ON THE ASSOCIATIVE ANALOG OF LIE BIALGEBRAS

MARCELO AGUIAR

ABSTRACT. An infinitesimal bialgebra is at the same time an associative algebra and coalgebra in
such a way that the comultiplication is a derivation [A1]. This paper continues the basic study of
these objects, with emphasis on the connections with the theory of Lie bialgebras.

It is shown that non degenerate antisymmetric solutions of the associative Yang-Baxter equation
are in one to one correspondence with non degenerate cyclic 2-cocycles. The associative and classical
Yang-Baxter equation are compared: it is studied when a solution to the first is also a solution to the
second. Necessary and sufficient conditions for obtaining a Lie bialgebra from an infinitesimal one are
found, in terms of a canonical map that behaves simultaneously as a commutator and a cocommutator.
The class of balanced infinitesimal bialgebras is introduced; they have an associated Lie bialgebra.
Several well known Lie bialgebras are shown to arise in this way. The construction of Drinfeld’s
double from [A1], for arbitrary infinitesimal bialgebras, is complemented with the construction of
the balanced double, for balanced ones. This construction commutes with the passage from balanced
infinitesimal bialgebras to Lie bialgebras.

1. INTRODUCTION

An infinitesimal bialgebra (abbreviated e-bialgebra) is a triple (A, m, A) where (A, m) is an associa-
tive algebra (possibly without unit), (A, A) is a coassociative coalgebra (possibly without counit) and,
for each a,b € A,

(11) A(ab) = abi1®bs + a1®asb .

In other words, A is required to be a derivation of the associative algebra A with values on the
A-bimodule A®A. The notion of e-bialgebra is manifestly analogous to that of a Lie bialgebra.

Gian-Carlo Rota argued in favor of the study of e-bialgebras in several occasions, starting perhaps
with [J-R, section XII], which precedes the introduction of Lie bialgebras by Drinfeld in the early 80’s.
Apparently, such program remained uncontested until recently, when new motivations were found,
coming on one hand from interesting applications to combinatorics [A2, E-R] and on the other from
the close relation to the theory of Lie bialgebras.

In [A1], the basic theory of e-bialgebras was presented. This includes the introduction of several
examples and the notions of antipode, Drinfeld’s double and associative Yang-Baxter equation. The
study of e-bialgebras is continued in the present paper, with special emphasis on the analogy and
connection with Lie bialgebras. The results obtained are summarized below, after the introduction of
the necessary notation. The contents are described in more detail at the beginning of each section.

Notation. All vector spaces and algebras are over a fixed field k. M, (k) denotes the algebra of
matrices. Sum symbols are often omitted from Sweedler’s notation: we write A(a) = a1©as when A is
a coassociative comultiplication.
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Let A be an associative algebra, possibly non unital. The space A®A is viewed as an A-bimodule
via

a- (ueov) = auev and (udv) -a = udva .
Let r € A®A. The principal derivation defined by r is the map A, : A — A®A defined by
A(a)=a-r—r-a.

The symmetric and antisymmetric parts are denoted by

rt = %(r—l— T(T)) € S*(A) and v~ = %(7‘ - T(r)) € A*(4)

where 7: A®A — A®A is the switch 7(u®v) = vou. Consider the elements
A(r) = ri3r12 — 12723 + r2aris
C(r) = [r13, 712] + [ras, 12] + [ras, m13] -

These belong to A®A®A and are well defined even if A is non unital. The associative Yang-Baxter
equation is [A1, section 5]

(AYB) A(r)=0.
It is analogous to the classical Yang-Baxter equation
(CYB) C(r)=0.

According to [A1l, proposition 5.1], a principal derivation A, is coassociative if and only if A(r) is
an A-invariant element of the A-bimodule A® A®A. In this case one says that (A, r) is a coboundary
e-bialgebra. If the stronger condition (AYB) is satisfied, one says that (A,r) is a quasitriangular
e-bialgebra.

Contents. In section 2, antisymmetric solutions of the associative Yang-Baxter equation are studied.
The main result, proposition 2.7, establishes a one to one correspondence between such solutions and
those subalgebras of A carrying a non degenerate cyclic 2-cocycle. As an illustration, all antisymmetric
solutions of (AYB) in M3(C) are found. An algebra carrying a non degenerate cyclic 2-cocycle is called
antisymmetric, in this paper. Examples and basic properties of such algebras are given throughout the
section.

In section 3, the associative and classical Yang-Baxter equation are compared, beyond the obvious
formal analogy. It is shown that a solution r of (AYB) for which the symmetric part r* is invariant is
also a solution of (CYB) (theorem 3.5). This allows us to obtain solutions of (CYB) from the solutions
of (AYB) found in section 2. Tt is shown that some solutions of (CYB) by Belavin and Drinfeld arise
in this way.

There is an obvious way of attempting to construct a Lie bialgebra from an e-bialgebra, namely by
endowing it with the commutator bracket and cocommutator cobracket. The necessary compatibilty
condition between the two is, however, not always satisfied. In section 4, this situation is studied in
detail. A canonical map B : A®A — A®A, defined on any e-bialgebra A, is introduced. It is called the
balanceator, for its basic properties are analogous to those of the commutator of an associative algebra,
or the cocommutator of a coassociative coalgebra, simultaneously. These are given in proposition
4.3. An e-bialgebra is called balanced if its balanceator is zero. This guarantees that passing to the
commutator and cocommutator results in a Lie bialgebra. Two constructions of balanced e-bialgebras
from arbitrary ones are given (proposition 4.6). These are dual to each other and analogous to the
construction of the center of an associative algebra. An important class of balanced e-bialgebras
is provided by quasitriangular e-bialgebras (A, r) for which r* is A-invariant (proposition 4.7). This
“explains” the result of corollary 3.7, about the passage from coboundary or quasitriangular e-bialgebras
to the respective classes of Lie bialgebras.
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In section 5, the constructions of Drinfeld’s doubles for e-bialgebras and Lie bialgebras are compared.
The Drinfeld double D(A) of a finite dimensional e-bialgebra A carries a canonical associative form, but
unlike the case of Lie bialgebras, this fails to be non degenerate. Theorem 5.5 establishes a connection
between the radical of this form and the fact that A be balanced. When A is balanced, the radical
of the form admits a particularly simple description, and the quotient of D(A) by this ideal turns out
to be again a balanced e-bialgebra, called the balanced Drinfeld double and denoted Dy(A). This is
perhaps one of the main constructions of the paper. As a vector space, Dy(A) = A @ A*, and the
multiplication in Dy(A) is

(a,f)-(byg)=(ab+a+—g+f—=b aog+f<b+fg),

where the arrows denote the natural actions of A and A* on each other. While D(A) is a quasitriangular
e-bialgebra that is universally attached to any e-bialgebra A, Dy(A) is a balanced quasitriangular
e-bialgebra that is universally attached to any balanced e-bialgebra A, as spelled out it theorem 5.9.
The balanced double is thus strictly analogous to the double of a Lie bialgebra, but is defined only for
balanced e-bialgebras. This analogy is made more precise by proposition 5.12, where it is shown that
the doubles constructions commute with the functor from balanced e-bialgebras to Lie bialgebras.

Acknowledgements. 1 would like to thank Steve Chase and André Joyal for fruitful conversations.

2. ANTISYMMETRIC SOLUTIONS OF THE ASSOCIATIVE YANG-BAXTER EQUATION

There is a one to one correspondence between non degenerate antisymmetric solutions of the classical
Yang-Baxter equation in a Lie algebra g and non degenerate 2-cocycles gog — k [C-P, corollary 2.2.4].
This can be used to classify all antisymmetric solutions in g [C-P, proposition 2.2.6]. In this section we
obtain the analogous results for the associative Yang-Baxter equation. Non degenerate antisymmetric
solutions of the associative Yang-Baxter equation in A are in one to one correspondence with non
degenerate cyclic 2-cocycles A®A — k in the sense of Connes (also called 1-multitraces).

Let A be an associative, perhaps non unital, algebra. A cyclic 2-cocycle in the sense of Connes is
an antisymmetric form w : A® A — k such that

(2.1) w(ab®c) — w(a®be) + w(ca®b) =0 V a,b,ce A .

This corresponds to the original definition of cyclic cohomology by Connes [Con, pages 310-318]. Tt
agrees with what is today called periodic cyclic cohomology, when k£ D @. See [Ros, 6.1.34 and 6.1.35].
An example of a 2-cocycle is the coboundary wy of a 1-form f: A — k, defined by

wg(a®b) = f(ab— ba) .
We say that an antisymmetric tensor r» = ) u;9v; € A®A is non degenerate if the map
(2.2) FrAT = A fe Y fludvi= =) uif(v)
is bijective. Similarly, an antisymmetric form w : A® A — k is non degenerate if
(2.3) @ A= A%, G(a)(b) = w(a®b) = —w(boa)

is bijective. Obviously, there is a one to one correspondence between such non degenerate tensors and
forms via

(2.4) =71,
Proposition 2.1. Let A be a finite dimensional algebra. There is a one to one correspondence between

non degenerate antisymmetric solutions r € A®A of the associative Yang-Bazter equation and non
degenerate Connes 2-cocycles w : A®A — k.
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Proof. Let r € A®A be an antisymmetric non degenerate tensor. We will show that:
A(r)=0 < # ' =& : A = A" is a derivation <= w is a Connes 2-cocycle.
Here, A* is viewed as an A-bimodule in the usual way:
(a = £)(b) = f(ba) and (f & a)(b) = f(ab) .
Write » = Y w;@v;. For f,g € A*, we have

(foideg) ( ) Zf uiu;)v;g(v;) Ef u;)vu; g(vj —}—Zf uj ) u;g(vivy)

D3 (7)o + 7 (0)ie) + X wia (i)
= Z (£ < 7(9)) (wg)es + F(NF(g) + 3 ui(7(5) = 9) ()

B2 (5 #0) + #0070 — 7 (67 — 9)

Since 7 : A* — A is bijective we conclude that
A(r)=0 <= ¥ fge 4", #(Nile) =7 ((7(f) = 9) +7(f < 7(9))
< VYabeA i t(ab)=a— 7 (b)+7 (a) < b
<= 7' : A — A* is a derivation.

