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Infinitesimal Hopf algebras

Marcelo Aguiar

Abstract. Infinitesimal bialgebras were introduced by Joni and Rota [J-R].
An infinitesimal bialgebra is at the same time an algebra and a coalgebra, in
such a way that the comultiplication is a derivation. In this paper we de-
fine infinitesimal Hopf algebras, develop their basic theory and present several

examples.
It turns out that many properties of ordinary Hopf algebras possess an

infinitesimal version. We introduce bicrossproducts, quasitriangular infinites-
imal bialgebras, the corresponding infinitesimal Yang-Baxter equation and a
notion of Drinfeld’s double for infinitesimal Hopf algebras.

1. Introduction

An infinitesimal bialgebra is a triple (A, m, ∆) where (A, m) is an associative
algebra, (A, ∆) is a coassociative coalgebra and for each a, b ∈ A,

∆(ab) =
∑

ab1⊗b2 +
∑

a1⊗a2b .

Infinitesimal bialgebras were introduced by Joni and Rota [J-R] in order to provide
an algebraic framework for the calculus of divided differences. Several new examples
are introduced in section 2. In particular, it is shown that the path algebra of an
arbitrary quiver admits a canonical structure of infinitesimal bialgebra.

In this paper we define the notion of antipode for infinitesimal bialgebras and
develop the basic theory of infinitesimal Hopf algebras. Surprisingly, many of the
usual properties of ordinary Hopf algebras possess an infinitesimal version. For
instance, the antipode satisfies

S(xy) = −S(x)S(y) and
∑

S(x1)⊗S(x2) = −
∑

S(x)1⊗S(x)2,

among other properties (section 3).
The existence of the antipode is closely related to the possibility of exponenti-

ating a certain canonical derivation D : A → A that is carried by any ǫ-bialgebra.
This and other related results are discussed in section 4.
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In section 6 we introduce the analog of “matched pairs” of groups or Hopf al-
gebras for associative algebras, and the corresponding bicrossproduct construction.
Some interesting examples are given.

Recall that a Lie bialgebra is a triple (g, [, ], δ) where (g, [, ]) is a Lie algebra,
(g, δ) is a Lie coalgebra and δ : g→ g⊗g is a derivation (in the Lie sense). Therefore,
infinitesimal bialgebras may also be seen as an associative analog of Lie bialgebras.
This analogy is reinforced in section 5 where we introduce quasitriangular infinites-
imal bialgebras and the corresponding associative Yang-Baxter equation:

r13r12 − r12r23 + r23r13 = 0 for r ∈ A⊗A .

Again, most properties of ordinary quasitriangular bialgebras and Hopf algebras
admit an analog in the infinitesimal context. For instance the antipode satisfies

(S⊗S)(r) = r = (S−1⊗S−1)(r) .

But perhaps the most important of these properties is the fact that there is a notion
of Drinfeld’s double for infinitesimal bialgebras, satisfying all the properties one can
expect. Drinfeld’s double is defined and studied in section 7. It is an important
example of the bicrossproduct construction of section 6.

Recall that the underlying space of the double of a Lie bialgebra g and of an
ordinary Hopf algebra H is respectively

D(g) = g⊕ g
∗ and D(H) = H⊗H∗ .

The underlying space of the double of an ǫ-bialgebra A turns out to be

D(A) = (A⊗A∗)⊕A⊕A∗

This is yet another manifestation of the fact that the theory of ǫ-bialgebras possesses
aspects of both theories of Lie and ordinary bialgebras. Further connections be-
tween Lie and infinitesimal bialgebras, as well as a deeper study of bicrossproducts
and quasitriangular infinitesimal bialgebras, will be presented in [A2].

An important motivation for studying infinitesimal Hopf algebra arises in the
study of the cd-index of polytopes in combinatorics. Related examples will be
presented in this paper but the main application (an algebraic proof of the existence
of the cd-index of polytopes) will be presented in [A1]. One of these examples is
provided by the infinitesimal Hopf algebra of all non-trivial posets. This is discussed
to some extent in sections 2 and 4.

It is often assumed that all vector spaces and algebras are over a fixed field k.
Sum symbols are often omitted from Sweedler’s notation: we write ∆(a) = a1⊗a2

when ∆ is a coassociative comultiplication. Composition of maps is written simply
as fg. The symbol ◦ is reserved for the circular product on an algebra (section 3).

The author thanks Steve Chase for many fruitful conversations during the
preparation of this work.

2. Infinitesimal bialgebras. Basic properties and examples

Definition 2.1. An infinitesimal bialgebra (abbreviated ǫ-bialgebra) is a triple
(A, m, ∆) where (A, m) is an associative algebra (possibly without unit), (A, ∆) is
a coassociative coalgebra (possibly without counit) and, for each a, b ∈ A,

∆(ab) = ab1⊗b2 + a1⊗a2b .(2.1)
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Condition 2.1 can be written as follows:

∆m = (m⊗idA)(idA⊗∆) + (idA⊗m)(∆⊗idA)

Equivalently, ∆ : A→ A⊗A is a derivation of the algebra (A, m) with values on the
A-bimodule A⊗A, or m : A⊗A → A is a coderivation [Doi] from the A-bicomodule
A⊗A with values on the coalgebra (A, ∆).

Here A⊗A is viewed as A-bimodule via a · (x⊗y) = ax⊗y and (x⊗y) · b = x⊗yb.

Dually, A⊗A is an A-bicomodule via A⊗A
∆⊗idA−−−−→ A⊗(A⊗A) and A⊗A

idA⊗∆
−−−−→

(A⊗A)⊗A.

Remark 2.2. If an ǫ-bialgebra has a unit 1 ∈ A then ∆(1) = 0. In fact, any
derivation D : A→M annihilates 1, since D(1) = D(1 · 1) = 1 ·D(1) + D(1) · 1 =
2D(1), hence D(1) = 0.

If an ǫ-bialgebra has both a unit 1 ∈ A and a counit ε ∈ A∗ then A = 0. In
fact, 1 = (id⊗ε)∆(1) = 0.

Infinitesimal bialgebras were introduced by Joni and Rota (under the name
infinitesimal coalgebras) [J-R, section XII]. Ehrenborg and Readdy have called them
newtonian coalgebras [E-R]. The present terminology emphasizes the analogy with
the notion of ordinary bialgebras, and does not favor either the algebra or coalgebra
structure over the other; as we will see next, the notion is self-dual.

