poisson algebra consists of structures of S-relative
commutative and Lie algebras on the same vector space A and such that

(11) [ZL’, Y By Z]aﬂfy = [ZL’, y]a,g ‘aBy 2T Y Bay [ZL’, Z]a,»y
forall z,y,z€ A, a,5,v€ S.

Consider now a vector space B equipped with two operations o, and =#, for each
a € S that turn it into a left pre-Lie family algebra and a left zinbiel family algebra,
respectively, and are such that
(12a) (Toay —yopx)*apz =104 (Y*s2) —y*s (7 0a2),
(12D) (T Y + Y *aT) Cap 2 = T a (yop 2) + 1y *5 (T 0q 2),
for all z,y,z€ P and o, € S. B is then called a left pre-Poisson family algebra in
[20].

Proposition 11. Let B be as above. With the operations (7) and (10), B becomes
an S-relative Poisson algebra.
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2. THE CATEGORICAL PERSPECTIVE

This section casts the types of algebra from Section 1 in a general unified setting.
The semigroup S gives rise to the monoidal category of S-graded vector spaces. The
various types of algebra, and in fact, any type of algebra defined from a linear operad,
may be formulated in this setting. This yields a unified approach to the definitions
and basic results in the subject.

2.1. Types of monoid in a monoidal category. Let (C, o) be monoidal category,
not necessarily unital. One may then consider associative monoids in C. An associa-
tive monoid is an object A with a map p: Ae A — A in C and such that the diagram
below commutes.

AeAe AT oA

(13) H.idl J’*

AeA—— A

If the monoidal category possesses a unit object, one may consider unital associative
monoids. If the monoidal category is symmetric, one may consider commutative, Lie
and Poisson monoids. For more details on the preceding points, see for instance [2,
Sections 1.2.1, 1.2.6 and 1.2.10].

One may consider other types of monoid [2, Section 4.1.1]. For example, a dendri-
form monoid in a linear monoidal category C is an object D with maps

<:DeD — D >:DeD — D

in C and such that the diagrams below commute, where - = < + >.

ide-

DeDeD- 4y DeD DeDeD- % DeD DeDeD- %% DeD

(14) <.idl l< >.idl l> ..idl l>

DeD———D DeD———D DeD———D

If the linear monoidal category is symmetric, one may consider zinbiel, pre-Lie and
pre-Poisson monoids. More generally, for any operad p (in the category of vector
spaces) one may consider p-monoids in a linear symmetric monoidal category C [2,
Section 4.2].

In a linear monoidal category, one may also consider Rota-Baxter operators of
various types. For example, a Rota-Baxter operator on an associative monoid (A, )
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is a map R: A — A such that the diagram below commutes.

Ae A Reid+ideR Ae A 1% A
(15) RoRl lR
Ae A A
N

Weighted Rota-Baxter operators may also be considered.

The basic principles relating the various types of algebra remain true at this more
general level. We list a handful of them. For the proofs one simply formulates the
standard arguments in terms of commutative diagrams.

Proposition 12. Let C be a linear monoidal category.
(i) If (D, <,>) is a dendriform monoid in C, then defining
(DeD > D)= (DeD > D)+ (DeD = D)

turns D into an associative monoid in C.
(ii) If R is a Rota-Baxter operator on an associative monoid (A, u) in C, then
defining

(Ao A S A) = (AeA L5 AeA ™ A) and (AeA D> A) = (AeA 2% AeA & A),
turns A into a dendriform monoid in C.
Proposition 13. Let C be a linear symmetric monoidal category, with symmetry
c:XeY Y eX.
(i) If (D, <,>) is a dendriform monoid in C, then defining
(DeD>D)=(DeD > D)~ (DeD S DeD S D)

turns D into a left pre-Lie monoid in C.
(ii) Let (D, <,>) be a dendriform monoid in C for which

(D.D;D):(D.DgD.D;D).