Evaluating the last equality on ¢ € A, and using (2.4), we obtain the additional equivalent condition:
Va,bce A, &(ab)(c) = &(b)(ca) + @(a)(be)
(2.3)

= VYa,bce A wlabse) = —w(cavb) + w(avbe)
which says that w is a Connes 2-cocycle as needed. O

Let ¢, : A — A denote conjugation by an invertible element u € A, ¢, (a) = uau='. If r € A®A is a
(non degenerate, antisymmetric) solution of (AYB), then so is (cy®cy)r. Two such solutions are said
to be conjugate.

Proposition 2.2. If two non degenerate antisymmetric solutions of the associative Yang-Baxzter equa-
tion are conjugate, then the corresponding cocycles are cohomologous.

Proof. Suppose r and s are two conjugate solutions, s = (cu®cy)r. It follows readily that the corre-
sponding cocycles are related by w, = ws(cy®cy). Hence, the cohomology classes of w, and w; are
related by the conjugation action on periodic cyclic cohomology. Now, according to [Lod, proposition
4.1.3], this action is trivial. Hence w, and w, are cohomologous. O

Often, an algebra A is called symmetric if it possesses a non degenerate symmetric form ( , ) :
A®A — k that is associative, in the sense that

(ab,c) = {a,be) V a,b,ce A .
We will say that an algebra A is antisymmetric if it possesses a non degenerate Connes 2-cocycle.

Examples 2.3.
1. Let A be the two dimensional algebra with basis {z, y} and multiplication

2=0,2y=0, yzr=zandy’ =y .
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A is then an associative algebra; in fact, it can be realized as a subalgebra of My (k) viaz = [0 (1)]

1 0
0 0|
Let w: A®A — k be the form

w ((aa: + by)o(cx + dy)) =ad — be .

and y =

W ~ [1 _01] is non degenerate, and it is a Connes 2-cocycle; in fact, it is the coboundary of

f:A—=k, f(z) =—1, f(y) = 0. Thus A is an antisymmetric algebra. The corresponding non
degenerate solution of (AYB) is

T = YT — TRY .

(A, r) is the quasitriangular e-bialgebra of [A1, example 5.4.5.¢]

2. There are, up to isomorphism, only three antisymmetric algebras of dimension 2. These are the

algebra of example 2.3.1, 1ts opposite and the trivial algebra with zero multiplication. We sketch
a proof next.
Consider a 2-dimensional algebra carrying a non degenerate antisymmetric solution r of (AYB).

Choose a basis {z, y} such that r = yoz — 2@y (or equivalently, w ~ _1] with respect to this

0

10
basis). The associative Yang-Baxter equation for r (or the cocycle condition for w) imposes some
conditions on the structure constants of the algebra, from which it follows that the multiplication

table must have the form:
z? = (a+b)zx zy =dz + ay
v’ = (c+d)y yr = cx + by
for some scalars a, b, ¢, d. Associativity leads to the following equations:
ab=bc=cd=da=0.

Let us denote such an algebra by Ala,b,c,d]. The case a = b = ¢ = d = 0 yields the trivial
algebra with zero multiplication. Otherwise, we may assume that either ¢ # 0 or d # 0, since, in
general, Ala, b, c,d] = Alc,d, a,b] via the map that interchanges z with y.

If ¢ # 0 then (%) implies b = d = 0, and Aa,0,¢,0]= A[0,0,1,0] via 2’ = cz —ay and y = £.
Note that A[0,0, 1, 0] is precisely the antisymmetric algebra of example 2.3.1.

If d # 0 then (%) implies a = ¢ = 0, and A[0,b,0,d] = A[0,0,0,1] via 2’ = cz —ay and y =
Note that A[0,0,0, 1] is the opposite algebra of A[0,0,1,0]. (They are not isomorphic.)

Qe

. A higher dimensional antisymmetric algebra, which is a generalization of example 1, can be

obtained as follows. Let 7, (k) denote the (non unital) subalgebra of M, (k) consisting of those
matrices whose last row is equal to zero, and f : Z,, (k) — k the functional f(«) = Z;ﬂ:_ll i1,
i.e. f(a) is the sum of the entries directly above the diagonal. The coboundary of f is then

m—1

wi(a®f) = Y @iiBiit1 — Bijajist -

i,7=1
It is easy to see that wy is non degenerate and that the corresponding solution of (AYB) is

r= ) ) Chiki—ktt Ak

m—1 max(i,j)
ij=1 k=1

where ¢; ; denote the elementary matrices and z A y = z0y — yoz.
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73 (k) is the algebra of example 1 (f, w and r have been multiplied by —1).

There is a simple way of constructing new Connes cocycles from old, which is reminiscent of the
construction of a new Lie algebra as the tensor product of a Lie algebra and a commutative algebra.

Proposition 2.4. Let A be an antisymmetric algebra with Connes cocycle wy and B a symmetric
algebra with form ( , Yp. Then A®B is an antisymmelric algebra with Connes cocycle

w(a®b, a'®b’) = wa(a,d’)(b,b")p .

Proof. Non degeneracy is obvious. We check the cocycle condition (2.1). Since { , )p is associative
and symmetric, we have

0"b, 0" = (b, bb"Y g = (b, 0"V = (b, b'")p .
Therefore

w(a®b - a'gb’ a"@b") —w(avb, a'@b’ - a”"@b") + w(a"@b" - avh, a'vh’)
=wal(ad’, d")(bb' b\ — wala,a’a”)(b,b'b" Vg +wa(a"a,d)(b"b,b)p

= (wA(aa', a”)—wala,d'a") +wa(a"a, a')) b, b"\g =0 .
O

Example 2.5. Let B be any symmetric algebra and Z,,(B) the subalgebra of M,,(B) consisting of
those matrices with entries in B whose last row is zero. Then Z,,(B) is an antisymmetric algebra, since
it can be identified with the tensor product of B with the antisymmetric algebra Z,, (k) of example
2.3.3.

In particular we may take B = M, (k), with the trace form. Then Z,,(B) can be described as the
subalgebra of M, (k) consisting of those matrices whose last n rows are zero.

We recall an important result about solutions of (AYB).

Proposition 2.6. Let A be a finite dimensional algebra and r € A®A an arbitrary solution of the
associative Yang-Bazxter equation. When A* 1s equipped with an appropriate dual structure, the map

FrAT S A fe Y flui)v
1s a morphism of e-bialgebras.

Proof. See [Al, proposition 5.6]. O

From this we conclude that antisymmetric solutions of (AYB) correspond to antisymmetric subalgebras.

Proposition 2.7. Let A be a finite dimensional algebra. There is a one to one correspondence between
antisymmetric solutions in A of the associative Yang-Baxter equation and pairs (B,w) where B is an
(antisymmetric) subalgebra of A and w a non degenerate Connes 2-cocycle on B.

Proof. Let r =Y u;9v; € A®A be an antisymmetric solution of (AYB). By proposition 2.6, Im(7) is an
e-subbialgebra of A. By (2.2), Im(7) is the subspace of A linearly spanned by either set {u;} or {v;}.
Hence, r is a non degenerate antisymmetric solution of (AYB) in Im(7). By proposition 2.1, Im(7) is
an antisymmetric subalgebra of A.

Conversely, starting from an antisymmetric subalgebra B of A, proposition 2.1 yields an antisym-
metric solution of (AYB) in B, and hence also in A. O
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Example 2.8. As an application, we find all antisymmetric solutions of (AYB) in the algebra M5 (C).
First of all, there are the antisymmetric subalgebras

72(C) = {[8 8] / a,b€ C} and its transpose Z%(C) = {[Z 8] / a,beC}

of examples 2.3. These yield the solution
10 o 0 1} (0 1 o 1 0
0 0 0 0 0 0 0 0
and its transpose.

Suppose that r is another antisymmetric solution and let B = Im(7) be the corresponding anti-
symmetric algebra. According to the remarks below, dim B must be even, and moreover B cannot be
unital. Hence dim B is either 0 or 2. The first case corresponds to the trivial solution r = 0. In the
second case, according to the result of example 2.3.2, B must be isomorphic to either Z5(C), its op-
posite algebra or the 2-dimensional algebra with zero multiplication. The opposite algebra of Z5(C) is
obviously isomorphic to Z%(C). The 2-dimensional algebra with zero multiplication is not a subalgebra
of M3(C) (being commutative, its elements could be simultaneously conjugated to nilpotent Jordan
forms, but there is only one such form in M3(C)), so this case is excluded.