Since the notions of derivation and coderivation correspond to each other by
duality, it follows immediately that if (A, m, ∆) is a finite dimensional ǫ-bialgebra
then the dual space A∗ is an ǫ-bialgebra with multiplication

A∗⊗A∗ ∼= (A⊗A)∗
∆∗

−−→ A∗

and comultiplication

A∗ m∗

−−→ (A⊗A)∗ ∼= A∗⊗A∗ .

If (A, m, ∆) is an arbitrary ǫ-bialgebra, then so are (A,−m, ∆), (A, m,−∆),
(A,−m,−∆) and also (A, mop, ∆cop), where

mop = mτ, ∆cop = τ∆ and τ(a⊗b) = b⊗a.

In the context of Drinfeld’s double (section 7), these basic constructions will
have to be combined.

Examples 2.3.

1. Any algebra (A, m) becomes a ǫ-bialgebra by setting ∆ = 0. Dually, any
coalgebra (A, ∆) becomes an ǫ-bialgebra with m = 0.

2. Let Q be an arbitrary quiver. Then the path algebra kQ carries a canonical
ǫ-bialgebra structure. Recall that kQ = ⊕∞

n=0kQn where Qn is the set of
paths γ in Q of length n:

γ : e0
a1−→ e1

a2−→ e2
a3−→ . . . en−1

an−→ en .

In particular, Q0 is the set of vertices and Q1 is the set of arrows. The
multiplication is concatenation of paths whenever possible; otherwise is zero.
The comultiplication is defined on a path γ = a1a2 . . . an as above by

∆(γ) = e0⊗a2a3 . . . an + a1⊗a3 . . . an + . . . + a1 . . . an−1⊗en .

In particular, ∆(e) = 0 for every vertex e ∈ Q0 and ∆(a) = s(a)⊗t(a) for
every arrow a ∈ Q1.
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3. The polynomial algebra k[x] is an ǫ-bialgebra with

∆(1) = 0, ∆(xn) = xn−1⊗1 + xn−2⊗x + . . . + x⊗xn−2 + 1⊗xn−1 for n ≥ 1 .

This is the path ǫ-bialgebra corresponding to the quiver

1

x

��

as in example 2.
Notice that the comultiplication can also be described as the map

∆ : k[x]→ k[x,y], ∆(f(x)) =
f(x)− f(y)

x− y
;

in other words, ∆(f(x)) is the Newton divided difference of f(x). For this
reason, this structure was called the Newtonian coalgebra in [J-R]. Joni and
Rota proposed the general notion of ǫ-bialgebra in order to axiomatize the
situation of this example. For a long time this remained the only example of
ǫ-bialgebra appearing in the literature. The only work in the area seems to
have been that of Hirschhorn and Raphael [H-R], where the ǫ-bialgebra k[x]
was studied in detail in connection with the calculus of divided differences.

4. It was only recently that another natural example of ǫ-bialgebras arose,
again in combinatorics, but in a different context (that of the cd-index of
polytopes).

The ǫ-bialgebra P of all non-trivial posets is defined as follows. As a
vector space, P has a basis consisting of the isomorphism classes of all finite
posets P with top element 1P and bottom element 0P , except for the one-
element poset {•}. Thus 0P 6= 1P always. The multiplication of two such
posets P and Q is

P ∗Q =
(

P − {1P }
)

∪
(

Q− {0Q}
)

where x ≤ y iff











x, y ∈ P and x ≤ y in P,

x, y ∈ Q and x ≤ y in Q, or

x ∈ P and y ∈ Q.

This algebra possesses a unit element, namely the poset B1 = {0 < 1}.
Moreover, P is an ǫ-bialgebra with comultiplication

∆(P ) =
∑

0P <x<1P

[0P , x]⊗[x, 1P ] .

Here if x and y are two elements of a poset P , then [x, y] denotes the iso-
morphism class of the poset {z ∈ P / x ≤ z ≤ y}.

This ǫ-bialgebra was first considered by Ehrenborg and Hetyei [E-H],
and further studied by Billera, Ehrenborg and Readdy in connection with
the cd-index of polytopes [E-R, B-E-R]. This study is continued in example
4.7.3 and more deeply in [A1], where simple coalgebraic ideas are used to
provide a proof of the existence of the cd-index of polytopes.

5. The free algebra A = k〈x1,x2,x3, . . . 〉 is an ǫ-bialgebra with

∆(xn) =

n−1
∑

i=0

xi⊗xn−1−i = 1⊗xn−1 + x1⊗xn−2 + . . . + xn−1⊗1 ,
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where we set x0 = 1.
6. The algebra of dual numbers k[ε]/(ε2) is an ǫ-bialgebra with

∆(1) = 0, ∆(ε) = ε⊗ε .

7. The algebra of matrices A = M2(k) admits many ǫ-bialgebra structures.
One such is

∆

[

a b
c d

]

=

[

0 a
0 c

]

⊗

[

0 1
0 0

]

−

[

0 1
0 0

]

⊗

[

c d
0 0

]

.

Other structures on M2(k) will be discussed later (examples 5.4).

3. Antipodes and infinitesimal Hopf algebras

Recall that if an ǫ-bialgebra A possesses both a unit and a counit then A = 0
(remark 2.2). This simple observation shows that one cannot hope to define a notion
of antipode for ǫ-bialgebras as one does for ordinary bialgebras H , since for this one
must refer to both the unit and counit of H . Recall that the antipode of an ordinary
bialgebra H is defined as the inverse of idH in the space Homk(H, H), which is an
algebra under the convolution product, with unit uHεH (where uH : k → H is the
unit map uH(1) = 1).

If A is an ǫ-bialgebra, then the space Homk(A, A) is still an algebra under
convolution, but it does not have a unit element in general. However, one may
formally adjoin a unit to this algebra and then consider invertible elements. It
turns out that this simple algebraic device will provide the right notion of antipode
for ǫ-bialgebras, as will become clear from the examples to be discussed in this
work. We recall this concept next.

Let R be any k-algebra, not necessarily unital. The circular product on R is

a ◦ b = ab + a + b

It is easy to check directly that this turns R into an associative unital monoid, with
unit 0 ∈ R. This can also be seen as follows: if we adjoin a unit to R to form
R+ = R⊕ k, with associative multiplication

(a, λ) · (b, µ) = (ab + µa + λb, λµ)

and unit element (0, 1), then the subset {(a, 1) ∈ R+ / a ∈ R} is closed under
the multiplication of R+ and contains its unit. This monoid is isomorphic to R
equipped with the circular product.

