INFINITESIMAL HOPF ALGEBRAS AND THE cd-INDEX OF POLYTOPES.

MARCELO AGUIAR

ABSTRACT. Infinitesimal bialgebras were introduced by Joni and Rota [J-R]. The basic theory of
these objects was developed in [A1, A2]. In this paper we present a simple proof of the existence of
the cd-index of polytopes, based on the theory of infinitesimal Hopf algebras.

For the purpose of this work, the main examples of infinitesimal Hopf algebras are provided by
the algebra P of all posets and the algebra k{a,b) of noncommutative polynomials. We show that
k(a,b) satisfies the following universal property: given a graded infinitesimal bialgebra A and a
morphism of algebras (4 : A — k, there exists a unique morphism of graded infinitesimal bialgebras
1+ A — k{a, b) such that ¢; 09 = Ca, where (; ¢ is evaluation at (1,0). When the universal property
is applied to the algebra of posets and the usual zeta function (p(P) = 1, one obtains the ab-index
of posets ¢ : P — k(a, b).

The notion of antipode is used to define an analog of the M&bius function of posets for more general
infinitesimal Hopf algebras than P, and this in turn is used to define a canonical infinitesimal Hopf
subalgebra, called the eulerian subalgebra. All eulerian posets belong to the eulerian subalgebra of P.
The eulerian subalgebra of k{a,b) is precisely the algebra spanned by ¢ = a+ b and d = ab + ba.
The existence of the cd-index of eulerian posets is then an immediate consequence of the simple fact
that eulerian subalgebras are preserved under morphisms of infinitesimal Hopf algebras.

The theory also provides a version of the generalized Dehn-Sommerville equations for more general
infinitesimal Hopf algebras than k(a, b).

1. INTRODUCTION

Let P be a convex polytope of affine dimension dim P = n + 1. For each subset S of {1,... n}, let
fs(P) denote the number of chains of faces F; C ... C F; of P such that {dimFy,... , dimF;} = S.
The flag vector of P is the 2"-dimensional vector with coordinates fs(P) indexed by the subsets of
{1,...,n}.

An important result of Bayer and Billera describes the linear relations that hold among the flag vec-
tors of all convex polytopes [B-B, Theorem 2.1]. These are known as the generalized Dehn-Sommerville
equations. There is one such relation associated to every subset S of {1,...,n} and a maximal interval

[a,b] of {1,...,n}\S, as follows:

b
(1) s + > (1) fsugiy + (1) fs = 0.

These generalize Euler’s relation among the number of faces of a convex polytope, which is the
relation that corresponds to S =0 (and a = 1, b = n).

The poset of faces of a convex polytope is an example of an eulerian poset (cf. Section 6). Bayer
and Billera showed that these relations hold among the flag vectors of all eulerian posets.
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Later on, Bayer, Klapper and Fine noted that one could encode the existence of these relations by
means of what appears to be a simple change of notation. First, one rewrites the flag vector as a
homogeneous polynomial of two noncommuting variables a and b, whose coefficients are the entries of
the vector. This defines, for every graded poset P, a polynomial in a and b called its ab-index. It
turns out that the flag vector of P satisfies the generalized Dehn-Sommerville equations if and only if
its ab-index can be expressed as polynomial in the variables ¢ = a+b and d = ab+ba [B-K, Theorem
4]. This new polynomial is called the cd-index. By the result of Bayer and Billera, it is defined for all
eulerian posets.

More recent work of Ehrenborg and Readdy suggested that there might be more than meets the eye
to encoding the flag vector as a polynomial. They showed that one can define two natural infinitesimal
bialgebra structures (cf. Section 2), one consisting of posets, the other of polynomials; one may view
the ab-index as a map ¢ from the former to the latter, and it turns out that these structures are
preserved under ¢ [E-R, Proposition 3.1].

In this work, we make full use of this algebraic structure in order to produce a new proof of the
existence of cd-index of eulerian posets. The crucial algebraic notion that must be considered to obtain
the existence of the cd-index is the notion of antipodes for infinitesimal bialgebras. This was defined
and studied in [A1l]. Tt allows us to define analogs of the Mobius function and eulerian posets for
other infinitesimal bialgebras than that of posets. The analog of eulerian posets for the infinitesimal
bialgebra of polynomials is precisely the polynomials on ¢ and d. The existence of the ed-index is then
obtained from the simple fact that eulerian subalgebras are preserved under morphisms of infinitesimal
bialgebras, applied to the ab-index. This is done in Section 6.

Each eulerian subalgebra is defined by a canonical set of equations, which may be regarded as a
version of the generalized Dehn-Sommerville equations for arbitrary infinitesimal Hopf algebras. For
the algebra of polynomials, these equations are not exactly the same as the equations of Bayer and
Billera, although they have the same solutions. We present these equations in Section 7.

In sections 4 and 5, we find that the ab-index can be defined by means of a very simple universal
property satisfied by the infinitesimal Hopf algebra of polynomials. We also show that other variants
of the ab-index can be obtained similarly from the same universal property. Thus, we find that the
notion of infinitesimal Hopf algebra provides a solid conceptual base for the theory of the ab-index.

Alternative approaches to flag vectors, the ab-index and cd-index can be found in the recent works
[B-L], [B-M-S-V] and [E2].

I would like to express my gratitude to Richard Ehrenborg for introducing me to his work on these
topics.

Notation. k denotes a fixed field, often omitted from the notation. Sum symbols are omitted from
Sweedler’s notation: we write A(a) = a1®a3 when A is a coassociative comultiplication.
2. INFINITESIMAL HOPF ALGEBRAS. EXAMPLES
Definition 2.1. An infinitesimal bialgebra (abbreviated e-bialgebra) is a triple (A, m, A) where
(A, m) is an associative algebra (possibly without unit),
(A, A) is a coassociative coalgebra (possibly without counit)
and, for each a,b € A,
(21) A((lb) = abi®bs + a1®asb .

In other words, the comultiplication A : A — A®A is required to be a derivation of the algebra A
with values on the A-bimodule A®A, or equivalently, the multiplication m : A®A — A is required to
be a coderivation of the coalgebra A.
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Infinitesimal bialgebras were introduced by Joni and Rota [J-R, section XII]. Ehrenborg and Readdy
have called them newtonian coalgebras [E-R]. Infinitesimal Hopf algebras were introduced in [A1].

Definition 2.2. An infinitesimal bialgebra A is called an infinitesimal Hopf algebra (abbreviated
e-Hopf algebra) if there is a map S : A = A with the property that

(2.2) S(a1)as + S(a) +a=0=a1S5(az)+a+S(a) Yae A.
In this case, the map S is unique. It is called the antipode of A. Among other properties, it satisfies
(2.3) S(1) = =1 (if there is a unit element)
(2.4) S(ab) = —S(a)S(b)
(2.5) S(a1)eS(az) = —S(a)1©S(a)s .

These assertions are proven in [A1, section 3].

Examples 2.3.