Thus B is isomorphic to either Z5(C) or Z%(C). We claim that in each case the isomorphism is given
by conjugation by an invertible element of M5(C). Consider for instance the first case. Let {z,y} be a

! O] } of Z3(C). Then z and y satisfy the relations of

basis of B corresponding to the basis { [8 (1)] o 0o

0 0

example 2.3.1. Since z? = 0, there is an invertible u € M5(C) such that uzu~ . The relations

zy = 0 and yx = z imply that uyu=' = [é 8] for some b € C. Further conjugating by v = [(1) ﬂ
0 1

1.1 _ |1 0
0 0

] and vuyu~ v = 0 0
7Z3(C) is realized as conjugation by vu.
We conclude that, up to conjugation and transposes, the only antisymmetric solutions of (AYB) in
1 0 0 1 0 1 1 0
M,y (C = dr= ® - ® .
2(C) are r =0 and r [0 O] [0 O] [0 O] [0 0]
We finish this section with some general remarks on antisymmetric algebras and solutions of (AYB).
Any vector space carrying a non degenerate antisymmetric form must obviously be even dimen-
sional, so the same is true for antisymmetric algebras (for instance, for the algebra of example 2.5,
dim Z,,, (B) = m(m — 1) dim B is an even number). More interestingly, antisymmetric algebras cannot
be unital. In fact, if A is a unital algebra, then any Connes cocycle w on A must be degenerate, since

otherwise the bijective map w : A — A*, being a derivation by proposition 2.1, would vanish at 1.
Regarding solutions of (AYB) for unital algebras, a stronger conclusion may in fact be derived:

1,—-1

one obtains vuzu~ v = [ ] Thus the isomorphism between B and

Proposition 2.9. Let A # 0 be a unital algebra. Then any solution r € A®A of the associative
Yang-Baxter equation, antisymmetric or not, is necessarily degenerate.

Proof. Suppose there is a non degenerate solution r. In particular A is finite dimensional. By propo-
sition 2.6, 7 : A* — A is a morphism of e-bialgebras. Hence A is self dual as e-bialgebra, in particular
it is both unital and counital. But this forces A = 0 by [Al, remark 2.2]. O

Remark 2.10. Tt is known that any antisymmetric solution of (CYB) in a semisimple Lie algebra
must be degenerate [C-P, proposition 2.2.5]. There is an analogous result for semisimple e-bialgebras.
However, this becomes trivial in view of proposition 2.9, since it is well known that any semisimple
associative algebra is necessarily unital.



8 M. AGUIAR

3. FROM THE ASSOCIATIVE TO THE CLASSICAL YANG-BAXTER EQUATION

The main result we will prove in this section, theorem 3.5, states: Suppose r+ is A-invariant.

1. If A(r) =0 then C(r) = 0.

2. If A(r) is A-invariant then C(r) is A"®-invariant.

Here, A% denotes the Lie algebra obtained by endowing A with the commutator bracket.

These are formal but not completely straightforward consequences of the definitions. Several results
of independent interest will be derived in the course of the proof. The significance of theorem 3.5 is
that a coboundary e-bialgebra (A, r) for which r* is A-invariant yields a coboundary Lie bialgebra by
passing to the commutator and cocommutator brackets (corollary 3.7).

Lemma 3.1. Fors,t € A@A, let {t, S} = 113512 — t12893 + 93513 € AQA®A.

1. Let s € A%(A) be an antisymmetric tensor and t € S?(A) a symmetric one. Suppose that t is
A-invariant. Then {t,s} = —{s,t}.
2. Let r € A®A be such that rt is A-invariant. Then

A(r)=A(rt)+A(r7) .
Proof. 1. Writet = > w;0v; = > v;0u; and s = ) z;0y; = — > y;0z;. We compute
t13519 = Z i 20y 0v; = Z v 2Oy 0u; = Z Oy O U;
= Zui@)yj@xjvi = — Zui@)ﬂ?j@iji = —s93t13
by invariance, symmetry and antisymmetry. Invariance alone implies
t19893 = Eui®1!imj®yj = E:Bjuicévi@yj = s13t19
t93813 = Z Z;0u;®v;Y; = Z Z;0Y; u;®v; = S1at23 .
Thus
{t,s} =t13512 — 112523 + 123513 = —s23t13 — s13t12 + s12t23 = —{s,1} .
2. Note that A(r) = {r,r}. By part 1 applied to t = r* and s = r~, {r*, 77} = —{r~,r*}. Hence
Ar)y={rt+r 4} =t vt} + T r )+ v et + e = AP + AT .

O

Lemma 3.2. Lett € A®A be symmetric and A-invariant. Then t is also A°P-invariant.

Proof. The A-bimodule and A°?-bimodule structures on the space A®A = A°P@A°P are respectively

a - (usv) - b = audvb and a’? - (uev) - bF = ua®by .
If ¢t =5 w;®v; =Y v;9u; is symmetric then
a-t-b= Z au;®v;b = Z av;®u;b = T(Z uib®av;) = 7(b°? -t - a’?) .
In particular,
a-t—t-a=71{t-a%)—71(a”® -t) = —7(a? -t —1t-a’?).
Hence t 1s A-invariant if and only if ¢ is A°P-invariant. O

Lemma 3.3. Let r € A®A be A-invariant. Then

A(r) = ri3ria = 712723 = T23713

and this element of A® A®A is A-invariant.
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Proof. Write r = ) u;®v;. We compute
713719 = Z U U;OV;0v; = Zuj®vjui®vi = r12723
and
93713 = ZUj@UZ’@vZ'Uj = Zuj®vjui®vi = r127a3
from which
13712 = 12723 = 723713 = A(T) .
The A-invariance of, say, r13712, follows immediately from that of r. O

Suppose r € A?(A) is antisymmetric. It is known that in this case C(r) is antisymmetric too, i.e.
C(r) € A3(A). Next, we consider to what extent A(r) fails to be antisymmetric. To this end, consider
the permutations

o,p: A®A®A — A®ABA, o(x0yez) = 20ydx and p(xeY®z) = Yoz0X .

We are interested in the more general situation where it is only assumed that the symmetric part of
is A-invariant (not necessarily zero). Consider the element

A'(r) = riar13 — ragria + P137Ta3
Note that
(3.1) C(r)=A(r)— A'(r) .
Lemma 3.4. 1. Let s € A®A be antisymmetric and t € A®A be symmetric. Then
o(A(s)) = A'(s) , o(A(1) = A'(t) and p(A(s)) = A(s) .
2. Let r € A®A be such that rt is A-invariant. Then
o(A(r) = A'(r) and p(A(r)) = A(r) .
Proof. 1. We first prove the assertions involving o. Write s = >~ u;0v; = — > v;0u;. We have
$13812 = Zuiuj@)j@vi = — Z u;V;OU;OV; = Z Vi U;0U;OU;

= o(s13512) = E UOU;QV;V; = S13S23 .

Also,
819893 = Zuj®vjui®vi = — Z V;0U; UiQV; = Z V;QU;V;0U;
= 0(s12823) = Z U;OU;V;OV; = $23512 ;
and
§93513 = EUj@UZ'Q?UZ'Uj = — Z V;0U;QV;u; = Z V;QU;QUU;
= o(s23513) = Zuiuj®vi®vj = 519813 .
Thus

o(A(s)) = o(s13512 — 512523 + S23513) = S13523 — S23512 + S12513 = A'(s) .

The same argument shows that o(A(¢)) = A’(t), since there were two sign changes involved at
each step.
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Finally,
p(A(s)) = p(z U U;OV;0V; — Z u;QV; u;Ov; + Z U OU;OV;U;)
= Z V;0U;0U;u; — Z vjui®vi®u; + Z UiV UjOU;
= E u;OU;OV; U5 + E U U;OV;0V; — E u; 9V u;0v; = A(s) .

2. For the permutation o, we apply the results just proved to ¢ = rT and s = r~, together with
lemma 3.1.2, which applies since rt is A-invariant. We obtain

o(A(1) = o(A(rH)) + o(A(r)) = A'(*) + A'(r) = A'(r)

The last equality holds by lemma 3.1.2 applied to the algebra A°: first, notice that r* is also
A°P-invariant by lemma 3.2, so the lemma indeed applies; second, observe that A 40»(r) = A’ (7).

For the permutation p, we need a special argument for the term A (r*). Since r* is A-invariant,
we can apply lemma 3.3:

A(rt) = rfyrf, = riyrly
Writing r+ = 3 z,;8y;, we have
A(rt) = riyrf, = Z Z;2;9Y;9Y;
= p(A(rt)) = Zyj®yi®a:imj = Z 20Ty Y = Tiaris = A(rT) .
Using this and the result of the previous part (for s = r~) we conclude
p(A(r)) = p(A(rF)) +p(A(r7)) = A(rT) + A(r7) = A(r) .
O

Let A% denote the Lie algebra obtained from the associative algebra A via the commutator [a, b] =
ab—ba. Given an A-bimodule M, let M'* denote the same space M but viewed as an A'**-module via

a—>m=a-m—m-a.
The space M®" can then be seen as an A-bimodule via

a - (Mmema®...0my) - b = ami®@my®...9mub ,

as the AY¢-module (M®”)”e

a— (Mm®ms®...9m,) = am1®ma®...0m, — m1®@ma®...0mya ,

or as the A"¢-module (M”e)®n

a — (mems®...emy)
= (a = m1)eme®...0m, + m1®(a = ma)®...0my + -+ mOM2®...8(a = my) .
It is easy to see that these structures are related by means of the n-cycle p, : M®* — M®"
Pr(M1®M2® . ..0my,) = Ma®...0m,%m;
as follows: for a € A and u € M®",
(3.2 G u=a—utprta o pa()+ ot sV (@ o A0 (w)

We will consider A“¢-invariant elements of M®" always with respect to the Lie structure —. Thus, an
element m € M®" is A-invariant if a = m = 0V a € A, while it is A“*-invariantifa - m =0V a € A.
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We are mostly interested in the case M = A and n = 2 or 3. Notice that the permutations ps = 7
and ps = p have been considered already.
We are now in position to prove the main result of this section.