Now let A be an ǫ-bialgebra. The space Homk(A, A) is an algebra under con-
volution

f ∗ g = m(f⊗g)∆

(recall that concatenation denotes composition of maps). The circular product
on this (in general, nonunital) algebra will be called the circular convolution and
denoted by the symbol ⊛. Explicitly,

f ⊛ g = f ∗ g + f + g or (f ⊛ g)(a) = f(a1)g(a2) + f(a) + g(a) .

Definition 3.1. An infinitesimal bialgebra A is called an infinitesimal Hopf
algebra if the identity map id ∈ Homk(A, A) is invertible with respect to circular
convolution. In this case, the inverse S ∈ Homk(A, A) of id is called the antipode
of A. It is characterized by the equations

S(a1)a2 + S(a) + a = 0 = a1S(a2) + a + S(a) ∀ a ∈ A .(A)
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Examples 3.2.

1. The algebra of polynomials k[x] is an ǫ-Hopf algebra. The antipode is

S(xn) = −(x− 1)n, that is S(p(x)) = −p(x− 1) .

In fact, since ∆(xn) =
∑

i+j=n−1 xi⊗xj , equations (A) become

∑

i+j=n−1

−xi(x− 1)j + xn − (x − 1)n = 0

which follows from the basic identity

an − bn = (a− b)
∑

i+j=n−1

aibj .

Notice that S is bijective with S−1(p(x)) = −p(x + 1). More generally,
for any m ∈ Z,

Sm(p(x)) = (−1)mp(x−m) .

In particular, S has infinite order.
2. More generally, for any quiver Q the path algebra kQ is an ǫ-Hopf algebra

with antipode

S(e) = −e ∀ e ∈ Q0 and S(a) =

{

e− a if s(a) = t(a) = e,

−a if s(a) 6= t(a).

These assertions follow from a general result on the existence of antipodes
(corollary 4.3, example 4.7.2). The antipode is uniquely determined by the
formulas above according to proposition 3.7.

3. The algebra P of non-trivial posets is an ǫ-Hopf algebra. An explicit formula
for the antipode is:

S(P ) =
∞
∑

n=1

(−1)n
∑

0P <x1<...<xn−1<1P

[0P , x1][x1, x2] . . . [xn−1, 1P ] .

This will discussed in detail in example 4.7.3.
4. The ǫ-bialgebra A = k〈x1,x2,x3, . . . 〉 of example 2.3.5 is an ǫ-Hopf algebra

with antipode

S(xn) =

n+1
∑

k=1

(−1)k
∑

(n1,... ,nk)∈C+(n+1,k)

xn1−1xn2−1 . . .xnk−1

where C+(n + 1, k) = {(n1, . . . , nk) / ni ∈ Z+, n1 + . . . +nk = n + 1} is the
set of strict compositions of n + 1 into k parts. See example 4.7.4.

5. The algebra of dual numbers (example 2.3.6) is an ǫ-Hopf algebra. The
antipode is simply S = −id. The same is true for the ǫ-bialgebra M2(k) of
example 2.3.7.

6. Not every ǫ-bialgebra possesses an antipode. Consider the following comul-
tiplication on the polynomial algebra k[x]:

∆(1) = 0, ∆(xn) = xn⊗x + xn−1⊗x2 + . . . + x2⊗xn−1 + x⊗xn for n > 0 .
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It is easy to see that this endows k[x] with the structure of an ǫ-bialgebra
(different from that of example 3, but closely related to its graded dual). In
particular ∆(x) = x⊗x. If there were an antipode S, then we would have

S(x)x + S(x) + x = 0⇒ S(x) =
−x

1 + x
/∈ k[x]

which is a contradiction.

Remark 3.3. In all previous examples, S(1) = −1. More generally, for any
ǫ-Hopf algebra A and u ∈ Ker∆, S(u) = −u. In fact, equation (A) gives

0 = u1S(u2) + u + S(u)⇒ S(u) = −u .

The antipode of an ǫ-Hopf algebra satisfies many properties analogous to those
of the antipode of an ordinary Hopf algebra, which we will present next.

We need some basic general results first.

Lemma 3.4. Let A, B be algebras and C, D coalgebras.

(a) If φ : C → D is a morphism of coalgebras then φ∗ : Homk(D, A) →
Homk(C, A), φ∗(f) = fφ, is a morphism of (circular) convolution monoids.

(b) If φ : A→ B is a morphism of algebras then φ∗ : Homk(C, A)→ Homk(C, B),
φ∗(f) = φf , is a morphism of (circular) convolution monoids.

Proof. Any morphism of algebras preserves the corresponding circular prod-
ucts, so it is enough to check that ordinary convolution is preserved in either case.
This is well-known.

The next lemma is meaningful for nonunital algebras (or noncounital coalgebras)
only, since a unital multiplication is always surjective (and a counital comultiplica-
tion injective) .

Lemma 3.5. (a) Let C and D be coalgebras, u ∈ Ker∆C and v ∈ Ker∆D.
Then C⊗D is a coalgebra with

∆(c⊗d) = (c1⊗v)⊗(c2⊗d) + (c⊗d1)⊗(u⊗d2) .

(b) Let A and B be algebras, γ ∈ (CokermA)∗ and δ ∈ (CokermB)∗. Then A⊗B
is an algebra with

(a⊗b) · (a′⊗b′) = δ(b)aa′⊗b′ + γ(a′)a⊗bb′ .

Proof. To prove (a) we calculate

(id⊗∆)∆(c⊗d) = (c1⊗v)⊗∆(c2⊗d) + (c⊗d1)⊗∆(u⊗d2)

= (c1⊗v)⊗(c2⊗v)⊗(c3⊗d) + (c1⊗v)⊗(c2⊗d1)⊗(u⊗d2) + (c⊗d1)⊗(u⊗d2)⊗(u⊗d3) ,

and

(∆⊗id)∆(c⊗d) = ∆(c1⊗v)⊗(c2⊗d) + ∆(c⊗d1)⊗(u⊗d2)

= (c1⊗v)⊗(c2⊗v)⊗(c3⊗d) + (c1⊗v)⊗(c2⊗d1)⊗(u⊗d2) + (c⊗d1)⊗(u⊗d2)⊗(u⊗d3) .

thus (id⊗∆)∆ = (∆⊗id)∆ as needed. Case (b) is dual.

Recall that if an ǫ-bialgebra has a unit 1 then ∆(1) = 0. Dually, if it has a
counit ǫ then ǫ(Imm) = 0, so we can view ǫ ∈ (Cokerm)∗. Thus, lemma 3.5 may be
applied as follows.