Then defining
(DeD % D)= (DeD > D)

turns D into a left zinbiel monoid in C.
(iii) Let (Z,*) be a left zinbiel monoid in C. Then defining

(ZeZ S5 72)=(ZeZ 5 ZeZ57) and (ZeZ 5 2Z)=(ZeZ 5 7),
turns Z into a dendriform monoid in C. Moreover,

(ZeZ 2 2Z)=(ZeZ 5 ZeZ 5 7).
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2.2. S-graded spaces. Let S be an associative semigroup.
An S-graded space is a collection V of vector spaces V,, one for each o in S. A
morphism of S-graded spaces is similarly defined in terms of a collection of linear

maps. Let Vecg denote the resulting category.
Given S-graded spaces V and W, their Cauchy product V ¢ WV is defined by

(16) VeW),= P Va@Ws.
y=ap

This turns Vecg into a (not necessarily unital) monoidal category.
If S is commutative, the monoidal category Vecg is symmetric with symmetry
VeV — W eV defined by assembling the switch maps

VOC@Wg—)Wg@Va, TRY— YR,

into a map (Ve W), — (W e V)., where v = aff = fa.
If S is a monoid with unit element w, then Vecg is unital with unit object 1 defined

by
1 - K if a=w,
“ o otherwise.

Given a vector space V', let U(V') be the S-graded space defined by
u(v)a =V

for all « € S. We say that an S-graded space of the form U(V') is uniform.
The Cauchy product of two uniform S-graded spaces need not be uniform.

2.3. S-relative algebras.

Definition 14. Let S be a commutative semigroup and p an operad. An S-relative
p-algebra is a p-monoid in Vecg for which the underlying S-graded space is uniform.

When the operad is nonsymmetric (or more precisely, the symmetrization of a
nonsymmetric operad), the semigroup S in Definition 14 is merely required to be
associative. The operads whose algebras are associative and dendriform algebras are
nonsymmetric. In particular, the notions of associative and dendriform algebras are
defined in relation to any associative semigroup S. If S is a monoid, the notion of
S-relative unital associative algebra is defined. For the notions of S-relative commu-
tative and Lie algebras to be defined, the semigroup S should be commutative.

The S-relative types of algebra defined in Section 1 are now seen to arise in this
general manner.

Proposition 15. Let S be an associative semigroup. The two notions of S-relative
associative algebra in Definitions 1 and 14 agree.
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Proof. Let U(A) be a uniform associative monoid in Vecg. We have to show it is an S-
relative algebra in the sense of Definition 1. The multiplication U (A) - U(A) — U(A)
consists of various linear maps

ARA=A, @Az — Ay = A.
These are the operations -, g in Definition 1. Axiom (13) translates into axiom (1). O
In the same manner, one has the following.

Proposition 16. Let S be a commutative semigroup. The two notions of S-relative
commutative (Lie, or Poisson) monoid in Definitions J (8, or 10) and 1/ agree.

Suppose S is a monoid. Definition 14 yields the notion of S-relative unital asso-
ciative algebra A. The result is straightforward: A should possess an element 1 such
that

Toawl=0=1,
forallze A, a e S.

When S is finite (or more generally when each element of S possesses only a fi-
nite number of factorizations), one may in the same manner obtain the notions of
S-relative coalgebra, S-relative bialgebra (if S is commutative), and their counital
versions (if S is a monoid), among others.

2.4. Forgetting the semigroup. Let Vec denote the category of vector spaces. The
functor U is part of an adjunction

F
Vecs & Vec.
u

The left adjoint F is defined by
FV) =PV
aesS

One may thus refer to U (V) as the cofree S-graded space on the space V. The uniform
S-graded spaces are the Kleisli coalgebras of the adjunction. See [19, Chapter VIJ.
The functor F satisfies

FVeW)=F(V)QFW).

It also preserves the symmetry of each category. More precisely, it is a linear sym-
metric strong monoidal functor. For this reason, F sends a monoid of any type in
Vecg to a monoid (algebra) of the same type in Vec [2, Corollary 4.37].

Note that on a uniform object V = U(V'), we have

F(V) = V®KS.

This means that if V' is an S-relative algebra of a given type, then V ® KS is an
ordinary algebra of the same type. This fact has been observed in a few special cases
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in the literature: for dendriform family algebras in [25, Theorem 2.11], for pre-Lie
family algebras in [20, Theorem 3.11].