Theorem 3.5. Let r € A®A be a tensor for which its symmetric part rT is A-invariant.

1. 7t is then also A" -invariant.
2. If A(r) = 0 then C(r) = 0.
3. If A(r) is A-invariant then C(r) is A"®-invariant.

Proof. 1. Since 7(r™) = r*, equation (3.2) gives
a—»rt=a—=rt4+r(a=srt)=0foranyac A,

as needed.
2. By lemma 3.4.2, A’(r) = o(A(r)) = 0. Hence

C(r)(3 1)A(r) —A'(r)=0.

3. By lemma 3.4.2, A(r) = p(A(r)) = p*(A(r)). By hypothesis this element is A-invariant. It
follows from equation (3.2) that A(r) is A'“-invariant.
Now, according to equation (3.1) and lemma 3.4.2,

C(r) = A(r) — A'(r) = A(r) — o (A(r)) .

Clearly, o : AlegAlicgAlie 5 Alieg Alieg Alie is a morphism of A'**-modules (though not of
A-bimodules). It follows that C(r) is A*®-invariant.
O

Examples 3.6.

1. Consider the solution of (AYB) of example 2.3.3, in the algebra Z,, (k) of matrices with last row
equal to zero. Since it is antisymmetric, it is also a solution of (CYB) by theorem 3.5. Similarly,
we may obtain a solution of (CYB) in the Lie algebra of matrices of size mn whose last n rows are
zero, according to example 2.5. This solution of (CYB) was constructed by Belavin and Drinfeld
[B-D, example in section 7]. The non degenerate Lie cocycle to which it corresponds already
appears in [Oom, page 497]. The constructions of the present paper show that these solutions
and cocycles in the Lie setting actually come from the associative setting.

2. Let A be a symmetric algebra (section 2) and ¢ € A®A the symmetric invariant tensor corre-
sponding to the given form; such an element is often called a Casimir element. Then

t
X—y

is an antisymmetric solution of (AYB), belonging to a certain completed tensor product containing

(A®A)[x,y] [A1, example 5.4.3]. In a sense, this may be seen as constructed from the solution

ﬁ in k[x] and the symmetric form on A, as in proposition 2.4.

Allowing ourselves to apply theorem 3.5 in this situation, part 2 says that r is also a solution
of (CYB) in the loop Lie algebra A'¢[x]. Notice that by part 1 of the theorem, ¢ is also a Casimir
element for the Lie algebra A'¢; therefore, this solution is the usual “rational” solution of Drinfeld
[Dri, example 3.3] or [C-P, example 2.1.9].

r =

We will now interpret the results of theorem 3.5 in terms of infinitesimal and Lie bialgebras.

Given r = Y w;®v; € A®A, let A, : A — A®A and Af,ie : Alie . Alieg Alie he

A(a)=a—>r= Z au;®v; — Z u;0v;a
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and

A (o) = 0o = Yl s+ X ol

Recall that the pair (A, r) is called a coboundary e-bialgebra if (A, A,) is an e-bialgebra. According
to [A1, proposition 5.1], this is the case if and only if A(r) is A-invariant. Similarly, (A€, ) is called a
coboundary Lie bialgebra if (A'¢, A¢) is a Lie bialgebra. It is well known that this is the case if and
only if C(r) and r* are A'®-invariant [C-P, proposition 2.1.2]. Also, (A, r) is called a quasitriangular
e-bialgebra if A(r) = 0 and (A" r) is called a quasitriangular Lie bialgebra if C(r) = 0 and rt is
Ale_invariant.

Corollary 3.7. Let (A, r) be a coboundary e-bialgebra for which the symmetric part v+ is A-invariant.

L. Then (A% r) is a coboundary Lie bialgebra. Moreover,
AT = A, — 1A, .
2. If in addition (A, r) is a quasitriangular e-bialgebra then (A'€ r) is a quasitriangular Lie bialgebra.

Proof. 1f (A, r) is a coboundary e-bialgebra then A(r) is A-invariant. Hence, by theorem 3.5.3, C(r) is
Ale_invariant. Also, by theorem 3.5.1, r* is A"*-invariant. Thus (A”e, r) is a Lie bialgebra. Moreover,

Alrie(a) — r(3:.2)a S r+7(a—7(r)) =A(a) + TAT(,«)(G) ,

and since rt is A-invariant,
Ar = A,- and Ay = —A,- .
Hence
At = Ao —7A- = A, —TA, .

The second assertion is just a restatement of theorem 3.5.2. O

Remark 3.8. For arbitrary e-bialgebras (A, m,A), it is not true that (A,m — m7, A — 7A) is a Lie
bialgebra (see example 4.12.1). However, the corollary shows that this does hold in the special case
when A = A, and rt* is A-invariant. More generally, we will show that if (4, m,A) is a balanced
e-bialgebra, then (A, m — m7, A — 7A) is indeed a Lie bialgebra (proposition 4.10). When A = A, and
rt is A-invariant, (A, m, A, ) is balanced (proposition 4.7).

4. FROM INFINITESIMAL TO LIE BIALGEBRAS. BALANCED INFINITESIMAL BIALGEBRAS

Let (A, m, A) be an e-bialgebra. The commutator bracket m — mr and the cocommutator cobracket
A — 7A endow A with structures of Lie algebra and coalgebra, but these are not always compatible:
(A,m — mr, A — 7A) need not be a Lie bialgebra. In this section we introduce the class of balanced
e-bialgebras, for which this conclusion does hold. This class also arises naturally in the context of
Drinfeld’s double, as will be seen in section 5. Any e-bialgebra that is both commutative and cocom-
mutative is balanced (in this case the corresponding Lie bialgebra is trivial). A different family of
balanced e-bialgebras is provided by those coboundary e-bialgebras (A, r) for which 7+ is A-invariant.
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4.1. The balanceator. Balanced e-bialgebras are defined below, in terms of a natural map B : A®A —
A®A that plays a role somewhat analogous to that of the commutator of an associative algebra and
the cocommutator of a coassociative coalgebra, simultaneously. The basic properties of B, as well the
construction of a balanced e-bialgebra from an arbitrary one (analogous to the construction of the
center of an associative algebra), are also presented in this section.

Definition 4.1. Let (A, m, A) be an e-bialgebra. The map B : A®A — A®A defined by
B(a,b) =a — 7A(b) + T(b — TA(a)) = aby®b; — bo®bra + a1®bas — aib®as

is called the balanceator of A. The e-bialgebra A is called balanced if B = 0, or equivalently if for every
a, be A,
(B) a1be®as + ba®bia = abs®by + a1®@basy .

The relevance of these notions will hopefully become clear from the results of this section.

Remark 4.2. One may easily check that condition (B) is equivalent to the commutativity of any of the
diagrams below:

A®id 1d®7 1d®T m®id

A9A —— ARA®A —— ARA®A A@ARA — A®A®A ——= A®A
m@id—id®m ARid—1dRA
AN e
T AgA AA T
m°PRid—1d@®m°P Aw‘&i—id@Ac"p
\
A®AACO—I®Z?dA®A®A W A®A®A A®A®A W) A®A®A mT®i>dA®A

Since these diagrams are clearly dual to each other, condition (B) is self dual.

Recall from [A1, section 2] that if A := (A, m, A) is an e-bialgebra then so are AP°P := (A, m°P A°P),
A=tF = (A —m,A), AH~ := (A, m,—A) and, if A is finite dimensional, A* := (A*, A* m*).

Proposition 4.3. The balanceator B enjoys the following properties.

B
ABA == ADA
1. B is natural: for any morphism f : A — B of ¢-bialgebras, diagram f®fy \7®Ff commules.
B®B —> BOB
Bgs
B
A®A > AQA
2. Diagram V7 commutes.
ADA > A®A

3. For any e-bialgebra A,
BAop,cop = —TBA, BA* = (BA)* and BA—,+ = BA+,— = —BA .

Hence, if A is balanced, so are the other assoctated c-bialgebras.
4. For any a,b,c € A,

(4.1) B(ab, c) = (a®1)B(b,¢) + B(a, c)(1eb) ,
(4.2) B(a, bc) = B(a, b)(e2l) + (100)B(a,c) .
5. For any a,b € A,
(4.3) (A®id)B(a,b) = a10B(as,b) + (idor) (B(a, b1)®62) ,

(4.4) (idoA)B(a,b) = B(ay, b)eas + (reid) (b1®B(a, bz)) .
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Proof. Parts 1 and 2 are immediate from the definition. Part 3 can be checked by direct computation
or by expressing B in terms of the diagrams of remark 4.2, and noting that they are dual to each other,
and that they remain unchanged after replacing m for m°? and A for A°°P.