Lemma 3.6. Let (A, m, ∆) be an ǫ-bialgebra.
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(a) Suppose that A has a unit 1. View A⊗A as a coalgebra as in lemma 3.5 (a)
with u = v = 1. Then m : A⊗A→ A is a morphism of coalgebras.

(b) Suppose that A has a counit ǫ. View A⊗A as an algebra as in lemma 3.5 (b)
with γ = δ = ǫ. Then ∆ : A→ A⊗A is a morphism of algebras.

Proof. To prove (a) we need to show that A⊗A
m

//

∆
��

A
∆

��
(A⊗A)⊗(A⊗A)

m⊗m

//A⊗A

commutes.

We calculate

∆m(x⊗y) = ∆(xy)
(2.1)
= x1⊗x2y + xy1⊗y2,

and

(m⊗m)∆(x⊗y) = (m⊗m)
(

(x1⊗1)⊗(x2⊗y) + (x⊗y1)⊗(1⊗y2)
)

= x1⊗x2y + xy1⊗y2 ,

as needed. Case (b) is dual.

The previous result does not say that A is an ordinary bialgebra, since the coalgebra
or algebra structures on A⊗A are not the usual tensor product structures.

The antipode of an ordinary Hopf algebra reverses multiplications and comul-
tiplications. The analogous result for ǫ-Hopf algebras is as follows.

Proposition 3.7. Let A be an ǫ-Hopf algebra with antipode S. Then

(a) S(xy) = −S(x)S(y),
(b) S(x1)⊗S(x2) = −S(x)1⊗S(x)2.

Proof. We present the proof of (a), (b) being dual.
Suppose first that A has a unit 1. View A⊗A as a coalgebra as in lemma 3.6

(a). Then m : A⊗A → A is a morphism of coalgebras, so by lemma 3.4 (a), m∗ :
Homk(A, A) → Homk(A⊗A, A) preserves circular convolutions. Hence m = m∗(id)
is invertible with inverse m∗(S) (with respect to circular convolution).

On the other hand, let ν ∈ Homk(A⊗A, A) be ν(x⊗y) = −S(x)S(y). We need
to show that ν = m∗(S) (since m∗(S)(x⊗y) = S(xy)). Since m∗(S) is the inverse
of m, it suffices to check that m ⊛ ν = 0. We calculate

(m ⊛ ν)(x⊗y) = m(x1⊗1)ν(x2⊗y) + m(x⊗y1)ν(1⊗y2) + m(x⊗y) + ν(x⊗y)

= −x1S(x2)S(y)− xy1S(1)S(y2) + xy − S(x)S(y)

= (−x1S(x2)− S(x))S(y) + xy1S(y2) + xy

(A)
= xS(y) + xy1S(y2) + xy = x(S(y) + y1S(y2) + y)

(A)
= 0.

as needed. (We used that S(1) = −1, which we know from remark 3.3.)
This completes the proof when A has a unit. The general case can de reduced to

this one as follows: adjoin a unit to A to form the unital algebra A+ = A⊕k as in the
paragraph preceding definition 3.1. It is easy to check that A+ is an ǫ-Hopf algebra,
with comultiplication ∆(a, λ) = (a1, 0)⊗(a2, 0) and antipode S(a, λ) = (S(a),−λ).
Since the result holds for A+, it also does for its ǫ-Hopf subalgebra A.

A morphism of ǫ-bialgebras is a linear map φ : A→ B that is both a morphism
of algebras and coalgebras:

mB(φ⊗φ) = φmA and (φ⊗φ)∆A = ∆Bφ .
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For instance, proposition 3.7 says precisely that S : (A, m, ∆)→ (A,−m,−∆) is a
morphism of ǫ-bialgebras.

A morphism of ǫ-Hopf algebras is a morphism of ǫ-bialgebras that furthermore
preserves the antipodes: φSA = SBφ. As for ordinary Hopf algebras, this turns out
to be automatic.

Proposition 3.8. Let A and B be ǫ-Hopf algebras and φ : A→ B a morphism
of ǫ-bialgebras. Then φSA = SBφ, i.e. φ is a morphism of ǫ-Hopf algebras.

Proof. By lemma 3.4, there are morphisms of monoids

φ∗ : Homk(B, B)→ Homk(A, B), φ∗(f) = fφ

and

φ∗ : Homk(A, A)→ Homk(A, B), φ∗(f) = φf .

Since φ∗(idB) = f = φ∗(idA) and inverses are preserved, we must have φ∗(SB) =
φ∗(SA), i.e. SBφ = φSA.

Example 3.9. Let A = k〈x1,x2,x3, . . . 〉 and B = k[x] be the algebras of
examples 2.3.5 and 2.3.3. Recall from examples 3.2 that

S(xn) = −(x− 1)n and S(xn) =

n+1
∑

k=1

(−1)k
∑

(n1,... ,nk)∈C+(n+1,k)

xn1−1xn2−1 . . .xnk−1 .

The map φ : A→ B, φ(xn) = xn, is clearly a morphism of ǫ-bialgebras. Since
it must preserve the antipodes, we deduce that

−(x− 1)n =

n+1
∑

k=1

(−1)k
∑

(n1,... ,nk)∈C+(n+1,k)

xn1−1xn2−1 . . .xnk−1

=

n+1
∑

k=1

(−1)k#C(n + 1, k)xn+1−k = −

n
∑

k=0

(−1)k#C(n + 1, k + 1)xn−k

from which we obtain the basic fact that the number of strict compositions of n+1
into k + 1 parts is

#C(n + 1, k + 1) =

(

n

k

)

.

A finite dimensional subbialgebra of an ordinary Hopf algebra is necessarily
a Hopf subalgebra. This is a consequence of the following basic fact: if R is a
finite dimensional unital subalgebra of a unital algebra S and x ∈ R is invertible
in S, then x is already invertible in R. To deduce the corresponding property
of ǫ-Hopf algebras, first note that if R is a finite dimensional subalgebra of an
arbitrary (nonunital) algebra S and x ∈ R is circular invertible in S, then x is
already circular invertible in R. This follows from the previous fact applied to R+,
S+ and the element (x, 1).