Example 17. Consider the S-relative associative algebra in Example 2. The cor-
responding associative algebra is the tensor product A ® KS between the given as-
sociative algebra A and the semigroup algebra of S, the latter twisted by the given
2-cocycle.

2.5. S-relative dendriform algebras. Let S be an associative semigroup. We now
apply Definition 14 to the dendriform operad. We make use of the explicit description
of dendriform monoids in Section 2.1.

Proposition 18. An S-relative dendriform algebra consists of a wvector space D
equipped with operations <, and >, g for each pair (a, ) € S? and such that

(17a) (T <aBY) <apny 2 =T <apy (Y <p~y 2+Y >54 2),
(17Db) (T >apY) <apy 2 =T >apy (Y <any 2),
(17C) (SL’ <a8 Y +x >, y) >aBy 2 =T >a,py (y > B, Z),

forallz,y,z€e A, a,3,7€ S.

The general construction of an associative monoid from a dendriform monoid given
by Proposition 12(i) yields the following when specialized to uniform objects in Vecg.

Proposition 19. Let D be an S-relative dendriform algebra. Defining
(18) Toapgly=2T>apY+T <asY
turns D into an S-relative associative algebra.

The notion of S-relative dendriform algebra differs from the notion of ‘dendriform
family’ algebra of Section 1: for the latter, the operations are indexed by a single
element of S rather than by a pair. One has the following relation between the two.

Proposition 20. Let D be an S-relative dendriform algebra. Suppose the operations
<a,8 are independent of o and the operations >, g are independent of 3. Then D is
a dendriform family algebra, and vice versa.

Proof. Under these assumptions, axioms (17a)-(17c) specialize to (2a)—(2c). O

Note that combining Propositions 19 and 20 we obtain a (better) proof of Propo-
sition 3: when the operations depend only on one variable as above, (18) becomes
(3).

Proposition 20 raises the possibility that different assumptions on the operations
might lead to additional variants of the notion of dendriform algebra. For exam-
ple, suppose all operations <, s and >, of an S-relative dendriform algebra are



ALGEBRAS RELATIVE TO A SEMIGROUP 11

independent of 8. Then axioms (17a)-(17c) specialize to the following.

(19a) (¥ <ay) <apz2=0<q (Y<pg2z+y>z2),
(19b) (‘T >a y) <ozB 2= >4 (y <B Z)>
(19¢) (T <a Y +T>aY) >ap 2 =12 >q (Y >4 2).

This notion, while meaningful, has not been considered in the literature.

If instead the operations of an S-relative dendriform algebra satisfy that <,z is
independent of 5 and >, s is independent of «, then axioms (17a)—(17c) specialize to
a still meaningful but rather peculiar set of axioms.

2.6. S-relative Rota-Baxter operators. We now specialize the notion of Rota-
Baxter operator to uniform objects in Vecg. According to Proposition 15, a uniform
associative monoid in Vecg is the same as an S-relative associative algebra. Axiom
(15) yields axiom (20) below.

Definition 21. Let A be an S-relative associative algebra. A Rota-Baxter operator
on A is a family of operators R, : A — A such that

(20) Ra(x) ‘a,B Rﬁ(y) = Raﬁ (Ra(x) ‘0 BY T T ap Rﬁ(.ﬂ))
forall z,ye A, a,f € S.

The case of weighted Rota-Baxter operators is similar.

Consider now the general construction of a dendriform monoid from a Rota-Baxter
operator on an associative monoid given by Proposition 12(ii). Specializing to uniform
objects, we have the following.

Proposition 22. Let R be a Rota-Bazter operator on an S-relative associative algebra
A. Defining

T <a0pY=2-apRs(y) and T>0p Y= Ra(T) apy
turns A into an S-relative dendriform algebra.

The result in the literature is of a more restricted nature. Suppose the operations
‘a5 are independent of both o and § (so A is an ordinary associative algebra). In this
case, Definition 21 agrees with the definition given in [9, Page 541] and [14, Example
1.3(d)]. And in the situation of Proposition 22, <, s is independent of o and >, 5 is
independent of 3. In view of Proposition 20, we obtain a dendriform family algebra
structure on A. This is the result in [24, Theorem 4.4.].