To verify (4.1), recall that by (1.1), A(ab) = ab1®by + a1©asb, hence

B(ab, ¢) = abea®cy — ca®crab + abi®chs + a1®@cazb — abyc®by — a1c®agb
= abeg®ey + abi®chy — abye®bs + (—aca®c1b + aca®c1b) — ca®ciab + a19cazb — ajc®aszb
= (a®1)B(b,c) + B(a,c)(10b) .

Equation (4.2) follows from (4.1) and part 2. Equations (4.3) and (4.4) are their formal duals, so they
must also hold according to remark 4.2; a direct verification is also possible. O

Remark 4.4. Equations (4.1) and (4.2) involve a unit element 1, but it is of course not necessary to
assume that it belongs to A, since we may always embed A in an a unital algebra. If A does have a
unit element 1, then 1t follows from these equations that

B(l,a) =B(a,1) =0V a€ A.

Equations (4.1) and (4.2) are reminiscent of the familiar properties of the commutator bracket of an
associative algebra, e.g. [ab, ¢] = a[b, c]+ [a, c]b. Also, (4.3) and (4.4) are similar to the dual properties
of cocommutators. This suggests that condition (B) may be seen as a simultaneous weakening of
commutativity and cocommutativity. This is further supported by the results of propositions 4.5 and

4.6 below.

Proposition 4.5. Let (A, m, A) be an e-bialgebra that is both commutative and cocommutative. Then

A 1s balanced.
Proof. We verify that condition (B) holds, as follows:

(1.1

= )A(ba) = A(ab)(l'l

= )[lb1®b2 + a1®asb = aby®by + ai1®bas .
O

a1b®as + bo®bia = bai;®as + b1®@bsa

The analogy between the balanceator of an e-bialgebra and the commutator of an algebra suggests
the possibility of defining for e-bialgebras a notion analogous to that of the center of an algebra. It is
pleasant that this indeed results in a balanced e-subbialgebra of the given e-bialgebra. Moreover, since
the balanceator is self dual, a construction of a balanced quotient of an arbitrary e-bialgebra, dual to
the previous one, is also possible.

Proposition 4.6. Let A be an arbitrary e-bialgebra.

1. Define
Zp(Ay={ac A/ B(a,b)=0Vbe A} ={bec A/ B(a,b)=0VY ac A} .

Then Zy(A) is an e-subbialgebra of A, and as such, it is balanced.
2. Define

IVEDY Im((z’d@f)B) -y Im((f@id)B) .
feas feas
Then Iy(A) is a biideal of A, and the quotient A/Iy(A) is a balanced e-bialgebra.

Proof. First notice that the two definitions of Z;(A) indeed agree, by symmetry of B (proposition 4.3.2).
Equation (4.1) immediately implies that Z,(A) is a subalgebra. Notice that Zy(A) = Npe aKer(B(—, b));
therefore, to show that it is a subcoalgebra we must show that

A(Zb(A)) C Zy(A)eZs(A) = (Zb(A)®A) N (A@Zb(A)) =N Ker(B(—,b)@id) N Ker(id@B(—,b))
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Take a € Zy(A), then

(B(_, b)®z’d)A(a) — Blay, b)eas =D (ideA)B 0, b) — (reid) (51®B(a, bQ)) =0

(id@B(—, b))A(a) — w6B(as, ) ) (Acid)B(a, b) — (ider) (B(a, b1)®b2) =0

as needed. Thus, Z,(A) is a subbialgebra of A. Tt is obviously balanced since, by naturality of B,
BZb(A)(CL,b) = BA(a,b) =0Va,be Zb(A).

Part 2 is formally dual to part 1; nevertheless, we provide a direct verification.

The elements of the form (idof)B(b, ¢) are linear generators of Iy(A). Identity (4.1) implies that

a - (idsf)B(b, ) = (idsf)B(ab,c) — (ids(b — f)) B(a,c) € I,(4) |
where b — f is the usual left action of A on A*, see (5.10). Thus, I(A) is a left ideal. Similarly, one
deduces from (4.2) that it is a right ideal. Finally, (4.3) implies that
A(idof)B(a,b) = a18(idof)B(asz, b) + (idof)B(a, b1)obs € A0l (A) + I (A)eA

which shows that Iy(A) is a coideal. Finally, to show that A/I,(A) is balanced one may use the
following general fact: if S is a subspace of A®A, 51 =3 ;4. (feid)(S) and Sy = 37 4. (id2f)(S),
then S C S20S7. Applied to S = Im(B) this gives Im(B) C I,(A)®ly(A), which certainly implies that
BA/Ib(A) = 0. O

Examples of balanced e-bialgebras and of the constructions of proposition 4.6 will be given below
(examples 4.8 and 4.12). In proposition 5.10, the balanceator of the Drinfeld double will be explicitly
calculated

Balanced quasitriangular e-bialgebras. Below we find a sufficient condition for a quasitriangular
(or more generally, coboundary) e-bialgebra to be balanced. This provides an important source of
examples of balanced e-bialgebras.

Proposition 4.7. Let (A, r) be a coboundary e-bialgebra. Then
B(a,b)=2-(a > 1A +(b)) YVa, be A.
In particular, if vt is A-invariant then A is balanced.
Proof. Let r =Y u;ov;, so A.(a) =Y au;®v; — u;0v;a. We compute
a—=> 1A (b)=a— Z(vm@bui — v;ibou;) = a — ((1®b)r(r) — T(r)(b@l))
= (a®b)7(r) — (a®l)r(r)(b01) — (18b)7(r)(1®a) + 7(r)(boa) .

Hence
b — A (a) = (bsa)r(r) — (bol)r(r)(asl) — (1oa)r(r)(1eb) + 7(r)(ash)
and
T(b - TAr(a)) — (a®b)r — (1ob)r(1ea) — (asl)r(bol) + r(boa)
=a—= 140 (b) .
Hence

B(a,b) = a — A, (b) + T(b - TA,(a)) == TArpr(ry(b) =2+ (a = A (b)) .
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Examples 4.8.

1. The e-bialgebra k[e]/(£2) of dual numbers is quasitriangular with r = 1@e [A1, example 5.4.1].
Since r* = 1@ + @1 is A-invariant, this e-bialgebra is balanced. (Actually, it is commutative
and cocommutative.)

2. The condition of proposition 4.7 is not necessary: a coboundary e-bialgebra (A, r) may be balanced
even if 7T is not invariant. Consider the three dimensional algebra A = k[e1, 5] where

6%26326162:6261:0.

A can be realized as the subalgebra of M3(k) of matrices of the form

o O R
o Q o
Q OO

A is quasitriangular with » = 18e; [A1, example 5.4.1]. We have
1
Ar+(1) =0, Ar+(61) = 0 but Ar+(62) = 5(62@61 — 61@62) ;ﬁ 0.
In particular »* is not A-invariant. However,

I — Ar+(62) =0, e — Ar+ (52) =0 and g9 — Ar+ (62) =0.

Therefore, according to proposition 4.7, B(a,b) = 2-(a = 7A,+(b)) = 0V a, b€ A, so Ais
balanced.

From balanced ¢-bialgebras to Lie bialgebras. Below we will show that balanced e-bialgebras give
rise to Lie bialgebras by passing to the commutator and cocommutator brackets. In fact, the necessary
and sufficient condition for obtaining a Lie bialgebra is that the balanceator satisfies B(a, ) = B(b, a).
Several examples will be given.

Lemma 4.9. Let M be an A-bimodule and MY the associated A¥¢-module: a — m =a-m—m - a.

Then, Der(A, M) C Der(Ale, M'i€).
Proof. Tf D € Der(A, M) then
D([a, b)) = D(ab) — D(ba) = a - D(b) — D(a) - b — <b - D(a) — D(b) - a) =a— D(b) — b— D(a)
so D € Der(A'e M), O

Proposition 4.10. Let (A, m,A) be an e-bialgebra. Then (A,m —mr, A — 7A) is a Lie bialgebra if
and only if B = Br. In particular, if (A, m, A) is balanced (B = 0) then (A,m—m7, A —1A) is a Lie
bialgebra.

Proof. By hypothesis and lemma 4.9,
A € Der(A, AoA) C Der(A", (A2A)"™) .
Thus,
A([a,B]) = a — A(b) = b — A(a)
and, letting Al = A — 1A,

(+) A([a,b]) = a = AB) — b — Aa) = 7(a = AB) — b Ala)) |
On the other hand, we have

0= A (1) = a = AD) —a— A1) Za s Al + 7l rAB) —a = rAE) — (> AW))
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Therefore
a —» Alie(b) — b — Alie(a)
=a— A(b)—b — A(a)—}-r(a = rA(D)—b — TA((I)) —a = TAB)+b — TA(a)—T(a — A(b)—=b — A(a))

) Alie (a0, 8]) + m(a = TAG) ~ b= rA(@)) —a = TA(b) + b TA(a)

= A"([a,b]) + B(b,a) — B(a,b) .
Thus, Alie € Der(Ale, Alie@ Al€) if and only if B(b, a) = B(a, b) for every a, b € A, which is the desired
conclusion. O
Remarks 4.11.