Proposition 3.10. If B is a finite dimensional ǫ-subbialgebra of an ǫ-Hopf algebra
A, then B is an ǫ-Hopf subalgebra.
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Proof. Let i : B → A be the inclusion. Homk(B, B) is a finite dimensional
subalgebra of Homk(B, A) via i∗. Considering i∗ : Homk(A, A) → Homk(B, A) we
see that i is circular invertible in Homk(B, A). By the preceding remark, idB is
invertible in Homk(B, B).

We turn to the study of antipodes in relation to the basic constructions of
section 2.

Proposition 3.11. Let (A, m, ∆) be an ǫ-Hopf algebra with antipode S.

1. S is the antipode for (A,−m,−∆).
2. If S is bijective, then S−1 is the antipode for (A,−m, ∆) and (A, m,−∆).
3. Conversely, if (A,−m, ∆) or (A, m,−∆) admit an antipode S̄, then S̄ is the

inverse of S with respect to composition.

Proof. 1. Equations (A) coincide for (A, m, ∆) and (A,−m,−∆), so this
assertion is clear.

2. We first show that for any a, b ∈ A,

S−1(a)S−1(b) = −S−1(ab)(∗)

Since S is bijective, we can write a = S(x) and b = S(y). By proposition

3.7, S(xy) = −S(x)S(y). Hence xy = −S−1
(

S(x)S(y)
)

, which rewrites as

S−1(a)S−1(b) = −S−1(ab), as needed.
Now from (A) we deduce

0 = a1S(a2) + a + S(a)

⇒ 0 = S−1
(

a1S(a2)
)

+ S−1(a) + S−1S(a)

(∗)
⇒ 0 = −S−1(a1)a2 + S−1(a) + a .

Similarly, from the other half of (A) one deduces 0 = −a1S
−1(a2) + a +

S−1(a). These say that S−1 is the antipode for both (A,−m, ∆) and
(A, m,−∆).

3. Suppose (A,−m, ∆) admits an antipode S̄.
By proposition 3.7 (a), S : (A,−m)→ (A, m) is a morphism of algebras.

Hence, by lemma 3.4 (a),

S∗ : Homk((A, ∆), (A,−m))→ Homk((A, ∆), (A, m)), f 7→ Sf ,

is a morphism of circular convolution monoids. Now, S∗(id) = S and
S∗(S̄) = SS̄. We deduce that SS̄ is the inverse of S with respect to cir-
cular convolution. Hence SS̄ = id.

One deduces similarly that S̄S = id, by using the morphism S∗.

Proposition 3.12. Let (A, m, ∆) be an ǫ-Hopf algebra with antipode S. Then
so is (A, mop, ∆cop), with the same antipode S.

Proof. The convolution product on Homk(A, A) is opposite to the convolution
product on Homk(Acop, Aop):

m(f⊗g)∆ = mτ(g⊗f)τ∆ = mop(g⊗f)∆cop .

Hence the same is true for the circular products. In particular, the inverse of id is
the same in both monoids.
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Proposition 3.13. If A is a finite dimensional ǫ-Hopf algebra with antipode
S, then so is A∗, with antipode S∗.

Proof. For any coalgebra C and finite dimensional algebra B, the map

Homk(C, B)→ Homk(B∗, C∗), f 7→ f∗

is a morphism of (circular) convolution monoids:

(f ∗ g)∗ = (mB(f⊗g)∆C)∗ = ∆∗
C(f⊗g)∗m∗

B = mC∗(f∗⊗g∗)∆B∗ = f∗ ∗ g∗ .

When C = B = A, this morphism sends idA to idA∗ and SA to S∗
A. Hence S∗

A is
the inverse of idA∗ with respect to circular convolution, i.e. the antipode of A∗.

Recall that if H is an ordinary Hopf algebra, B is any algebra and f : H → B is
a morphism of algebras, then f is convolution-invertible in Homk(H, B) and the in-
verse is fSH . We close this section with the analogous property for ǫ-Hopf algebras.

Proposition 3.14. Let A be an ǫ-Hopf algebra, B an algebra and C a coalge-
bra.

(a) If g ∈ Coalgk(C, A) then g is invertible in Homk(C, A) with respect to circular
convolution, its inverse is SAg. Moreover, −SAg ∈ Coalgk(C, A).

(b) If f ∈ Algk(A, B) then f is invertible in Homk(A, B) with respect to circular
convolution, its inverse is fSA. Moreover, −fSA ∈ Algk(A, B).

Proof. By lemma 3.4 (b), there is a morphism of monoids

f∗ : Homk(A, A)→ Homk(A, B), h 7→ fh .

Hence fSA = f∗(SA) is the inverse of f = f∗(idA) in Homk(A, B). Also, since
−SA ∈ Algk(A, A) (by proposition 3.7 (a)), −fSA ∈ Algk(A, B). This proves (b).
Part (a) is dual.

In particular, choosing C = k with its usual coalgebra structure (∆(1) = 1⊗1)
we obtain that if x ∈ A is group-like then it is circular invertible in A, with circular
inverse S(x), and −S(x) is group-like.

4. The canonical derivation and the existence of the antipode

In this section we derive a result that shows that many ǫ-bialgebras do possess
an antipode. This applies to most examples considered in this paper; in particular
to the path ǫ-Hopf algebra kQ of an arbitrary quiver Q and the ǫ-Hopf algebra P

of non-trivial posets.
We start with a basic result on circular inverses.

Lemma 4.1. Let R be a ring. If a ∈ R is nilpotent then it is circular invertible,
with inverse

∑∞
n=1(−a)n.

Proof. In the unital ring R+ = R ⊕ Z, 1 + a is invertible with inverse
∑∞

n=0(−1)nan. The result follows by considering the injective morphism of monoids
R→ R+, a 7→ 1 + a.

The result of lemma 4.1 can be extended to the more general situation of
topological rings, where the series

∑∞
n=1(−a)n may converge under weaker as-

sumptions. In particular the result may be applied to convolution rings of the
form Homk(C, A) and linear maps a : C → A that are locally nilpotent with
respect to convolution (i.e. for each c ∈ C there is some n ∈ N such that
a∗n(c) := a(c1)a(c2) . . . a(cn+1) = 0).
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Corollary 4.2. Let A be an ǫ-bialgebra. If id : A → A is locally nilpotent
with respect to convolution then A is an ǫ-Hopf algebra with antipode

S =
∞
∑

n=1

(−1)nid∗n .

Moreover, S is bijective and S−1 = −
∑∞

n=1 id∗n.