1. Let @ be an arbitrary quiver (oriented graph). Then the path algebra k(@ carries a canonical
e-bialgebra structure. Recall that kQ = $52,kQ, where @, is the set of paths v in @ of length
n:

. ay az as An
Y€y —r €1 —> €y —> ...€h_1 —F €En .

In particular, Qg is the set of vertices and ()1 is the set of arrows. The multiplication is concate-
nation of paths whenever possible; otherwise is zero. The comultiplication is defined on a path
Y = aias ...a, as above by

A(y) = eo®a2a3 ...an + 1063 .. .0 + ...+ a1 ... Gn_10€y .
In particular, A(e) = 0 for every vertex e € Qg and A(a) = s(a)®t(a) for every arrow a € Q1.
The path algebra k@ is an e-Hopf algebra. The antipode is uniquely determined, in view of
(2.4), by
e—a if s(a)

—a if s(a) #

The path e-Hopf algebra corresponding to the quiver

S(e) = —e Ve € Qo and S(a):{

X

()

1

is the polynomial algebra k[x]. Under the standard identification k[x]ok[x] = k[x,y], the comul-
tiplication is the divided difference operator

X—-Yy
This was the original example of e-bialgebra in [J-R]. The antipode is
S(f(x) =—flx—-1).

Of particular relevance to our study of the cd-index is the e-Hopf algebra of noncommutative
polynomials k(a, b). This is the e-Hopf algebra corresponding to the quiver

1O
The comultiplication is the unique derivation such that

A(a) = A(b) = 181 .
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The antipode is given on any noncommutative polynomial p(a, b) by
S(p(a,b)) = —p(a—1,b—1).

2. The algebra P of posets is defined as follows. As a vector space, P has a basis consisting of the
isomorphism classes of all finite graded posets P. We say that a finite poset P is graded if it
possesses a top element 1p and a bottom element Op, with 0p # 1p, and all maximal chains in
P have the same length.! This common length is called the rank of the poset.

The product of two such posets P and @ is the poset

PQ=(P—{1p}) U (Q-1{0g})

z,y€ P and z <yin P,
(disjoint union), where <y iff { z,y€ Q and z < yin @, or
r€ Pandye€ Q.
This algebra possesses a unit element, namely the poset By = {0 < 1}. Moreover, P is an
e-bialgebra with comultiplication

AP)= > [0p,a]e[z, 1p] .
0p<z<lp
Here, and in everything that follows, if z and y are two elements of a poset P then [z, y] denotes
the poset {z€ P / 2z <z <y}

This e-bialgebra was first considered by Ehrenborg and Hetyei [E-H], and further studied by
Billera, Ehrenborg and Readdy in connection with the cd-index of polytopes [E-R, B-E]. This
study is deepened in this work. In Section 3 we will show that P is an ¢-Hopf algebra with
antipode

(2.6) S(P) = S (1) P,
where the sum is over all chains ¢ = {0p = z¢g < #1 < ... < 2x_1 < zx = lp}, £(c) = k is the
length of the chain and P, is the following subposet of P:

P.={ze€P/zi1 <z <z forsomei=1,... k}U{0p,1p}.

We will also relate the antipode of P to the Mobius function of posets. In Section 6 we will obtain
the existence of the ed-index from further exploitation of the e-Hopf algebra structure of P.

Remark. There is a way of constructing and ordinary Hopf algebra H from isomorphism classes
of posets, similar to the construction of the e-bialgebra P above, that appears in several places
in the literature [A-F, E1, Sch]; see also [B-S]. As a coalgebra, H is obtained from P by formally
adjoining a counit; however, the algebra structures of H and P are of a fairly different nature:
while the product of H is the cartesian product of posets, that of P is (essentially) the ordinal
sum. The e-bialgebra structure of P is suitable for the algebraic construction of the ab-index and
cd-index of posets that we propose in this work. An approach to the ab-index and cd-index via
ordinary Hopf algebras is presented in [B-M-S-V].

3. The algebra 8§ of sets is defined as follows. As a vector space, 8§ = @©.L,8,, where the vector
space 8, has a basis consisting of all subsets of {1,2,...,n}. The product of two sets S € §,, and
T € §,, 1s the set

ST=SUn+T) € Snim.

1The assumption that the posets be graded is not necessary for obtaining an e-Hopf algebra, but it is required for the
definition of the ab-index.
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In other words, the elements of T are all shifted by n in order to make the resulting union disjoint.
In order to describe the comultiplication, let us introduce the following notation. For S C
{1,2,...,n}and 0<i<j<n+1,let
S(t,5) =Sn{i+1,i+2,...,j—1}—iC{1,2,...,j—i—1}.

In other words, S(i,j) consists of those elements of S that lie strictly between ¢ and j, but
shifted by —7 in order to make the resulting intersection a subset of {1,2,...,j —i—1}. The
comultiplication on a basis element S € §,, is

A(S) =) S(0,0)eS(i,n+1) €D 8i_188,_;.
i€S i=1
In order to distinguish between elements of different §,’s we will sometimes use S, to denote the
element of §,, corresponding to a subset S C {1,2,...,n}. For instance, for each n there is a

different element ), € 8,,, corresponding to the empty subset of {1,2,... ,n}. Some values of the
comultiplication are

A(@n) =0VYn > 0 and A({?, 3}3) = ®1®{1}1 + {2}2@00 .
8 is an e-Hopf algebra. The antipode is explicitly given on S € §,, by
S(S) == (=1#TS\\T,
TCS
where S\\T is a shifted version of the usual set difference S\ T. In order to describe this
construction, define f: N —= N by f(¢) = #({1,2,...,¢} NT). Then
SWT={i— f(i) /i €S\ T} €8yt

For instance if S = {1,3,4,7,8,10}and T = {3,4,8} then S\T = {1-0,7—2,10—-3} = {1,5,7}.
The e-Hopf algebra § will be studied in detail in Section 4.
4. The free algebra A = k(x1,%2,x3,...) is an e-Hopf algebra with comultiplication

n—1

Axy) = Z X;®Xp_1—; = 1®X,_1 +X10Xp_92 + ...+ X,_101
i=0
and antipode
n+1
Sxa) =3 -1F Y XectKat X
k=1 nit+-+ng=n+l

n;>0

(we set xg = 1). A and S are then uniquely determined by (2.1) and (2.4), and the axioms are
satisfied.

More examples of e-bialgebras appear in [A1,A2]. We close this section by stating some general
properties of e-bialgebras. Proofs and more results can be found in [A1].

If an e-bialgebra has a unit 1 € A then A(1) = 0. If an e-bialgebra has both a unit 1 € A and a
counit € € A* then A = 0.