1. Recall that Br = 7B always holds, by proposition 4.3. Thus, when the condition B = B7 holds,
the balanceator induces a map S?(A) — S?(A), and conversely. We will say in this case that the
balanceator is symmetric.

2. Tt is easy to see the balanceator is symmetric if and only if @ = 7A(b) —b — 7A(a) is a symmetric
element of A®A, for every a,b € A.

Examples 4.12.

1. Not every e-bialgebra yields a Lie bialgebra. To see this, we must produce an e-bialgebra for which
B is not symmetric. Consider the algebra of matrices M2 (k) equipped with the comultiplication

o[22 =l el ol -l ol o]

Mo (k) is then an e-bialgebra [A1, example 2.3.7]. One calculates

0 Y O Ve e Y 3 e 8 4 S A 1

Thus B is not symmetric, so there is no associated Lie bialgebra.
It is easy to see that the constructions of proposition 4.6 produce the following results: 7 (A)

is the subalgebra of matrices of the form I:g i] (where the comultiplication is zero), while

A/ (A) = 0.

2. This is an example of a non balanced e-bialgebra for which the balanceator is symmetric (and
therefore there is an associated Lie bialgebra). Consider the algebra A = k[x]/(x*), equipped
with the comultiplication

A(x') = x'ex? — lox'T?
A is then an e-bialgebra. In fact, if »r = 1@x? then (A,r) is quasitriangular and A = A, [Al,

example 5.4.1].
In this case

B(xi,xj) = x't2ex! — x"ti+2e] — x%ex't + x/H2ex’
+ xlex’t? — lex't+? — xitigx? + x'ex/t? ,
which is clearly symmetric (this had to be the case since (A, m) is commutative, so (A, m —
m7, A — T7A) is a Lie bialgebra trivially). However, B # 0 so A is not balanced.
The constructions of proposition 4.6 are as follows: Z,(A) is the subalgebra spanned by 1 and

x%, which is isomorphic to the e-bialgebra of dual numbers (example 4.8.1); I,(A) is the ideal
generated by x, so A/I,(A) = k with zero comultiplication.
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3. Let g be the two dimensional non abelian Lie algebra: g has a basis {z,y} such that [y, z] = =.
There are, up to isomorphism and scalar multiples, only two Lie bialgebra structures on g [C-P,
examples 1.3.7 and 2.1.5]:

d1(2) =0, 61 (y) = yox — 2oy
and

dz(z) = zoy — yox, da(y) =0 .

Let us discuss these examples in connection with balanced e-bialgebras.
Let A be the two dimensional algebra with basis {z, y} and structure

22=0, 2y=0 yr=zand y’ =y,
A(z) = zoz and A(y) = yor .
A is then an e-bialgebra; in fact, it is the quasitriangular e-bialgebra of example 2.3.1, with
r = yox — zey. In this case, rt = 0, so by propositions 4.7 and 4.10, A is balanced and A’® is a
Lie bialgebra. This is precisely the first Lie bialgebra structure on g above.

Direct calculations show that the second Lie bialgebra structure does not come from any
e-bialgebra structure.

5. DRINFELD’S DOUBLE OF LIE AND INFINITESIMAL BIALGEBRAS

Recall that the Drinfeld double D(g) of a Lie bialgebra g carries a non degenerate symmetric form
that is associative, in the sense that

(la, 8],7) = (@, [B:7]) V @, 8,7 € D(g) -

In [A1], we have defined the Drinfeld double D(A) of an e-bialgebra A. Since this is defined for arbitrary
e-bialgebras A (balanced or not), there may be no Lie bialgebras associated to A or D(A). D(A) always
carries a canonical symmetric associative form, but this may be degenerate. The main result of this
section describes a necessary and sufficient condition for A to be balanced in terms of the radical of
this form (theorem 5.5). In this case, the quotient Dy(A) of D(A) by the radical of the form is again
a balanced e-bialgebra (proposition 5.10), and the corresponding Lie bialgebra is, up to a sign, the
Drinfeld double of the Lie bialgebra corresponding to A (proposition 5.12). Another important result
in this section is theorem 5.9, which contains the universal property of Dy(A).
We begin by recalling the construction of the double D(A) of a finite dimensional e-bialgebra
(A, m,A). Consider the following version of the dual of A
A= (A AT —m”

cop

).

Explicitly, the structure on A’ is:

(5.1) (f -9)(a) =g(a1)f(az) Vae A, f,ge A’ and
(5.2) A(f) = f1iefs <= flab) = —fala) 1 (D) VYV fe A, a,be A.

Below we always refer to this structure when dealing with multiplications or comultiplications of ele-
ments of A’. Consider also the actions of A’ on A and A on A’ defined by

(5.3) f—a=f(a1)az and f + a = —fa(a)f1

or equivalently

(5-4) 9(f = a) = (9f)(a) and (f = a)(b) = f(ab) .
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Proposition 5.1. Let A be a finite dimensional e-bialgebra, consider the vector space
D(A) := (AsA Y A A

and denote the element a®f € A®A’ C D(A) by a < f. Then D(A) admits a unique c-bialgebra
structure such that:

(a) A and A’ are subalgebras, a-f=a< f, f-a=f—=a+ f+ a and
(b) A and A’ are subcoalgebras.

FEzplicitly, the multiplication and comultiplication are given in the remaining cases by

a-(beaf)y=abeaf, (avaf) g=arafg,
(avaf)-b=a(f >b)+ava(fb), f-(axg)=(f—=a)xg+(fa)g,
(5.5) (ava f)-(brag) =al(f —b)eag+ava(f<b)g,
Afawa f) = (ava f1)0fs + a10(az 2 f) .

Proof. See [Al, theorem 7.3]. O

If g is a finite dimensional Lie bialgebra, its double D(g) = g @® g* carries a non degenerate symmetric
associative form, defined by

(a+f,b+g)=f(b) +g(a) .

For e-bialgebras, the analogous form 1s still symmetric and associative, in the sense that

(af,y) =(a, By) V o, 8,7 € D(A)
but this form is usually degenerate.

Proposition 5.2. Let A be a finite dimensional e-bialgebra. There is a symmetric associative form on
D(A) uniquely determined by

(5.7) (a+f.b+g) = f(b) +g(a) .
Proof. Define a bilinear form on D(A) by

(58)  (a+fHboagd +f +bpag)=f(a)+ f(a')+ g (ab)) +9(a'b) + (' F)(¥') + (9.f)(b)
+g(b7)g" (bb5) + g’ (b1)g(b'b2) .

This form is clearly symmetric and satisfies equation 5.7. Conversely, symmetry, associativity and 5.7
force us to define the form as above: for instance,

(beag,a’y={a' bxg)=(a',b g) = (a- b,g>(5£7)g(a'b) .

Thus, uniqueness holds. To show that this form is indeed associative one must check several cases. We
do it only for one of the most relevant, involving elements of A®A’ C D(A). In the computation, we
will use that

(¥) A(a(f o b))(5£3)f(b1)A(ab2)(1i1)f(b1)ab2®b3 + f(b1)ar@asbs .
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We calculate
{((asa f) - (brag), [><1h>(5£5)<a(f—>b) g+ av<a(f < b)g,crah)
L ge)h(alf — b)c2) + h<f(b1)ab2)g(cbg) + h(f(bl)al)g(cagbg)

+ (7 + )g) (e1)hlacs) + har) ((f « blg) (caz)

= g(er)f(br)h(abzea) + f(b1)h(ab2)g(cbs) + f(b1)h(a1)g(cazbs)

+ g(e1) f(bea)h(acs) + h(a1)g(caz) f(bas) + h(a1)g(c1) f(bezas) .

4 5 6
Since the form is symmetric, we can also conclude that

(apaf,(beayg) - (coah))=((beag)-(coah)avaf)
= h(ar)g(c1)f(bezaz) +g(er) f(bea)h(acs) + g(e1) f(br)h(abyes)

6 4 1

+ h(a1)g(caz)f(bas) + f(b1)h(abz)g(cbs) + f(b1)h(a1)g(cazbs) -

5 2 3
Thus

((avaf) - (bbag),eoah) = (avaf,(boag)-(coah)

as needed.

O

We will refer to the form of proposition 5.2 as the canonical form on the double. We now turn
towards the proof of the main theorem of this section, which relates the radical of the canonical form

with a certain coideal of the double, to be defined next.

Let A be a finite dimensional e-bialgebra. There are four natural actions of A and A’ on each other.
Our definition of D(A) involves only two of them, namely the actions (5.3) and (5.4). It is time now

to consider the other two actions, defined by

(5.9) a+ f=f(az)as and a = f = —f1(a) f2

or equivalently

(5.10) g9(a < f) = (fg)(a) and (a = f)(b) = f(ba) .
Let I denote the subspace of D(A) linearly spanned by the set

(5.11) la<f—a+f—a—f/acA feA}.

Recall that in D(A) we have (by proposition 5.1)
fra=f—a+f+a and a-f=axf;
therefore, modulo 7, the multiplication in D(A) acquires the more symmetric form
fra=f—oa+f+a and a-f=a+ f+a—>f.
We will return to this after discussing the basic properties of 1.

Lemma 5.3. Let A be a finite dimensional e-bialgebra.
1. Foranya € A and f € A,

(512) (Cl — f1)®f2 + a1®(a2 — f) =0.
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2. I is a coideal of D(A).
Proof. Evaluating the left hand side on b € A one obtains

fa®)a 1)+ (a2 > B "L g 011 (@)an + Fbazya o

which proves the first part.