Proof. As explained in the preceding paragraph, the map S =
∑∞

n=1(−1)nid∗n

is the circular inverse of id. To prove the remaining assertion, consider the ǫ-bialgebra
Ā := (A,−m, ∆). We have

id∗n
Ā

= m
(n−1)

Ā
id

⊗n
Ā

∆
(n−1)

Ā
= (−1)n−1m

(n−1)
A id

⊗n
A ∆

(n−1)
A = (−1)n−1id∗n

A .

Therefore idĀ is locally nilpotent and, by the result just proved, Ā is an ǫ-Hopf algebra
with antipode

SĀ =

∞
∑

n=1

(−1)nid∗n
Ā

= −

∞
∑

n=1

id∗n
A .

By proposition 3.11.3, S is bijective and S−1 = SĀ.

Corollary 4.3. Let (A, m, ∆) be an ǫ-bialgebra for which there is a sequence
An of subspaces with the following properties:

1. A = ∪∞n=0An,
2. A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ . . . , and
3. ∆(An) ⊆ ∪i+j<nAi⊗Aj.

Then A is an ǫ-Hopf algebra with bijective antipode.

Proof. Notice that id ∗ id = m∆ and, by induction,

id∗(n+1) = id∗n ∗ id = m(n−1)∆(n−1) ∗ id = m
(

m(n−1)∆(n−1)⊗id
)

∆ = m(n)∆(n) .

Now, under the present hypothesis, ∆ is locally nilpotent, in the sense that
if a ∈ An then ∆(n+1)(a) = 0. Therefore id is locally nilpotent with respect to
convolution and corollary 4.2 applies to give the result.

The expression for the antipode in corollary 4.2 admits another formulation in
terms of exponentials. In order to explain it, we first show that every ǫ-bialgebra
A carries a canonical biderivation D : A→ A, i.e. a map that is both a derivation
and a coderivation.

Proposition 4.4. Let (A, m, ∆) be an ǫ-bialgebra. Then the map

D = m∆ : A→ A

is both a derivation and a coderivation. Moreover, for every n ≥ 0,

Dn = n!m(n)∆(n)

where m(n) and ∆(n) are the iterated multiplications and comultiplications and Dn

is the iterated selfcomposition of D.

Proof. We calculate D(ab)
(2.1)
= m(ab1⊗b2 +a1⊗a2b = ab1b2 +a1a2b = aD(b)+

D(a)b.
Alternatively, we may notice that ∆ : A→ A⊗A is a derivation and m : A⊗A→

A is a morphism of A-bimodules (this is equivalent to associativity). Composing
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a derivation with a morphism of bimodules yields a derivation. Thus, the map
D = m∆ is a derivation. This argument can be dualized to obtain that D is a
coderivation.

To prove the remaining assertion first note that for any derivation D of an
algebra A and elements a, b, . . . , z ∈ A,

D(ab · · · z) = D(a)b · · · z + aD(b) · · · z + . . . + ab · · ·D(z) .(∗)

Write ∆(n)(a) =
∑

(a) a1⊗a2⊗ . . .⊗an+1, using Sweedler’s notation. We will show

that

Dn(a) = n!
∑

(a)

a1a2 . . . an+1

by induction on n. For n = 0 or 1 there is nothing to prove. If n ≥ 2 then by
induction hypothesis

Dn(a) = DDn−1(a) = (n− 1)!D(
∑

(a)

a1a2 . . . an)

(∗)
= (n− 1)!

∑

(a)

(

D(a1)a2 . . . an + a1D(a2) . . . an + . . . + a1 . . . an−1D(an)
)

= (n− 1)!
(

∑

(a)

D(a1)a2 . . . an +
∑

(a)

a1D(a2) . . . an + . . . +
∑

(a)

a1 . . . an−1D(an)
)

.

Now, by coassociativity and associativity, each of the n sums above is equal to
∑

(a)

a1a2 . . . anan+1 .

Hence

Dn(a) = n!
∑

(a)

a1a2 . . . an+1

as needed.

Let A be an algebra and T : A→ A a linear map. If A is a finite dimensional
real or complex algebra, or if T is locally nilpotent (i.e. for each a ∈ A there is
some n ∈ N such that T n(a) = 0) and the characteristic of the base field is zero,
then the series

eT :=

∞
∑

n=0

1

n!
T n

converges in the algebra End(A), i.e. there is a well-defined linear map eT : A→ A
such that eT (a) =

∑∞
n=0

1
n!T

n(a).

Proposition 4.5. Let (A, m, ∆) be an ǫ-bialgebra over the field k and D =
m∆. Suppose that either

(a) k = R or C and A is finite dimensional, or
(b) D is locally nilpotent and char(k) = 0.

Then A is an ǫ-Hopf algebra with bijective antipode S = −e−D.
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Proof. By proposition 4.4, Dn = n!m(n)∆(n) = n!id∗(n+1). Hence

−e−D = −

∞
∑

n=0

(−1)n

n!
Dn = −

∞
∑

n=0

(−1)nid∗(n+1) =

∞
∑

n=1

(−1)nid∗n = S

by corollary 4.2.

Remark 4.6. If D : A → A is an arbitrary derivation of an algebra A then
eD : A → A is an automorphism of algebras (when defined) [Jac, section I.2].
Dually, if D : C → C is a coderivation of a coalgebra C then eD is an automorphism
of coalgebras.

Let (A, m, ∆) be an ǫ-bialgebra and D = m∆ the canonical biderivation. The
exponentials eD and e−D : A→ A are then automorphisms of ǫ-bialgebras (assum-
ing the hypothesis of proposition 4.5). This confirms the result of proposition 3.7
that −S is an automorphism of ǫ-bialgebras, in the particular case when S is given
as an exponential.

Examples 4.7.

1. Consider the ǫ-bialgebra k[x], where ∆(x) = 1⊗1. We have D(x) = 1,
therefore D = d

dx
is the usual derivative. Hence

eD(xn) = (id + D +
D2

2!
+ . . . +

Dn

n!
)(xn)

= xn + nxn−1 +
n(n− 1)

2
xn−2 + . . . +

n!

n!
x0

=

n
∑

i=0

(

n

i

)

xi = (x + 1)n .

It follows that eD is the shift operator

eD(p(x)) = p(x + 1) .

A similar calculation shows that the antipode S = −e−D is

S(p(x)) = −p(x− 1) .