If C is a coalgebra and A an algebra, then the set Homy(C, A) is a monoid under the circular
convolution product:

f®g=Ffxg+f+g or (f®g)(c)=fler)g(e2) + fle) + g(c) -

The unit element of this monoid is the zero map. The antipode of an e-Hopf algebra A is, by definition,
the inverse of the identity id : A — A in Homg (A, A).
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A morphism of e-bialgebras is a linear map ¢ : A — B that is both a morphism of algebras and
coalgebras:

mB(i/)®1/)) = Ymy and (1[)@1[))AA = Ay .
If A and B are e-Hopf algebras and 3 : A — B a morphism of e-bialgebras, then 3 automatically
preserves the antipodes: ¢S4 = Sp.
Let A be an e-Hopf algebra and B an algebra. If f : A — B is a morphism of algebras then
f is invertible in Homy (A, B) with respect to circular convolution, its inverse is fS4. In addition,
—fSa : A — B is a morphism of algebras, by (2.4).
An e-bialgebra (A, m, A) is called graded if there is a sequence A, of subspaces such that

(2.7) A= An, m(AieA;) CAiy; and A(A,) C P AvA; .
n=0 i+j=n—1
Note that it is required that A lowers degrees by 1. In this case, A is an e-Hopf algebra with antipode
(2.8) S=>_(-1)"m" DAl e S(a) =) (—1)aray. . .an
n=1 n=1

where A(”_l)(a) = a1®as® . ..%a, denotes the comultiplication iterated n — 1 times. This result guar-
antees the existence of the antipode for the e-bialgebras of examples 2.3.1-4, since they are graded.

3. THE ¢e-HOPF ALGEBRA OF POSETS

In this section we use the general properties of e-bialgebras summarized above to relate the antipode
of the e-Hopf algebra P to the classical Mébius function of posets.

First of all, note that P is graded in the sense of (2.7), by choosing for P,, the subspace spanned
by all posets of rank n + 1, i.e. those posets P for which there i1s a maximal chain of the form
lp<zei <... <2, < 1p.

Let P € P be a poset. We have A(P) =", ., .[0p,z]®[z,1p]. Hence

A= (p) = > [0p, z1)0[z1, z5]®. . .@[2n_1,1p] ;
0p<r1<..<rpr_1<1lp

and, according to (2.8),

(3.1) S(P)y=> (-1)" > [0p, z1][x1, 23] . . . [£n_1, 1p] .

n=1 0p<z1<..<xp1<1p

By rewriting this formula in terms of chains we obtain (2.6).
Consider the linear functionals { : P — k and p : P — k defined by

C(P)y=1V poset PP and p=(S .

Note that ¢ is a morphism of algebras. As recalled at the end of Section 2, it follows that ( is circular
invertible with inverse p, and that —p is a morphism of algebras. Explicitly, the first fact says

O=p®C=px(+p+C.
Evaluating at a poset P € P we find
0=">_ ul0p zl¢[x, 16+ u(P) + {(P)
Op<z<lp

= ul0p, 1p]==1— > ul0p,a].
Op<z<lp



THE cd-INDEX OF POLYTOPES. 7

This shows that g is the usual Mébius function of posets (since this is its defining recursion).

Applying ¢ to both sides of (3.1) we find

p(P)=> (—1)"#{0p <21 < ... < 2n_1 < 1p};
n=1
the well known formula of P.Hall giving the Mobius function in terms of numbers of chains.
The fact that —u i1s a morphism of algebras gives us

p(PQ) = —p(P)u(Q),

another well known property of the Mobius function and the product of posets under consideration.
As an illustration of the structure of P, we close this section by explicitly describing a particular
e-Hopf subalgebra. The subspace of P spanned by all boolean posets B, (the poset of subsets of
{1,2,...,n}) is clearly a subcoalgebra of P. Tt follows that the subalgebra B of P generated by
all boolean posets is an e-Hopf subalgebra. Moreover, it is easy to see that B is isomorphic to the
1

e-Hopf algebra of polynomials of example 2.3.4, via x,, mBn+1~ P itself is also a free algebra,

but this will not be important for us.

4. THE UNIVERSAL PROPERTY OF THE ¢-HOPF ALGEBRA OF SETS

The algebra of sets (example 2.3.3) comes equipped with a morphism of algebras (s : 8§ — k defined

on S €8, by
1 ifS=0,€c8,
S) =
¢s(5) {o S0, .
In this work, we say that a coalgebra (C, A) is graded if C = @52 ,C,, with A(C),) C Zi+j:n—1 CieC;.

This agrees with the terminology introduced before (2.7) for e-bialgebras.
The pair (8, (s) satisfies the following universal property, which reveals its central role in the theory.

Theorem 4.1. Let C' be a graded coalgebra and (¢ : C — k a linear functional. Then there exists a
unique morphism of graded coalgebras ¢ : C'— 8§ such that

O e 1/) ............ > §
& A
k

commutes.

Proof. We will define ¢ by an explicit formula. To state it, we introduce some notation.
First, for each n > 0, define ¢, : C'— k by

c if e e C,
Ynle) = {gC( ) if not.
Second, for S = {s1 < s <...<s;} C{1,2,...,n},let 50 =0, s;y1 =n+1 and
(d1,da, ... diy1) = (s1— 80,82 — s1,...,si41—si) — (1, 1,...,1) € Nitl
Finally, define ¢s : C®(+1) — k by 15 = ¢4,8¢4, .. .®%4,,,. Then, ¥ : C' — § is defined on ¢ € €y, by

(4.1) v(e) = Y vsA#)(c) -S.

SES,



8 M. AGUIAR

We first check that the diagram commutes. Take ¢ € C},. Since (s annihilates all nonempty subsets
of {1,...,n},
Csv(e) = YA (e) = gulc) = (ele),
as needed.

By definition, ¢ is degree preserving. Thus, to show that it is a morphism of graded coalgebras it
only remains to verify that Ay = (¢¥9¢)A. The proof is based on the following facts

(1) For any n > 0, there is a bijection {(S,k) / S€ 8,, k €S} = [[1_; Sk—1 X S;—k, given by
(S, k) — (S(0,k),S(k,n+1)) €8k—1 X Sp— and (R, T) € 8x_1 X 8y = (RU{k}U (k+T), k).
(2) YRugkju(esT) = YROYT and AFRFIHED) — AFRIGAHT) A
(3) TS €8, c € Cp and n # m then wsA(#s)(c) =0.
Assertions (1) and (2) are straightforward. In order to verify (3), write A(#S)(C) =3 c18ca® ... 8C;41.
Then

wSA(#S) (C) = Z 1/)dl (Cl)®wd2 (62) s 1/)dl+1 (Ci+1)'

Suppose this sum is not zero. Then some term must be nonzero. Hence, for this term, the degree of
each ¢; equals d; = s; —s;_1 — 1 (otherwise ¢; would be annihilated by #4;). Since A is homogeneous,
it follows that the total degree of A#S)(¢) is

i1

Ssj—sjci—1)=sipr—so— (i+1)=n+1—(i+1)=n—i

j=1
On the other hand, since A decreases degrees by one, this total degree must also be equal to the degree
of ¢ minus #S, i.e. m — i. We conclude that n = m. This proves assertion (3).