For the second, we calculate

Alaxtf—a+—f—a—f)
(5.9) (5.6)

="Afa < f) = flaz)A(a1) + f1(a)A(f2) =" (a > f1)0f2 + a18(az 0a f) — f(as)a10as + fi(a)fo0fs

(559)((1 > f1)®f2 + a18(az o4 f) — a1®(ag + f) — (a — f1)8f2
(5.12)
=laxfi—a—> fi—a fL)ofs+a180(az f—as  f—as— f) .
Thus,
A(I) C IeD(A) + D(A)el

as needed. O

Lemma 5.4. As vector spaces, D(A) =T d Ao A'.
Proof. Consider the linear map 7 : D(A) — A ® A’ given by
mla)=a, 7(f)=fand w(ax f)=a+ f+a— f.

By definition, I C Ker(w). Conversely, if @ = > a; 0 fi + a + f € Ker(w) then Y (a; « fi + a; —
fi)+a+f=0 hencea=>a;iafi—> a; fi = > a; = fi € I. Thus I = Ker(m).
Leti: A® A" — D(A) be the inclusion. Then mi = id, hence D(A) = Ker(m)®Im(i) = I A®A’. O

We are now in position to derive the main result of this section, which characterizes balanced
e-bialgebras in terms of the radical of the canonical form on the double and the coideal 1.

Theorem 5.5. Let A be a finite dimensional e-bialgebra and I the subspace linearly spanned by
laf—a+f—a—f/acA feA}

(as above). The following statements are equivalent:

1. A is balanced;
2. I is the radical of the canonical form on D(A);
3. I is an ideal of D(A).

Proof.
1 = 2. We first show that T C rad{, ). For this we consider three cases:

(5.8) (5.9)

(i) (ava f—a e f—a— £,b) = f(ba) = (a = F)) = f(ba) — f(ba) = O;

(i) (aa f—a e f—as 1,0 D (Fg)(a) - gta — N2 (fo)a) - (Fa)(a) = 0:
(i) (v f = a e = a— £,b0ag) 2 f(b)glabs) + glar) Fbae) — g ((a 10 = (s(a — D) B
(5.9),(5.10)

f(b1)g(abz) + g(a1) f(baz) — f(az)g(arb) — g(b2)f(br1a) = 0;
the last equality holds precisely by condition (B) (definition 4.1).
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Since I C rad(, ), the form {, ) descends to a bilinear form on D(A)/I with radical rad(, )/I. By
lemma 5.4, D(A)/T = A@® A’, and the resulting form is simply {(a + f, b+ g) = f(b) + g(a), which is
clearly non degenerate. Hence rad(, ) = I.

2 = 3. This is clear since, by proposition 5.2, the canonical form is associative.

3 = 1. Since [ is an ideal, we have in particular that

(af—a<+f—a—f)b=0 modI Vabe A, fe A .
Now, according to proposition 5.1,
(a<xf—a—f—a>flb=a(fo2b)+ax(f«b—(a—flb—(a—=f)ab—(a>f) b
= f(b1)abs + av< (f < b) — f(az)arb— f(bra)by —a — (f < b),
, (5.9) and (5.10). Hence, modulo 7, we have
f(br)abs +a « (f < b) — f(az)arb— f(b1a)bs mod I
f(b1)abs + f(baz)ar — f(az)arb — f(b1a)bs mod I
Since TN A =0 (by lemma 5.4), we deduce that
0 =f(b1)abs + f(baz)as — f(az)arb— f(bra)bs
and since this holds V f € A*, we conclude that

by equations (5.3), (5.4
0
0

~—

0 =b1®aby + bas®a, — as®a1b — biadbsy ,

which is condition (B). O

Let A be a finite dimensional balanced e-bialgebra. It follows from theorem 5.5 and lemma 5.3
that D(A)/I is an e-bialgebra. According to lemma 5.4, the inclusion A ® A’ < D(A) induces an
isomorphism of vector spaces D(A)/I = A@®A’. We denote by Dy(A) the resulting e-bialgebra structure
on A® A’, and call it the balanced Drinfeld double of A. From the definition of I, this structure is as
follows. The algebra structure is determined by

(a) A and A’ are subalgebras,
(b)a-f=a+ f+a— fand
() fra=f—>a+fa.
Equivalently, and writing (a, f) instead of a + f,

(a,f)-(b,g)=(ab+ag+f—=b a=g+f<b+fg).

As a coalgebra, Dy(A) is simply the direct sum of A and A’.
Theorem 5.5 also shows that Dy(A) is a symmetric algebra. The non degenerate symmetric asso-
ciative form is simply

(a+f,b+g)=f(b) +g(a) .

Example 5.6. The e-bialgebra k[]/(¢?) of dual numbers (example 4.8.1) is the simplest instance of a
balanced Drinfeld double. In fact, if we view the one dimensional algebra k& as a balanced e-bialgebra
with comultiplication A(1) = 0, then Dy (k) is two dimensional, with basis {1,¢}, where {1} and {¢} are
dual bases of k and k’. The algebra structure on the balanced double is precisely that of the algebra of
dual numbers, while the coalgebra structure has been multiplied by —1 with respect to that of example

48.1.

We will derive next a universal property of Dy (A) as a quasitriangular e-bialgebra. First, we recall
the corresponding result for the full double D(A) and state a lemma needed for the proof.



ON THE ASSOCIATIVE ANALOG OF LIE BIALGEBRAS 23

Lemma 5.7. Let A be a finite dimensional e-bialgebra, {e;} be a linear basis of A and {f;} the dual
basis of A’. Then¥ a € A and f € A/,

(5.13) Zfi(a)ei = a and Zf(e
(5.14) D aciefi =) es(fi + a)

(5.15) i(f - ei)®f: = Zw@ﬁf
(5.16) ieimﬁ = Zem;(a = fi)
(5.17) i(ei — f)®f:- = Z€i®ffi
(5.18) E ;@(ﬁ —a)= Z(a — fi)oei

(5.19) Efl (f + &) Z(el—>f)®fl

Proof. These are all straightforward. A proof of (5.13) to (5.15) can be found in [A1, lemma 7.2]; the
others are similar. O

Proposition 5.8. Let A be a finite dimensional ¢-bialgebra and D(A) its Drinfeld double. Let {e;}
and {f;} be dual bases of A and A’ and

R=-) eafi € AsA’ C D(A)oD(A) .
1. (D(A), R) is a quasitriangular e-bialgebra.
2. Letr = Zj u;9v; be an element of A®A and n" : D(A) — A the map defined by

7 (a) =a, 7" (f qu]v]and‘r (ax f) = qu]cw].

Then (A, r) is quasitriangular if and only if 7" is a morphism of G-bmlgebms.
3. A is quasitriangular if and only if the canonical inclusion A — D(A) splits as a morphism of
e-bialgebras.

Proof. See [Al, theorem 7.3 and proposition 7.5]. O

The balanced Drinfeld double satisfies a similar universal property, but among quasitriangular
e-bialgebras (A, r) for which the symmetric part of r is A-invariant.

Theorem 5.9. Let A be a finite dimensional balanced ¢-bialgebra and
Ry= =Y e0f; € Ao A’ C Dy(A)oDy(A) .
1. (Ds(A), Ry) is a quasitriangular e-bialgebra and R} is Dy(A)-invariant.
2. Letr = Zj u;Qv; be an element of A®A and wj : Dy(A) — A the map defined by

r

7 () = a and 7 () = = 3 f(u;)o;

Then w} is a morphism of e-bialgebras if and only if (A, 7) is quasitriangular and v+ is A-invariant.
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3. The canonical inclusion A — Dy(A) splits as a morphism of e-bialgebras if and only if there is
r € A®A such that (A,r) is quasitriangular and r* is A-invariant.

Proof.

1. Since (D(A), R) is a quasitriangular e-bialgebra, so is its quotient (Dy(A), Rp). To show that R;"
is Dy(A)-invariant we must check that a - Rf = Rf -aand f - Rf = Rf - fVa€ A feA.
Using the description of Dy(A) following theorem 5.5, we compute

a-2Rf =a-Ry+a-7(Ry) = — E(a ce;)®f; — Z(a - fi)®e;

=Y aeiaf; =Y (a+ fi)oei— Y (a— fi)oe;
S————

A B c
On the other hand,
2R;~ =Rp-a+7(Rp)- :—Ze@ —Zfi®e
:—Zem@fi—)a —Ze@flea Zﬁ@ea.
B A C

Note that A = A’ by (5.14), B = B’ by (5.18) and C = C’ by (5.16). Thus a- R} = R} - a

Similarly,
F-2R = [ Ry+f-r(Re) == (F-ei)ofi = Y (f - fi)ees
==Y (F=e)ofi=) (fe)efi—)_ ffioe
———
A B c
and

2R - f=Ry-f4+7(Re)- ==Y eo(fi- )= fislei-f)

==Y edfif =Y fislei — )= fislei = f)
N —

Al c! B!

We have that A = A’ by (5.15), B = B’ by (5.19) and C = C’ by (5.17). Thus f- R} = R} - f.
This completes the proof of part 1.
2. The map 7¥ is surjective. Moreover,

(mlemb)( Eﬂ' Nert(f:) Zfl u;)e;; (5. 13 Zu]®v] =r.