2.7. S-relative zinbiel, pre-Lie and pre-Poisson algebras. We record the result
of applying Definition 14 to these operads.

Proposition 23. Let S be a commutative semigroup.
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(i) An S-relative left zinbiel algebra consists of a vector space Z equipped with
operations =, g for each pair (o, ) € S? and such that

(21) T *a,8y (y *By z) = ( *a,B Y) *afy 2 T (y *Ba ) *Bayy #

forallxz,y,z€ Z and o, 3,7 € S.
(ii) An S-relative left pre-Lie algebra consists of a vector space P equipped with
operations o, g for each pair (o, ) € S* and such that

(22) T oapy (Yopry2) = (T 008 Y) Capny Z =Y Opay (T Oy 2) = (YOpaT) Opan 2

forall x,y,z€ P and o, 3,y € S.

(iii) An S-relative left pre-Poisson algebra consists of a vector space B equipped
with two operations o, 5 and =4 for each pair (o, B) € S? that turn it into an
S-relative left pre-Lie and zinbiel algebra, respectively, and are such that

(23a) (T0a,8Y = YOBaT) *apy 2 = T Oapy (Y*6y 2) =Y *pay (T Oay 2),
(23b) (T %08 Y + Y *50 T) CaByy # = T *a,By (y OB,y z)+y *B,ay (z Ca,y z),

forallz,y,z€ B and o, 3,7 € S.

The ‘family algebras’ of Section 1 are special cases of the above notions.
Proposition 24.

(i) A zinbiel family algebra is the same as an S-relative zinbiel algebra in which
the operations +o g are independent of 3.
(ii) A pre-Lie family algebra is the same as an S-relative pre-Lie algebra in which
the operations o, g are independent of 5.
(iii) A pre-Poisson family algebra is the same as an S-relative pre-Poisson algebra
in which the operations .5 and o, g are independent of 3.

Specializing Proposition 13 to uniform objects in Vecg yields the following.

Proposition 25. Let D be an S-relative dendriform algebra and let Z be an S-relative
left zinbiel algebra.

(i) Defining xoapy = >ap Yy —Y <ap T turns D into an S-relative left pre-Lie
algebra.

(ii) Suppose x>0 5y =y <apy. Then defining x xopy = = >4y turns D into
an S-relative left zinbiel algebra.

(ili) Defining x <apy = Y*ap® and x>, Y = T+, Y turns Z into an S-relative
dendriform algebra. Moreover, T >45 Y =Y <a8 T.

Restricting to the case in which the operations are independent of the second index
B we obtain corresponding results for ‘family algebras’, including Proposition 6.
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2.8. Morphisms of S-relative algebras. Let p be an operad and S an associative
semigroup (commutative unless p is nonsymmetric).

Definition 26. A morphism of S-relative p-algebras is a morphism of p-algebras in
Vecg, that is, a morphism of S-graded spaces that preserves the operations.

A morphism f : U(A) — U(B) then consists of a family of linear maps f, : A — B,
one for each a € S, subject to axioms that depend on the type of algebra. For
associative algebras, this is

fop(T apy) = fa(®) “ap fa(y)-

The conditions are similarly straightforward for the other types of algebra in the
previous sections.

One may consider the special case in which the maps f, are independent of «,
that is, when the morphism consists of a single map A — B. This is the type of
morphism considered in the literature for ‘family algebras’, particularly when ‘free
family algebras’ are constructed [20, 25].

3. ADDITIONAL VARIANTS

We discuss other settings in which the categorical approach of Section 2 applies.
We also sketch an extension to the case of dimonoidal categories, which allows for an
even more general formulation of the notion of dendriform algebra.

3.1. Employing other monoidal categories. As discussed in Section 2.1, one may
consider the various types of algebra in any linear symmetric monoidal category C.
One may for example choose for C the category of H-comodules over a bialgebra H,
and obtain a notion of H-relative dendriform algebra, as well as of all of the other
types. The role of uniform S-graded spaces is played in this setting by cofree H-
comodules. Explicitly, an H-relative dendriform algebra is a vector space D equipped
with operations
T>apy and T <gp Y.