The proof proceeds as follows. Take ¢ € C), and write A(c) = Z?zl cj_1®cil_j, with ¢;_1 € Cj_4
and c;_j € Cp_j. We have
Ale) = Y Y s A#(e)S(0, k)aS(k, n + 1)

SES, kES

1 n

0 Y0 D troprumam AFERTIHED () ReT
k=1Re8k_1

TESH_&

(i) Zn: Z Zn:¢RA(#R)(Cj_1)1/)TA(#T) (cn_j) -ReT

k=1RESx_, j=1

TES &
DY wra#eR)o( 3 wraA¥N(E, )
k=1 R€S8x_1 TESn—x

=Y bler-1)ov(en_) = (Yay)Ae)
k=1
as needed.
It only remains to verify uniqueness. Let ¢ : C' — 8§ be another morphism of graded coalgebras such
that (s¢ = (¢. We show by induction on n that ¢ and ¢ agree on C),.
For ¢ € Cy, we must have ¢(c) = Mg for some A € k, since ¢ is degree preserving. Then

A =(sp(c) = Cele) = o),
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and thus

¢(c) = Yo(c)fo = ¥(c).

Assume now that ¢ and ¢ agree on C; for every 7 < n. Since A decreases degrees, we can assert that
for any ¢ € C,

Ap(c) = (pp)Alc) = (Yoy)A(c) = Ad(c) .
In other words, ¥(c) — ¢(c) € Ker(A|; ). Now, from the definition of the comultiplication of § it is
clear that Ker(A|Sn) is the one dimensional space spanned by @,,. Therefore,
P(c) = p(c) = Al
for some new scalar A € k. Applying (s we obtain A = 0. Thus ¥(c) = ¢(c) for every ¢ € C,. The

proof is complete. O

The following are the first values of 1, according to its explicit definition (4.1):

if ¢ € Co, ¥(c) = ¢o(c) - Bo;
if c € C1, ¥(c) = Ya(c) - b1+ (bo®tbo)Alc) - {1}1;
if ¢ € Gy, () = ¥a(e) - B2 + (Yo2t1)A(e) - {1}z + (¥10¢0) Ae) - {2}2 + (Yoothooto) A () - {1, 2},
The universal property of the algebra of sets admits a few variants, which are useful for the study
of the cd-index. The first of these involves comodules and coderivations. Recall that, if (C,A) is a

coalgebra, a C-bicomodule consists of a triple (M, s,t) where M is a space and s : M — MeC and
t: M — C®M are linear maps such that the following diagrams commute

s t t

M MeC M CeoM M CeoM

e L e e

MeC o MeCeC  CoM Ao CeoCoM  MeC on CoMeC

For instance, (C, A, A) and (CeC, idoA, Agid) are C-bicomodules.
A coderivation is a map § : M — C such that

A = (d0id)s + (ided)t.

If C' is graded, then we say that M is a graded bicomodule if there is given a decomposition
M = EB?LO:OMH with S(Mn) - Z?:l M;_19Cp_; and t(Mn) - Z?:l Ci_1®M, _;.

Corollary 4.2. Let M be a graded $-bicomodule and (pr : M — k a linear functional. Then there is
a unique degree preserving coderivation § : M — 8 such that

[
;J\x A
k

commutes.

Proof. 1t is possible to give a direct proof, similar to the proof of Theorem 4.1. Alternatively, one may
resort to the standard trick of viewing coderivations as morphisms of coalgebras, and apply Theorem
4.1. We leave the details to the reader. O
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Corollary 4.3. Let A be a graded c-bialgebra (in the sense of (2.7)) and (4 : A — k a morphism of
algebras. Then there exists a unique morphism of graded e-Hopf algebras ¢ : A — 8 such that

commutes.

Proof. According to Theorem 4.1, there is a unique morphism of graded coalgebras ¢ : A — 8 such
that (g1 = (4. We only have to show that, under the present hypothesis, ¢ is also a morphism of
algebras, i.e. that y¥yms = mg(¢®y). (Recall that a morphism of e-bialgebras always preserves the
antipodes.)

First of all, note that since {4 and (s are morphisms of algebras, the following diagrams commute:

A®A—>A—>S A®A—>S®S—>8
(s®(s
CA&\ / (Am /

We will appeal to the uniqueness in Corollary 4.2. Since A is a graded e-bialgebra, m4 is a degree
preserving coderivation, and since 1 is a morphism of graded coalgebras, ¥ymy : A®A — 8 is a degree
preserving coderivation. Similarly, since mg is a degree preserving coderivation and ¥® is a degree
preserving morphism of 8-bicomodules, mg(1®1) is a degree preserving coderivation. Therefore, by
uniqueness of degree preserving coderivations into 8§ (Corollary 4.2), the composites along the top of
the diagrams above must coincide. This is the desired conclusion. O

Remark. In the situation of Corollary 4.3, suppose that A possesses a unit element 1 € Ag and that
(a preserves units. Then

1/)(1) = 1/)0(1)@0 = CA(l)@o = 00
so 1 preserves units as well.

Example 4.4. Let us apply the universal property of the algebra of sets to the algebra of posets and
the functional {p : P — k defined in Section 3. Since (p is a morphism of algebras, Corollary 4.3 yields
a unique morphism of e-Hopf algebras ¢ : P — 8 such that (s = (p. Tt follows readily from (4.1)
that this is none other than the ab-index of posets. We will work out the details of this calculation in
Section 5.2, after introducing the necessary notation.

5. APPLICATIONS OF THE UNIVERSAL PROPERTY. THE ab-INDEX OF POSETS

In this section we derive some important applications of the universal property, including the con-
struction of the ab-index of posets as a morphism of e-Hopf algebras and also of several variants of it.
In particular, we define a version of the ab-index for weighted posets, that generalizes not only the
usual ab-index but also several other versions in the literature, as the relative ab-index of Stanley.

Only the results from sections 5.1 and 5.2 are needed for the construction of the cd-index in Section

6.
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5.1. The algebra of noncommutative polynomials. Consider the e-Hopf algebra of example 2.3.1,
i.e. the algebra k(a, b) of noncommutative polynomials with

A(a) = A(b) = 1e1.

Corollary 5.1. There is an isomorphism of graded e¢-Hopf algebras 8 — k{a,b) sending S € 8, to
Uus = Uiz . ..U,, where

a—b ifi¢s,
u; = )
b ifi €S.

Proof. Define a morphism of algebras (1 o : k(a, b) — k by
(5.1) Ci0(p(a, b)) = p(1,0)

By the universal property of 8 (Corollary 4.3), there exists a unique morphism of graded e-Hopf algebras
¥ : k{a,b) — 8 such that (s¢ = (1 9. From the explicit formula (4.1) for ¢ we see that

Y(a) = 1(a) - 01 + (Yooo)Aa) - {1} = Co(a) - 01+ G o(1)Co(l) - {1h =01+ {1}

Y(b) = 1(b) - 01 + (o®to)A(b) - {1}1 = C10(b) - 01 4+ C10(1)¢10(1) - {1} = {1}.
0, ifi¢gs, . . .. C e e
Hence, ¥(u;) = o It follows immediately from the definition of multiplication in 8 that
{1}, ifies.