Therefore, if 72 is a morphism of e-bialgebras, (A, r) is a quotient e-bialgebra of (D, (A), Rp), so
it is quasitriangular and rt is A-invariant.

Conversely, if (A, r) is quasitriangular then the map n, : D(A) — A of proposition 5.8 is a
morphism of e-bialgebras. We claim that

m(I) =0 < rt is A-invariant.
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This will complete the proof of part 2, since the map induced by 7, on the quotient D(A)/I =
Dy(A) is clearly m2. To verify the claim, we calculate

Wf(amf—aef—a—)f):—Zf(uj)avj—aef—Z(a—)f)(uj)vj
J J

==Y fluj)av; — flaz)ar + Y f(uja)v; .
j J
Since (A, r) is quasitriangular,
a18as = Ay (a) = Zau]@vj — Euj@)vja = flaz)a; = Zf(vj)auj — Ef(vja)uj .
J J J J
Therefore,

() =0 < —Zf(uj)avj - Zf(vj)auj + Zf(vja)uj + Zf(uja)vj =0 VacA, feA
j j J J

Fi Fi
= Z av;®u; + Z au;ev; = Z u;Qvja + Z vjou;a Ya€ A
Fi b b b

= a-r*=rt.a Yac A
<= rtis A-invariant.
3. If (A, r) is quasitriangular and r* is A-invariant then the inclusion A < Dj,(A) is split by the
morphism 77, according to part 2.
Conversely, if the inclusion A — Dy(A) splits as a morphism of e-bialgebras, then by part
1, r := (m@m)(Rs) € A®A is such that (A,r) is quasitriangular and r* is invariant, where 7 :
Dy(A) — A is a splitting.
O
The properties of Dy(A) thus obtained are strictly analogous to those of the double D(g) of a Lie
bialgebra g. This analogy can be made more precise: we will show below that the functor from balanced
e-bialgebras to Lie bialgebras commutes with the double constructions. First we must verify that Dy (A)
is indeed a balanced e-bialgebra. This follows at once from theorem 5.9 and proposition 4.7. However,
we find of independent interest to deduce this result from the explicit expression of the balanceator of

the full double D(A), as follows.

Proposition 5.10. Let A be a finite dimensional c¢-bialgebra, a € A and f € A’. Then the balanceator
of the full double D(A) is given by

(5.20) Bpuy(a, f)=(axfo—a—= fo—a+ f2)ofi + (a1 = [+ a1 « f— a1 > f)oay

(5.21) Bp)(f,a) = fivlara fo —a = fa —a ¢ fo) + as®(ay = f+ a1 < f—a1 < f)

In particular, if A is balanced, then so is Dy(A).

Proof. We have

Bpa)(a, f) =afs0fi — f20fra + a19faz — ay foay

521 ((1 > fg)@fl — fg@(fl — (1) — fg@(fl — (1) + (11®(f — ag) + (11®(f — ag) — ((11 > f)®a2

(553)@ > fo)of1 — fi(ar) fa®az + fa(a) fs0f1 + flaz)ar@az — fa(az)ar1©fi — (a1 ba foas

=(a < fo + fa(a)fz — fa(az)ar)ofi — fi(ar) f28as + f(az)a1®as — (a1 < f)oas

(5£9)(a><1f2—a—>fg—a%f2)®f1+(a1—>f+a1 — f—aieaf)ea, .
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Hence also
4.3.2
BD(A)(f,(l) é TBD(A)(a,f):f1®(a[><f2—a—>f2—aef2)+a2®(a1—>f—|—a1ef—almf) .

Now suppose that A is balanced. Then so is A’ by proposition 4.3.3. Hence, since A and A’ are
e-subbialgebras of D(A), and by naturality of B,

Bpay(a,b) =Bpa)(f,g) =0 YVabe A, fge A",
On the other hand, by definition of I (5.11), equations (5.20) and (5.21) imply that
BD(A)(G, f) - I®D(A) and BD(A)(f: a) - D(A)@I Yac€A, f S A
Since A is balanced, T is an ideal of D(A), by theorem 5.5. Together with the multiplicativity properties
of B (equations (4.1) and (4.2)), and since D(A) is generated as an algebra by A and A’ these facts
ensure that
Bpa)(a, ) € IeD(A) + D(A)el VY a,3 € D(A),

which in turn says that

BDb(A) =0 s
i.e. Dyp(A) is balanced. O

Remark 5.11. In proposition 4.6 we gave a canonical construction of a balanced quotient A/Iy(A) of
an arbitrary e-bialgebra A. The expression for the balanceator of the full double suggests a connection
between D(A)/Iy(D(A)) and Dy(A).

Claim: Let A be a balanced finite dimensional e-bialgebra. If A is unital or counital, there is a
surjection

Dy(A) = D(A)/I(D(A)) -

Proof: Suppose that A is unital. Let F' € D(A)* be given by F(a) =0 and F(f) = —f(1) YV a € A,
fe A Since fi(1)fa = —f (by (5.2)), we have that

| (5.20) ,
(idoF)Bpay(a, f) = ‘aaf—a—=f—a«f YVacA feA.

This shows that 7 C I(D(A)) and hence Dy(A) = D(A)/I — D(A)/Iy(D(A)). When A is counital,
the same conclusion can be obtained similarly.

In general, there is no connection between D(A)/I,(D(A)) and Dy(A). Consider for instance the
trivial case when both the multiplication and comultiplication of A are zero. From (5.11) we see
that I = A®A’ C D(A). On the other hand, it follows from (5.20) and (5.21) that Bp4) = 0, so
Iy(D(A)) = 0.

For our final result, we must recall the construction of the Drinfeld double of a finite dimensional
Lie bialgebra (g,[, ],0). First, the dual Lie bialgebra g* has Lie bracket and cobracket defined by

[f,9](z) = (feg)d(z) and 6&(f) = frefe iff flz,y] = fi(z)f2(y) YV, 9 €0 .
The right coadjoint actions of g and g* on each other are defined by
(f «=)(y) = fle,y] and gz « f) :=[f gl(x) .
The Drinfeld double of g is the vector space D(g) = g@®g* with the following Lie bracket and cobracket:
(5.22) (@, f), (w9l =zl +reg-—yef —gez+fey+[fg])

and

(5.23) d(z, f) =4d(x) —o(f) .
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Let {e;} and {f;} be dual bases of g and g*. Tt is well known that (D(g),>_ €;®f;) is a quasitriangular
Lie bialgebra [E-S, sections 4.1 and 4.2].

According to proposition 4.10, if A := (A, m,A) is a balanced e-bialgebra, then A¢ := (A, m —
m7, A—71A) is a Lie bialgebra. Since Dy(A) is also balanced, it has an associated Lie bialgebra. As our
last result, we verify that this is, up to isomorphism, the Drinfeld double of the Lie bialgebra associated
to A.

Proposition 5.12. Let A be a finite dimensional e-bialgebra. Then the map
D(A") = Dy(A), (a,f) = (a,—f)

1s an 1somorphism of quasitriangular Lie bialgebras.

Proof. We only need to check that the map preserves brackets and cobrackets. From the description
of Dy(A) following theorem 5.5 it follows that the (commutator) bracket on Dy(A)"¢ is

[(a, £), (b, )]
=(ab—batae—g—g—oa+fob-befiang—g—a+f<b-—bof+fg—gf).
Comparing definitions we find that
ab — ba = [a,b] ;
(5.1)
(fg —9f)(a) ="g(a1)f(az) — f(ar)g(az) = —(fog)dauc(a) = =[f, glar(a)
= f9—gf = —[f glave ;

fla g -9 0L or — 0)a) = g, Nane(a)
—a¢g—g—a=—-a«gandhencealso f >b—b f=b« f;
(0= a-gca®”" "L g00) — g(at) = ~gfo.1

>a—>g—g+a=—g«aand hence also f<b—b— f=f«b.
Thus, the Lie bracket on Dy(A)"¢ is

[(a7f)a(bag)] = ([aab]_a «_g+b«_f: —g«—(l—'—f«—b— [fag]) .
Under the map (a, f) ~ (a, —f), this does correspond to the Lie bracket on D(A'*¢) given by equation
(5.22).

On the other hand, the comultiplication on Dy(A) is
Afa, f) = Aala) + Aa(f) = Aala) — 7844 (f)
hence the cobracket on Dy(A)"¢ is
A (a, f) = Aa, f) — 7A(a, f) = Aa(a) — TA4 (f) — TA4(a) + Aa-(f)
= qtic (CL) + 6(A*)lze (f) .

Under the map (a, f) — (a, —f), this does correspond to the cobracket on D(A®),

(5(11, f)(533)5Azze ([l) — 6(A*)lie (f) -

Finally, recall that by corollary 3.7, (Dy(A)"®, —> e;®f;) is a quasitriangular Lie bialgebra. This
obviously corresponds to the quasitriangular structure on D(A%¢) under the isomorphism above. [J
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One may summarize the result of proposition 5.12 by means of the diagram below, which commutes
up to isomorphism (or up to sign)

{balanced e-bialgebras} LN {balanced e-bialgebras}

( )lzel l( )lie

{Lie bialgebras} — {Lie bialgebras}

The change of sign is not really essential; it may be avoided by making a different choice of signs in

the definition of D(A) (and hence of Dy(A)).
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