These expressions belong to D and are linear in each of z,y € D and a,b € H. The
middle axiom in (14) becomes

Z(I > ag,bs Y) <aibic Z = Zx Zabicr (Y <boes 2)

for z,y,z € D, a,b,c € H, where we have written A(a) = >, a; ® ay for the comulti-
plication of H.
Or one may be interested in the case when C is the category of S-modules over a
semigroup S, or the category of H-modules over a bialgebra H, among many others.
A case of potential interest is afforded by the category of S-graded spaces with
the monoidal structure twisted by an abelian 3-cocycle, as in [15, Remark 3.2]. For
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example, the zinbiel axiom (21) becomes

hia, B,7) x *a,By (y *B z) = (v *a,f Y) *aBy 2t c(a, B) (y *8,0 T) *Bo,y #

where h: S xS xS — K* and ¢: S xS — K* satisfy the conditions in [15, page 47].
The function ¢ should satisfy in addition ¢(«, 8) = ¢(3, @) to ensure that the twisted
braiding in Vecg is a symmetry.

One may again generalize and consider (co)modules over a (co)quasi-bialgebra [16,
Chapter XV].

The gist of this note is that the basic properties of the various types will be true
in each case and do not need separate proofs.

3.2. Employing dimonoidal categories. A variant of the notion of dendriform al-
gebra has been introduced by Gao, Guo and Zhang in [23, Definition 3.1], under the
name of matching dendriform algebras. The operations of these objects are indexed
by elements of a set S. This notion differs from that of dendriform family algebra, and
does not arise as a special case of the notion of S-relative dendriform algebra. Nev-
ertheless, there exists a categorical approach to this and even more general notions.
We briefly sketch the main ingredients next.

Let S be a dimonoid. The set S carries two operations - and | satisfying the
axioms given in [17, Definition 1.1]. The category Vecg carries then two monoidal
structures @ and ®. Each is defined from one of the operations in S by means of (16).
The axioms for S imply that the two structures on Vecg are linked by isomorphisms
as follows.

(24a) AD(BOC) = (ADB)DC = AD (BGC),
(24b) (AGB)©C~AQ(BDC),
(24c) (ADB)®C=AQ(BOC) = (A®B)®C.

These isomorphisms satisfy certain coherent conditions. (We have not worked this
out in detail. They should extend Mac Lane’s pentagon.) We say then that Vecg is
a dimonoidal category.!

The key point is that in a linear dimonoidal category, one may formulate a notion
of dendriform monoid: this is an object D equipped with maps

DD D and D®D > D

IDimonoidal categories are not the same as the linearly distributive categories of [7, Section
1], previously called weakly distributive categories in [5, 6]. Some of the coherence conditions in
[5, Section 2.1] should be common to both notions. Dimonoidal categories also differ from the
2-monoidal categories of [2, Chapter 6], called duoidal categories in more recent literature [21].
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subject to 3 axioms generalizing (14). For example, the first of these is the following
equality.

(PoD)®D=DO(DOD) LS DD S D)

+((boD)©oD=DO(D®D) % Do DS D)
~((boD)oD 2% DD S D)

The reader can easily write down the other two axioms, working from (14) and (24).

One then has the notion of dendriform monoid in the dimonoidal category Vecg.
One may next consider the case in which the underlying object is uniform, as in
Section 2.3. This yields a notion of dendriform algebra relative to a dimonoid S. As
in Section 2.5, the operations of such an algebra are indexed by pairs («, 3) € S%.
The axioms are as follows.