Y(us) = Y(ur)v(uz) .. . Y(up) =SV SES,.

In particular, ¥ : k(a,b)  — 8, is surjective. Since dimk(a,b), = 2" = dim$§,, it follows that
¥ : k{(a,b) = 8 is an isomorphism. O

Remark. Tt is easy to see that the universal property of the coalgebra 8 (Theorem 4.1) may be equiv-
alently expressed as follows: 8 is the cofree non-counital graded coalgebra on countably many cogen-
erators {(, }n>0, one cogenerator {, € (8,)* of degree n for each n > 0. Therefore, the graded dual
of the coalgebra § is the free non-unital graded algebra on countably many generators, one generator
for each degree n > 0. In view of the preceding corollary, this result applies to the graded dual of the
coalgebra k{a,b). In this form, this result was obtained before by Billera and Liu [B-L, Proposition
5.2].

The corollary allows us to apply the universal properties of Section 4 to the algebra k(a, b), equipped
with the functional defined by (5.1). This amounts to replacing S for ug in (4.1). We do this in a number
of situations next.

5.2. The ab-index of posets. We apply the universal property of k(a,b) to the algebra of posets
and the functional (p : P — k defined, as in Section 3, by (p(P) = 1 for every poset P. Since
(p 1s a morphism of algebras, corollaries 4.3 and 5.1 yield a unique morphism of e-Hopf algebras

¥ : P = k(a,b) such that
p— Y . k(ab)
k
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commutes. This is none other than the ab-index of posets. To see this, we calculate (P) using the
explicit formula (4.1). First note that

¢ (P) :{1 if rank(P)=n+1

0 if not.
Let S={s1 < s3 < ...<s;} be asubset of {1,2,...,n},s0=0,s8,41=n+1land d; =s; —sj_1 —1
forj=1,...,i+ 1. Then
1/)SA(Z)(P) = E wdl([OPﬂ ml])wdz([mla IQ]) o '1/)dz+1 ([IZ: 1])

O0p=zo<Tr1<T2<..<T;<Tig1=1p
:#{OP<I1<I2< o< <1p / rank([mj_l,l‘j]):dj—}-lv_j:1,... ,i—}-l}
=#{0p<zi<za<...<2;<1lp [rank(z;)=s; Vj=1,...,i}

This number is usually called the flag number of P corresponding to the set of ranks S, and it is denoted
fs(P). Thus, formula (4.1) gives

W(P)= ) fs(P)-us,
SeS8,
which is the usual definition of the ab-index of posets, cf. [B-K] or [S1].
The fact that this formula defines a morphism of e-bialgebras ¢ : P — k(a, b) is known, and due to
Ehrenborg and Readdy [E-R, Proposition 3.1]. The approach taken in this work allows us to arrive at
the ab-index from minimal data: the zeta function of posets.

5.3. Automorphisms of k{a,b). For any (graded) e-Hopf algebra A, the set of (graded) automor-
phisms a : A — A of e-Hopf algebras forms a group under composition, denoted Aut(A).

When the elements of an e-Hopf algebra A consist of combinatorial objects, as in the case A = P
above, one may view a morphism of e-Hopf algebras A — k(a,b) as the association of a generating
function (in two variables) to each combinatorial object of A. Clearly, two such morphisms will keep
track of the same combinatorial information if they are related by an automorphism of k{a, b). For
this reason, one would like a description of the group Aut(k(a, b)). This can be easily obtained, thanks
again to the universal property of k(a, b).

Recall that the group of affine transformations of the line is

Aff(k) =k x k> ={(v,7) JveEk, r€k, r#£0}
with multiplication (v,7) - (w, s) = (v 4+ rw, rs) and unit (0, 1). The group Aff(k) acts on the line & by
(v,7) -z =v+re.
Claim: The group of automorphisms of the graded e-Hopf algebra k{a,b) is the group of affine

transformations of the line.

Proof. According to the universal property of k{a,b) (Corollary 4.3), an endomorphism « : k{(a,b) —
k{a,b) of graded e-Hopf algebras is uniquely determined by the morphism of algebras (1 g : k(a,b) —
k. Since k(a,b) is free, such morphism is in turn uniquely determined by the pair of scalars
g = (10a(a) and p = (1 0a(b).
Formula (4.1) gives
a(a) =qa+ (1 — ¢)b and a(b) = pa+ (1 — p)b.
Moreover, the universal property also guarantees that « is invertible if and only if it is invertible on

the piece of degree 1, i.e. if and only if ¢ # p. Thus,
Aut(k(a, b)) — Aff(k), a — (p,q —p)
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is a bijection. It is easy to see that this preserves the group structures. O

The automorphism of 8 corresponding to (v, r) € Aff(k) is given on S € §,, by
aS) = PR #S E v#S#TT 8,
TCS
as one readily sees by combining the previous result with Corollary 5.1.

5.4. Edge labelled posets. An edge labelled poset is a triple (P, A, L) where P and L are posets and
A: H(P) — L is an arbitrary assignment of an element of I to each edge of the Hasse diagram of P,

H(P)={(z,y) € P x P / x <y and there is no z such that z < z < y}.

We assume that P is a finite, graded poset (as before), while L may be an arbitrary poset. Two edge
labelled posets (P, A, L) and (@, p, M) are isomorphic if there are isomorphisms of posets P = ) and
L =2 M preserving the labellings A and p.

We will define a new graded e-Hopf algebra Pgy,, consisting of edge labelled posets. As a vector
space, Prr has a basis consisting of the isomorphism classes of edge labelled posets (P, A, L). The
comultiplication is

APAL) = > (0P, 2], M oy DO P ALy » L)

0p<e<lp
To describe the multiplication, we first define a product L x M of arbitrary posets as follows. We adjoin
a top element to L and a bottom element to M and form the cartesian product of the resulting posets:

LxM=(LU{l.}) x ({0pm}UM), (I,m)<(I'ym) <= [ <l and m < m'.

Note that this is an associative operation. Now we define a multiplication in Pgy, by

(Pa)‘aL) . (Qa,uaM) = (PQ,I/,L*M),
where PQ is defined as before (example 2.3.2), and v : H(PQ) = L x M is

(A(z,y),0m) if (z,y) € H(P)
v(z,y) =4 (1, pu(z,y)) if (z,y) € H(Q)
(Az,1p),u(0g,y)) if (z,1p) € H(P) and (0q,y) € H(Q).
By construction, the map (P, A, L) — P is a morphism of graded e-Hopf algebras Pr — P.
Given a chain Op = g < 21 < ... < & < Zn41 = lp in an edge labelled poset (P, A, L), a A-descent
of the chain is an index 7 = 1, ... ,n such that
Axi—1, ;) £ Mg, xip1) in L.
A chain is A-increasing if it has no A-descents, i.e. if A(z;_1, 2;) < A(x;, 2ig1)V 0.
Consider the map (g, : Prr, — k defined by

Crr(P,A, L) = the number of A-increasing maximal chains in P.