This is an alternative derivation of the expression for S found in example
3.2.1. Notice that to obtain this result one may avoid any assumptions
on k and the use of exponentials, by rephrasing the above argument in
terms of corollary 4.3 only. In fact, in this example, and in many others
examples of interest, even stronger assumptions than those of corollary 4.3
hold, as follows. Suppose that the ǫ-bialgebra A admits a decomposition
A = ⊕∞

n=0An such that

∆(An) ⊆
∑

i+j=n−1

Ai⊗Aj .(∗)

Then the sequence of subspaces A′
n = ⊕n

i=0Ai satisfies the hypothesis of the
corollary and hence A is an ǫ-Hopf algebra with antipode S =

∑∞
n=1(−id)∗n.

Notice that, when (∗) holds, one could redefine the degree in order to
obtain a degree-preserving comultiplication. However, in most examples,
there is a natural notion of degree for which both (∗) and the additional
condition m(Ai⊗Aj) ⊆ Ai+j hold. It is for this reason that we do not shift
the degree.
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2. Hypothesis (∗) are also satisfied in the case of the path ǫ-bialgebra A = kQ
of a quiver Q, taking An = kQn. The formula of corollary 4.3 immediately
yields the expression for the antipode S given in example 3.2.2.

3. Let us illustrate a few of the previous results for the ǫ-bialgebra P of posets.
First of all, since ∆(P ) =

∑

0P <x<1P
[0P , x]⊗[x, 1P ], we have

id∗n(P ) = m(n−1)∆(n−1)(P ) =
∑

0P <x1<...<xn−1<1P

[0P , x1][x1, x2] . . . [xn−1, 1P ] ;

therefore, by corollary 4.2,

S(P ) =

∞
∑

n=1

(−1)n
∑

0P <x1<...<xn−1<1P

[0P , x1][x1, x2] . . . [xn−1, 1P ] .

This is the formula announced in example 3.2.3.
Now consider the linear functionals ζ : P→ k and µ : P→ k defined by

ζ(P ) = 1 ∀ poset P ∈ P and µ = ζS .

Since ζ is a morphism of algebras, proposition 3.14 implies that it is circular
invertible with inverse µ, in other words,

0 = µ ⊛ ζ = µ ∗ ζ + µ + ζ .

Evaluating at a poset P ∈ P we find

0 =
∑

0P <x<1P

µ[0P , x]ζ[x, 1P ] + µ(P ) + ζ(P )

⇒ µ[0P , 1P ] = −1−
∑

0P <x<1P

µ[0P , x] .

This shows that µ is the usual Möbius function of posets (since this is its
defining recursion).

Applying ζ to both sides of the explicit formula for S above we find

µ(P ) =
∞
∑

n=1

(−1)n#{0P < x1 < . . . < xn−1 < 1P } ;

the well-known formula of P.Hall giving the Möbius function in terms of
numbers of chains.

Finally, proposition 3.14 also says that −µ is a morphism of algebras,
in other words that

µ(PQ) = −µ(P )µ(Q) ,

another well-known property of the product of posets under consideration.
Further consideration of the ǫ-bialgebra structure of P enables one to

obtain a simple algebraic proof of the existence of the cd-index of polytopes.
This important application is explained in detail in [A1].

4. For the ǫ-bialgebra k〈x1,x2,x3, . . . 〉 of example 2.3.5, we have

∆(xn) =

n−1
∑

i=0

xi⊗xn−1−i =
∑

(n1,n2)∈C+(n+1,2)

xn1−1⊗xn2−1 ,
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where C+(n + 1, k) = {(n1, . . . , nk) / ni ∈ Z+, n1 + . . . + nk = n + 1}.
Hypothesis (∗) are therefore satisfied if we set deg(xn) = n and deg(uv) =
deg(u) deg(v).

It follows by induction that

id∗k(xn) = m(k−1)∆(k−1)(xn) =
∑

(n1,... ,nk)∈C+(n+1,k)

xn1−1xn2−1 . . .xnk−1

and hence, by corollary 4.2,

S(xn) =
n+1
∑

k=1

(−1)k
∑

(n1,... ,nk)∈C+(n+1,k)

xn1−1xn2−1 . . .xnk−1

as announced in example 3.2.4.

5. The associative Yang-Baxter equation

Let A be an associative algebra and M an A-bimodule. There is a derivation
∆r : A→M associated to each element r ∈M as follows:

∆r(a) = a · r − r · a ∀ a ∈ A .

Such derivations are called principal. In this section we discuss when a principal
derivation ∆ : A→ A⊗A satisfies the coassociativity condition

(∆⊗idA) ◦∆ = (idA⊗∆) ◦∆ ,

and therefore endows A with a ǫ-bialgebra structure. Given an element r =
∑

i ui⊗vi ∈ A⊗A, let

r12 =
∑

i

ui⊗vi⊗1, r13 =
∑

i

ui⊗1⊗vi and r23 =
∑

i

1⊗ui⊗vi ∈ A+⊗A+⊗A+ ,

where A+ = A⊕ k is the result of adjoining a unit element to A.
Recall that an element w ∈W of an A-bimodule W is called A-invariant if

a · w = w · a ∀ a ∈ A .

Below, we view A⊗A⊗A as an A-bimodule via

a · (x⊗y⊗z) = ax⊗y⊗z and (x⊗y⊗z) · b = x⊗y⊗zb .

Proposition 5.1. A principal derivation ∆r : A → A⊗A is coassociative if
and only if the element

r13r12 − r12r23 + r23r13 ∈ A⊗A⊗A

is A-invariant.

Proof. Keeping the above notation, we compute

(∆r⊗idA) ◦∆r(a) = (∆r⊗idA)(a · r − r · a)

= (∆r⊗idA)
(

∑

i

aui⊗vi − ui⊗via
)

=
∑

i

(aui · r − r · aui)⊗vi − (ui · r − r · ui)⊗via

=
∑

i,j

auiuj⊗vj⊗vi − uj⊗vjaui⊗vi − uiuj⊗vj⊗via + uj⊗vjui⊗via

= a · r13r12 − r12(1⊗a⊗1)r23 − r13r12 · a + r12r23 · a .



INFINITESIMAL HOPF ALGEBRAS 17

Similarly,

(idA⊗∆r) ◦∆r(a) = (idA⊗∆r)(a · r − r · a)

= (idA⊗∆r)
(

∑

i

aui⊗vi−ui⊗via
)

=
∑

i

aui⊗(vi ·m−m ·vi)−ui⊗(via ·m−m ·via)

=
∑

i,j

aui⊗viuj⊗vj − aui⊗uj⊗vjvi − ui⊗viauj⊗vj + ui⊗uj⊗vjvia

= a · r12r23 − a · r23r13 · −r12(1⊗a⊗1)r23 + r23r13 · a .