(253) (:L’ <a,8 y) <aH8y Z = T <B4y (y <By Z) T T <8 (y > By Z)7
(25b) (ZE >a,B y) <o¢|—5,'y 2 =T >q B4y (y <5,’Y Z)>
(25¢) (T <a,8Y) >aupy 2+ (T >08Y) >arpy 2 =T >apy (Y >py 2)-

One may proceed and consider the special case in which <, g is independent of o and
>q,3 is independent ot 3. This yields a notion of dendriform algebra in which the
operations are indexed by elements of the dimonoid S. The axioms are now

(26a) (x <ay) <g2=02<q48 (Y<p2)+2 <a-5 (Y >a 2),
(26b) (T >ay) <pz=2>a(y<p2),

(26c) (2 <gY) >aqp 2+ (T >0 Y) >arp 2 =0 >4 (Y >5 2).

Finally, we may further specialize in two different ways. First, if the operations of
the dimonoid S are simply

a—4f=a and at =7,

the above notion is precisely that of matching dendriform algebra. Second, if the
operations of the dimonoid S satisfy

a—-df=akFp

(namely, if S is merely an associative monoid), we simply recover the construction of
Section 2, and the above notion is that of a dendriform family algebra.

In order to develop a corresponding approach to zinbiel and pre-Lie algebras, one
should work with dimonoidal categories equipped with isomorphisms

ADB=~BGA,

again subject to coherent conditions. The category Vecg constitutes an example when
S is a permutative monoid, as in [4, Section 1].
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Example 27. Let X be a set. The free dendriform family algebra on X (for a given
semigroup S) was described in [25, Section 3.2] and the free matching dendriform
algebra on X (for a given set S) was described in [23, Section 3.2]. The underlying
set is the same for both algebras. We next observe that the two constructions may
be unified by turning the same set into the free algebra defined by axioms (26) (for
a given a dimonoid S). The idea behind all these constructions goes back to Loday
[17, Section 5.5].

We employ the same setting as in both [25, Section 3.2] and [23, Section 3.2]. Let
Y be the set of planar rooted binary trees in which the vertices are decorated by
elements of X and the internal edges are decorated by elements of S. (The leaves
are not regarded as vertices. An internal edge joins two vertices.) Let ¥ = Y U {e},
where e stands for a new symbol that we may think of as the tree with no vertices.

Note that any t € Y is of the form

ot b

1 T2
Yy

where y € X is the label of the root of ¢, the trees t;,t5 € Y are the left and right
subtrees, and 71,7, € S are the labels of the internal edges stemming from the root.
It is possible that t; = e, in which case there is no vertex in that subtree and the label
7; is not defined. We employ similar notation for another tree s € Y: the label of
the root is x € X, the left and right subtrees are s; and s, the labels of the internal
edges at the root are oy and o5.

The operations on the vector space with basis Y are defined by means of the
following recursive formulas.

! 89 <4t S Sy >t
§<yt= +
o1 09 — Qv o] o9 -«
T T

S<nti  ta S>ati . 1o

§>qt= I ( +
a1 T2 a7 T2

Y Y
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The recursions are started by

S<qp€=358, §>,e=0,
e<,t=0, e>,t=t.

We close by mentioning that Foissy has introduced a further variant of the notion
of dendriform algebra in [10, Definition 11]. As for the notion defined by (26), Foissy’s
notion includes as special cases both dendriform family algebras and matching den-
driform algebras. Does there exist a categorical approach to this notion?