It is easy to see that (gr is a morphism of algebras. Therefore, by the universal property of k{a,b)
(Corollary 4.3), there is a unique morphism of graded e-Hopf algebras ¥ g1, : Prr — k(a, b) such that
¢1,0¥eL = Cer. Working out formula (4.1) as in Section 5.2, one readily finds that ¢gr is given on a
poset P of rank n + 1 by

YeL(PAL) = Y fs(PA L) - us,
Ses,

where fs(P, A, L) is the number of maximal chains in P whose A-descents are contained in S. One
may view the morphism g as a version of the ab-index specific to edge labelled posets. As in the
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case of the usual ab-index, 1t is easy to see directly that this formula indeed defines a morphism of
e-Hopf algebras.

Consider now those labelled posets (P, A, L) for which every interval contains exactly one A-increasing
maximal chain. Such posets are called R-labelled. Since this condition refers to all intervals of the
poset, R-labelled posets span a subcoalgebra of Pgy, that we denote by Pgry. Clearly, Pgry is also an
e-Hopf subalgebra of Py .

Now, by definition, if (P, A, L) € Pgyr, then

Cer(PA L) =1=Cp(P).

It follows, by uniqueness in the universal property of k(a, b) applied to the e-Hopf algebra Pry,, that
for every (P, A, L) € Prr,

VEL(P A L) = ¢(P).
Thus, if (P, A, L) is an R-labelled poset of rank n + 1, then

fs(P, A L) = fs(P)

for any S C {1,...,n}. This equality has been noted by Bjorner [Bjo, Theorem 2.7] (again, it is very
easy to give a direct proof).

Remark 5.2. An equivalent version of the ab-index of edge labelled posets ¥'g; was constructed by
Bergeron and Sottile [B-S], from the point of view of ordinary Hopf algebras. In this reference, and often
in the literature, the labellings take values on totally ordered sets. In order to obtain an e-Hopf algebra,
one has to allow poset valued labellings, as done above. We thank the referee for pointing this out to
us.

5.5. The ab-index of weighted posets. As a final application of the universal property, we construct
a very natural version of the ab-index that generalizes at the same time the usual ab-index of posets,
the ab-index of edge labelled posets of Section 5.4 and also the relative ab-index of Stanley.

A weight on a poset P is an arbitrary scalar valued map w defined on the collection of non-empty
intervals of P. Such a weight induces a weight on every interval of P, by restriction.

As before, we may construct an e-bialgebra Py, consisting of pairs (P, w), of (isomorphism classes
of finite, graded) weighted posets. Explicitly, the comultiplication is

A(P,w) = Z ([OP,I],LU“OP)I])@([;L‘,1P],w|[r’lpl)
0p<z<lp

and the multiplication is
(P u) - (@,v) = (PQ,w),
where PQ is defined as before (example 2.3.2) and

u([z, yl fop<z<y<lp
w([z,y]) =  v([=z,y] iflg<z<y<lp
u([z,1p]))v([0q,y]) ifz<lp, Og <uy.

—

<

The e-bialgebra Py comes equipped with a canonical morphism of algebras {w : Pyw — k defined by

Cw (P, w) = w([0p, 1p]).
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Hence, the universal property of k(a,b) yields a unique morphism of e-bialgebras ¢¥w : Pw — k{a,b)
such that (i o¥w = (w. Formula (4.1) immediately gives, for a graded poset P of rank n + 1 with

weight w,
Yw (Pw) =Y fs(Pw) us
SES,
where, for S={s1 < sz <...<s}C{L,2,...,n}

(5.2) fs(Pw) = > w([0p, z1])w([w1, w2]) - - - w([xi, 1]).

Op=ro<Tr1<T2<..<T;<Tig1=1p
rank(z;)=s;

We call 9w the ab-index of weighted posets. It generalizes several versions of the ab-index, as we now
explain.

First of all, any poset P carries the trivial weight e defined by e([z,y]) = 1 for any # < y in P. This
defines a morphism of e-bialgebras P — Py, P — (P, e), which preserves the zeta functions, and hence
also the ab-indices ¥ and ¥y, by uniqueness. In other words, fs(P,e) = fs(P).

To relate the ab-index of weighted posets to the ab-index of edge labelled posets, consider the map

‘:PEL — ':Pw, (P,)\,L) — (P,w)\)
where

wx([z,y]) = the number of A-increasing maximal chains in [z, y].

This is a morphism of e-bialgebras which preserves the zeta functions (g7, and (y, and hence also the
ab-indices ¥ gz and . We deduce (the simple fact) that the number of descents and the number of
weighted chains are related by

(5:3) fs(P,A, L) = fs(P,wy),

for any edge labelled poset (P, A, L). If (P, A, L) is R-labelled then w) is the trivial weight, and we
recover the result of Bjorner mentioned at the end of Section 5.4.

Finally, we indicate how the ab-index of weighted posets generalizes the relative ab-index of Stanley.
To every collection X of non-trivial intervals of P one may associate a weight wx on P defined by

1 if[z,yle X
0 if not.

wx ([z,y]) = {

Formula (5.2) becomes
Js(Pwx)=#{0p=20 <21 < ...<2; <ziy1 = lp /[ rank(z;) = s; and [z;_1,2;] € X V j}.

This is the relative flag vector of [S2, Section 1].

Let (P, A, L) be an edge labelled poset for which every interval possesses at most one A-increasing
maximal chain. One may call such posets weakly R-labelled. In this case, the weight associated to
the labelling coincides with the weight associated to the collection X of intervals which possess a
A-increasing maximal chain. Therefore, equation (5.3) becomes

(54) fs(P,)\,L) = #{OP =<1 < ... <Z < Zig1 = 1p / rank(mj) = S;
and [z;_1, z;] possesses a A-increasing maximal chain, V j}.

This is Theorem 4.4.a in [S2].
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Remark. Stanley defines the relative flag vector from the set I'x consisting of those chains 0p < z; <
... < z; < 1p for which some interval [z;_1, ;] is not in X [S2, page 5]. He assumes that the collection
X is closed under subintervals in order to guarantee that I'x is a subcomplex of the simplicial complex
of all chains in P. For the same reason, he makes an additional assumption on the edge labellings.
These assumptions are not needed for the construction of a well behaved ab-index, or to obtain (5.4),
as we have seen.

6. EULERIAN SUBALGEBRAS. THE c¢d-INDEX OF EULERIAN POSETS

In Section 5.2, we saw that to construct the ab-index of posets one only needs to know the zeta
function of posets ¢ : P — k. The universal property of k(a, b) took care of the rest. Notice that this
property only involves the e-bialgebra structure of P.

Similarly, to construct the cd-index of eulerian posets, all one needs is knowledge of the Mobius
function of posets, p : P — k. As we saw in Section 3, the Mobius function is closely related to the
antipode of the e-Hopf algebra P. Tt is the general notion of antipode that allows us to define a notion
of “Mobius function” for arbitrary e-Hopf algebras A equipped with a morphism of algebras ¢ : A — k.