REFERENCES

[1] Marcelo Aguiar. Pre-Poisson algebras. Lett. Math. Phys., 54(4):263-277, 2000. 1, 2
[2] Marcelo Aguiar and Swapneel Mahajan. Monoidal functors, species and Hopf algebras, vol-
ume 29 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2010.
With forewords by Kenneth Brown and Stephen Chase and André Joyal. 6, 9, 14
[3] Chengming Bai, Olivia Bellier, Li Guo, and Xiang Ni. Splitting of operations, Manin products,
and Rota-Baxter operators. Int. Math. Res. Not. IMRN, (3):485-524, 2013. 2
[4] Frédéric Chapoton. Un endofoncteur de la catégorie des opérades. In Dialgebras and related
operads, volume 1763 of Lecture Notes in Math., pages 105-110. Springer, Berlin, 2001. 15
[5] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories. In Applications of categories
in computer science (Durham, 1991), volume 177 of London Math. Soc. Lecture Note Ser., pages
45—-65. Cambridge Univ. Press, Cambridge, 1992. 14
[6] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories. J. Pure Appl. Algebra,
114(2):133-173, 1997. 14
[7] J. R. B. Cockett and R. A. G. Seely. Linearly distributive functors. J. Pure Appl. Algebra,
143(1):155-203, 1999. Special volume on the occasion of the 60th birthday of Professor Michael
Barr (Montreal, QC, 1997). 14
[8] K. Ebrahimi-Fard. Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys.,
61(2):139-147, 2002. 2
[9] Kurusch Ebrahimi-Fard, José M. Gracia-Bond{a, and Frédéric Patras. A Lie theoretic approach
to renormalization. Comm. Math. Phys., 276(2):519-549, 2007. 2, 11
[10] Loic Foissy. Generalized dendriform algebras and typed binary trees, available at
arXiv:2002.12120. 2, 17
[11] Murray Gerstenhaber. The cohomology structure of an associative ring. Ann. of Math. (2),
78:267-288, 1963. 1
[12] Vsevolod Yu. Gubarev and Pavel S. Kolesnikov. Embedding of dendriform algebras into Rota-
Baxter algebras. Cent. Fur. J. Math., 11(2):226-245, 2013. 2
[13] Vsevolod Yu. Gubarev and Pavel S. Kolesnikov. Operads of decorated trees and their duals.
Comment. Math. Univ. Carolin., 55(4):421-445, 2014. 2
[14] Li Guo. Operated semigroups, Motzkin paths and rooted trees. J. Algebraic Combin., 29(1):35-
62, 2009. 2, 11
[15] André Joyal and Ross Street. Braided tensor categories. Adv. Math., 102(1):20-78, 1993. 13, 14
[16] Christian Kassel. Quantum groups. Springer-Verlag, New York, 1995. 14
[17] Jean-Louis Loday. Dialgebras. In Dialgebras and related operads, volume 1763 of Lecture Notes
in Math., pages 7-66. Springer, Berlin, 2001. 1, 14, 16


http://arxiv.org/abs/2002.12120

18

[18]

[19]
[20]
[21]
22]
[23]
[24]
[25]

[26]

MARCELO AGUIAR

Jean-Louis Loday and Maria Ronco. Trialgebras and families of polytopes. In Homotopy theory:
relations with algebraic geometry, group cohomology, and algebraic K -theory, volume 346 of
Contemp. Math., pages 369-398. Amer. Math. Soc., Providence, RI, 2004. 2

Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1998. 9

Dominique Manchon and Yuanyuan Zhang. Free pre-Lie family algebras, available at
arXiv:2003.00917. 2, 3, 4, 5, 10, 13

Ross Street. Monoidal categories in, and linking, geometry and algebra. Bull. Belg. Math. Soc.
Simon Stevin, 19(5):769-821, 2012. 14

E. B. Vinberg. The theory of homogeneous convex cones. Trudy Moskov. Mat. Obsé., 12:303—
358, 1963. 1

Yi Zhang, Xing Gao, and Li Guo. Matching Rota-Baxter algebras, matching dendriform alge-
bras and matching pre-Lie algebras. J. Algebra, 552:134-170, 2020. 2, 14, 16

Yuanyuan Zhang and Xing Gao. Free Rota-Baxter family algebras and (tri)dendriform family
algebras. Pacific J. Math., 301(2):741-766, 2019. 2, 3, 11

Yuanyuan Zhang, Xing Gao, and Dominique Manchon. Free (tri)dendriform family algebras. J.
Algebra, 547:456-493, 2020. 2, 3, 10, 13, 16

Yuanyuan Zhang, Xing Gao, and Dominique Manchon. Free Rota-Baxter family algebras and
free (tri)dendriform family algebras, available at arXiv:2002.04448. 2, 3

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853
Email address: maguiar@math.cornell.edu
URL: http://www.math.cornell.edu/~maguiar


http://arxiv.org/abs/2003.00917
http://arxiv.org/abs/2002.04448

	Introduction
	1. Associative, commutative and Lie relative to a semigroup
	2. The categorical perspective
	3. Additional variants
	References