Definition 6.1. Let A be an ¢-Hopf algebra, with antipode S, and { : A — k a morphism of algebras.
The Mobius function of (A, () is the functional

u=C¢S:A—-k.

As recalled at the end of Section 2, it follows that —p : A — k is a morphism of algebras.

For instance, if A = k{a,b) and ( is defined as in (5.1) by ((p(a, b)) = p(1,0), since the antipode
satisfies S(p(a,b)) = —p(a — 1,b — 1) (example 2.3.1), the Mébius function satisfies u(p(a, b)) =
—p(0,-1).

Suppose now that A is a graded e-bialgebra and { : A — k& a morphism of algebras. Then A is
automatically an e-Hopf algebra, so the Mébius function p of (A, () is defined. Consider the functional
a: A — k defined on a homogeneous element z € A,, by

a(z) = p(z) + (=1)"((2).

Observe that « satisfies, for z € A, and y € An, a(zy) = —p(z)a(y) + (=1)"a(z)((y). Define a
graded subspace of A by

Eo(¢) = @ Ker(aw : A, = k).

n=0
In view of the above, Eq({) is a graded subalgebra of A.

Definition 6.2. Let A be as above. The eulerian subalgebra of (A, () is the largest subcoalgebra of
A contained in Ey(¢). We denote it by E(().

We will see below that E(¢) is an e-Hopf subalgebra of A, which justifies the terminology.

Given any coalgebra C' and a subspace Fy of ', the largest subcoalgebra E of C' contained in
Ey always exists: it is the sum of all subcoalgebras contained in Ey (there is at least one, the zero
subspace). In fact, this notion is dual to the notion of ideal generated by a subspace in an algebra.
For this reason, one sometimes says that F is the subcoalgebra of C' cogenerated by Ey. With this in
mind, it is easy to obtain the following properties of eulerian subalgebras.

Proposition 6.3. Let (A,() be as above and E(() its eulerian subalgebra. Then:
1. E(C) is a graded e-Hopf subalgebra of A.
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2. The piece of degree n of E(C) consists precisely of those x € A, such that
a(z)=0
(6.1) (a®id)A(z) = 0 = (idoa)A(z)
(idva®id) A (z) = 0.

. . . A %1/’ B
3. Suppose that ¢ : A — B 1s a morphism of graded e-bialgebras such that N S commutes.
Ca B
2

Then ¢ maps E(Ca) to E((B).

Proof.

1. We show, more generally, that the subcoalgebra cogenerated by a graded subalgebra of a graded
e-Hopf algebra is always a graded e-Hopf subalgebra.

An ideal generated by homogeneous elements is necessarily graded. Dually, a subcoalgebra
cogenerated by a graded subspace is necessarily graded. On the other hand, it follows immediately
from (2.1) that if C' and D are subcoalgebras of an e-bialgebra A, then so is C'+ D + C - D.
Therefore, the subcoalgebra cogenerated by a subalgebra is again a subalgebra.

This shows that the subcoalgebra cogenerated by a graded subalgebra of a graded e-bialgebra
is always a graded e-subbialgebra. Since by (2.8) the antipode is determined by the bialgebra
structure, the claim follows.

2. Again, we provide a proof of a more general assertion. The ideal generated by a subspace V of a
non-unital algebra (A, m) is

V +m(VoA) + m(AsV) + mP) (AsVe A)
(this subspace is closed under both left and right multiplications by associativity). If V is defined
as the image of a linear map a : A — A, then the ideal generated by V is the sum of the images
of the maps

a, m(asid), m(idea) and m(z)(id®a®id).
Dually, the subcoalgebra cogenerated by a subspace V' of a non-counital coalgebra (C, A) is

VNATHCeV)N AT (VeC) N A (CeVel),

and if V' is the kernel of a linear map « : C' — C then this can also be described as the intersection
of the kernels of the maps

a, (a®id)A, (idea)A and (idoasid) A,

With some care, these assertions can also be extended to the graded context, and the desired
conclusion follows.

3. By hypothesis i preserves the zeta functionals, and hence also the alpha functionals, since a
morphism of e-bialgebras always preserves the antipodes. Therefore,

Y(E(Ca)) € ¥(Eo(Ca)) C Eo(Cr)-
Since the image of a subcoalgebra under a morphism of coalgebras is another subcoalgebra, it
follows that ¥(F(¢a)) C E(¢B).
O

Recall that a graded poset P is called eulerian if the Mobius function alternates between 1 and —1
on the intervals of P, or more precisely, if for any z < y in P,

(62) IJ‘P([CE, y]) — (_l)rank(y)—rank(a:).
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The next is the main result of this work. It implies the existence of the cd-index of eulerian posets. Its
value lies on the simplicity of the proof. For the second assertion, we assume that the characteristic of
the field is not 2.

Theorem 6.4. Consider the graded e-Hopf algebras P and k{a,b), with the functionals
Cp:P =k, (p(P)=1 and G0 k{a,b) > k, (10(p(a,b)) =p(1,0)
and the corresponding eulerian subalgebras. Then

1. E(Cp) contains all eulerian posets.

2. E(C1,0) is the subalgebra of k{a,b) generated by c = a+ b and d = ab + ba.
Proof.

1. First of all, note that if a poset is eulerian, then so is any of its intervals. Hence, the class of
eulerian posets spans a subcoalgebra of P. Therefore, to show that the class of eulerian posets
is contained in E((p), it suffices to verify that it is contained in Eg({p). This is immediate: if
P € P, is an eulerian poset of rank n + 1 then

_ n (6_2) n+1 n o __
a(P) = pp(P)+ (=1)"Cp(P) ="(=1)""" + (=1)" =0,
so P € Fy(Cp) .
Alternatively, one may verify equations (6.1) directly. Each of the four equations corresponds
to the choice of an interval of P, which may be of the form [0p, 1p], [Op, 2], [z, 1p] or [z, y].

2. Let us abbreviate E = E((1,0) and Eg = Eg(C1,0)-

It is straightforward to verify equations (6.1) for ¢ and d. Since FE is a subalgebra, it follows
that the subalgebra generated by ¢ and d is contained in E.

The converse inclusion requires a little work. Let p(a,b) € E be a homogeneous polynomial.
Introduce a new variable e = a —b. Then ¢ and e generate k(a, b), so we can write

p(a,b) = E Ars€®0c e’ e ... c"me’m.
rs

This sum is over sequences of natural numbers r = (r1,72,...,7,) and s = (so, $1, ..., S,), Where
only sqg and s, are allowed to be zero, and A.s are non-zero scalars.
Note that

e’ =(a—b) = (a+b)? —2(ab+ ba) =c* - 2d.
Therefore, it suffices to show that all s; are even to conclude that p(a, b) belongs to the subalgebra
generated by ¢ and d. 2
We verify this as follows. We have A(c) =2 - 181 and A(e) = 0, and from here, using (2.1),
A(r)(cr) =2"-1®...91 and A(e®) = 0.
S—_——’
r+1

Let |[v|=7r1 +rs + ...+ 7. It follows easily that

(%) A(lrl)(esoc’"leslc’"2 L.cme’r) = 2rle®0g1®r—lges11®r2—Ng 1% —gesn g A¥(Ixl+1),

Since F is a subcoalgebra, Al (p(a, b)) belongs to E¥(Ixl+1)
On the other hand, by definition of eulerian subalgebra we have

Ir|
P € 2P Kar(a)0+) = () A%C)aKer(a)p A=)
t=0

2This is the same trick used by Stanley in his proof of the existence of the cd-index [S1, thm. 1.1].
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Hence, for any t, applying id®®eaeid®(r1=1) to AlrD(p(a,b)) we must get zero. Choosing
appropriate values of ¢, we obtain from (%) that

0= Z)\rs2|r|e5”®1®(”_1)®esl®. . .®1®(”—1)a(e5’)®. 0180 "Dge*  for any 1 =0,...,n.

r,s

Since p(a, b) is homogeneous, all terms in this sum belong to distinct homogeneous components
of A%(rI+1) Hence, by linear independence, and since char(k) # 2, we deduce that

ale®)=0vi=0,...,n.
But
a(e") = ple™) + (—1)“Cle™) = —1 + (=1)",
so each s; must be even. The proof is complete.

O

Corollary 6.5. If P is an eulerian poset then its ab-indez belongs to the subalgebra of k{a, b) generated
by ¢ and d.

Proof. The ab-index was defined in Section 5.2 as the unique morphism 9 of graded e-bialgebras for
» — o kab)

which \ / commutes. Therefore, by Proposition 6.3, 1 takes the eulerian subalgebra
Cop & (1,0

of P to the eulerian subalgebra of k(a,b). Together with Theorem 6.4, this implies that if P is an
eulerian poset then 1(P) belongs to the subalgebra generated by ¢ and d. O

Remark. Ehrenborg and Readdy constructed an example of a non-eulerian poset P for which ¢(P) is
nevertheless in the subalgebra generated by ¢ and d [E-R, Section 3]:

It turns out that the stronger fact that P belongs to the eulerian subalgebra of P is also true. Thus,
the eulerian subalgebra of P contains non-eulerian posets.

7. THE GENERALIZED DEHN-SOMMERVILLE EQUATIONS

Let P be an eulerian poset. The fact that its ab-index 1 (P) belongs to the subalgebra generated by
¢ and d imposes some conditions on the coefficients of ¥(P), i.e., on the flag vector {fs(P)}ses,. As
recalled in the introduction, according to Theorem 4 of [B-K], these conditions are equivalent to the
generalized Dehn-Sommerville equations of Bayer and Billera. We will not produce another proof of
this fact here. Instead, we will provide another set of equations, equivalent to the equations of Bayer
and Billera, that is dictated by the theory of e-Hopf algebras, and is therefore very natural from the
point of view of this work. As the equations of Bayer and Billera, our equations are indexed by triples

(S,a,b) where S is asubset of {1,...,n} and [a, b] is a maximal interval of {1,...,n}\S. The equation
corresponding to such a triple is
(7.1) (04 )+ > (“D)Ffur =0,

TCla,b], T#0
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To obtain these equations, we will make use of the explicit description of eulerian subalgebras
provided by equations (6.1), for the case of the e-Hopf algebra k{a, b).

It is convenient to deal with the algebra of sets § directly, rather than with the isomorphic algebra
k{a,b). First, note that the zeta, Mobius and alpha functionals for this algebra are given on a basis
element S € §,, by

) = {O if not uS) = (=1 and a(S) = {(—1)#5+1 if not.

Recall that in the e-Hopf algebra of sets the comultiplication is A(S) = ;¢ S(0,4)@S(i,n + 1)
where S(7,j) € 8;_;_1 consists of those elements of S that lie strictly between ¢ and j (cf. the precise
definition in example 2.3.3).

Let z = ESeSn fs -S be an arbitrary element of degree n of 8. Let T, denote the set of triples
(S, a,b) as above, and for (S, a,b) € T, let

Bsap(e) = (1" =1)fs— > (=1)* feur.

TCla,b], T#0

Using the formulas above for @ and A one finds, by direct calculations whose details we omit, that:
a(z) = Fpn(z)

(agid)A(z) = > FEsimins—1(z) - S(minS,n+ 1)
SES,
S#0,1¢S
(idsa)A(z) = Y Fsmaxstin(x) - S(0, maxS)
SES,
S#£D,n¢S
(idsaoid) AP (x) = Y Esap(x)-S(0,a—1)eS(b+1,n+1)
(S,a,b)€ T,
1<a,b<n
These are expressions in terms of distinct basis elements of §. In fact, suppose for instance that
S(minS,n+ 1) = T(minT,n + 1) for two sets S and T € §,,. Then, first of all, these elements must lie
in the same homogeneous component of 8§, which means that minS = minT. Second, the elements of S
lying strictly between minS and n + 1 must coincide with the elements of T between minT and n + 1.
Thus, S = T. Similarly, suppose that S(0,a — 1)eS(b+ 1,n+ 1) = T(0,c— 1)8T(d + 1,n + 1) for two
triples (S, a,b) and (T,¢,d) € T,. By comparing degrees, we see that a = ¢ and b = d. Tt then follows
that the elements that lie strictly between 0 and a — 1 or between b+ 1 and n + 1 are the same for
both S and T. Since, by definition of triple, the elements that lie between @ — 1 and b+ 1 are precisely
a— 1 and b+ 1, for both S and T, we conclude that S=T.
Equations (6.1), defining eulerian subalgebras, express the vanishing of the above expressions. It

follows that the element z belongs to the eulerian subalgebra of 8 if and only if

Eg1n(x)=0
Es1mins—1(z) =0 for every S € 8,, such that S# @ and 1 ¢ S
Es maxs+1,n(2) = 0 for every S € 8, such that S# 0 and n ¢ S
Es 4 5(z) = 0 for every triple (S, a,b) € T, such that 1 < a and b < n.

Now, an arbitrary triple in T, is of one the four forms above. Hence, these conditions can be expressed
more simply as follows:

Es q1(x) = 0 for every triple (S, a,b) € T,.
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This is exactly the announced equation (7.1). Tt is the version of the generalized Dehn-Sommerville
equations furnished by the theory of e-Hopf algebras.

In conclusion, one may regard equations (6.1) as the generalized Dehn-Sommerville equations for an
arbitrary e-Hopf algebra. The main results of this work can be summarized as follows. The generalized
Dehn-Sommerville equations for the e-Hopf algebra P are satisfied by any eulerian poset. The general-
ized Dehn-Sommerville equations for the e-Hopf algebra k(a, b) are explicitly given by (7.1), and they
define the subalgebra generated by ¢ and d.
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