Comparing the two expressions above we see that ∆r is coassociative if and only if

a · r13r12 − r13r12 · a + r12r23 · a− a · r12r23 + a · r23r13 − r23r13 · a = 0 ,

i.e. if and only if r13r12 − r12r23 + r23r13 is A-invariant.

Remark 5.2. The situation above parallels one encountered in the theory of
quantum groups [Dri], as we now recall. If g is a Lie algebra and r ∈ g⊗g is an
element, then the principal derivation δr : g → g⊗g is coassociative if and only if
the element

[r12, r13] + [r12, r23] + [r13, r23] ∈ g⊗g⊗g

is g-invariant. Here “principal derivations” and “invariants” are taken in the sense
of Lie theory, and each rij above lives in U(g)⊗U(g)⊗U(g).

The classical Yang-Baxter equation is the equality

[r12, r13] + [r12, r23] + [r13, r23] = 0 .(CYB)

Solutions to this equation give rise to Lie bialgebras and quantum groups [Dri].

By analogy with the above situation, we are led to consider solutions r ∈ A⊗A
to the equation

r13r12 − r12r23 + r23r13 = 0 ,(AYB)

which we call the associative Yang-Baxter equation. For each solution r, the prin-
cipal derivation ∆r : A → A⊗A endows A with the structure of a ǫ-bialgebra,
according to proposition 5.1.

Definition 5.3. A quasitriangular ǫ-bialgebra is a pair (A, r) where A is an
associative algebra and r ∈ A⊗A is a solution to (AYB).

As explained above, in this case the triple (A, m, ∆r) is indeed an ǫ-bialgebra.
We present some examples next.

Examples 5.4.

1. Let A be any unital algebra possessing an element b ∈ A such that b2 = 0.
Then r = 1⊗b satisfies (AYB). The corresponding ǫ-bialgebra structure is

∆r(a) = a⊗b− 1⊗ba ∀ a ∈ A .

The ǫ-bialgebra of dual numbers of example 2.3.6 is a particular case.
2. The polynomial algebra k[x] is not quasitriangular. However, let us regard

the element

r :=
1

x− y
∈ k(x,y)
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as belonging to a certain completed tensor product k[x]⊗̂k[y]. Then (AYB)
holds for r:

r13r12 − r12r23 + r23r13 =
1

x− z
·

1

x− y
−

1

x− y
·

1

y − z
+

1

y − z
·

1

x− z

=
y − z− (x− z) + x− y

(x − z)(x− y)(y − z)
= 0 .

The corresponding comultiplication is indeed the Newton divided difference:

∆r(f) = f · r − r · f =
f(x)

x− y
−

f(y)

x− y
.

In this sense, k[x] is “essentially” quasitriangular.
3. More generally, let A be a Frobenius k-algebra and t ∈ A⊗A a Casimir

element. Then the k-algebra A[x] is “essentially” quasitriangular with

r =
t

x− y
.

This is analogous to Drinfeld’s solution of (CYB) for the loop Lie algebra
g[x] of a semisimple finite dimensional Lie algebra g in terms of the Casimir
tensor t ∈ g⊗g [Dri, example 3.3].

4. Suppose a ∈ A is an element such that a2 = 0, and A is an arbitrary algebra.
Then r = a⊗a is a solution to (AYB). For instance, if A = M2(k) we may

take a =

[

0 1
0 0

]

. The corresponding ǫ-bialgebra structure on M2(k) is the

one described on example 2.3.7.
5. The solutions to (AYB) for M2(C) can be explicitly described. Notice that if

r =
∑

i ui⊗vi is a solution, then so are its transpose
∑

i vt
i
⊗ut

i and any conju-
gate

∑

i xuix
−1⊗xvix

−1. It can be shown that the following is the complete
list of solutions to (AYB) for M2(C), up to conjugates and transposes:

(a) r0 = 0;

(b) rǫ =

[

1 0
0 1

]

⊗

[

0 1
0 0

]

;

(c) r1 =

[

0 1
0 0

]

⊗

[

0 1
0 0

]

;

(d) r2 =

[

0 0
0 1

]

⊗

[

0 1
0 0

]

and

(e) r3 =

[

1 0
0 0

]

⊗

[

0 1
0 0

]

−

[

0 1
0 0

]

⊗

[

1 0
0 0

]

.

The comultiplication corresponding to the last solution is

∆r3

[

a b
c d

]

=

[

a− d b
c 0

]

⊗

[

0 1
0 0

]

−

[

c 0
0 c

]

⊗

[

1 0
0 0

]

.

This turns out to be an ǫ-Hopf algebra with antipode

S

[

a b
c d

]

=

[

−a− c a− b + c− d
−c c− d

]

as can be easily checked.
6. For the algebra A = kX of all functions X → k, where X is a finite set and

k a field, the only solution to (AYB) is r = 0. In fact, the same conclusion
holds for any algebra A such that A⊗A has no nilpotents (other than zero),
since it follows immediately from (AYB) that r2 = 0 necessarily.
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Next we present some properties of quasitriangular ǫ-bialgebras. The first one
shows that this notion is also analogous to that of ordinary quasitriangular bial-
gebras. The remaining properties are analogs of well-known properties of ordinary
quasitriangular bialgebras or Hopf algebras.

Proposition 5.5. Let (A, r) be a quasitriangular ǫ-bialgebra and ∆ = ∆r.
Then

∆(a) = a · r − r · a ∀ a ∈ A ;(5.1)

(∆⊗id)(r) = −r23r13 and(5.2)

(id⊗∆)(r) = r13r12 .(5.3)

Conversely, if an ǫ-bialgebra (A, m, ∆) satisfies (5.1), (5.2) and (5.3) for some
r ∈ A⊗A, then (A, r) is a quasitriangular ǫ-bialgebra and ∆ = ∆r.

Proof. Property (5.1) is just a restatement of ∆ = ∆r. Assuming this, we
compute

(∆⊗id)(r) =
∑

i

∆(ui)⊗vi =
∑

i,j

uiuj⊗vj⊗vi − uj⊗vjui⊗vi

= r13r12 − r12r23
(AY B)

= − r23r13

and

(id⊗∆)(r) =
∑

i

ui⊗∆(vi) =
∑

i,j

ui⊗viuj⊗vj − ui⊗uj⊗vj⊗vi

= r12r23 − r23r13
(AY B)

= r13r12

which proves (5.2) and (5.3). The same calculation shows that the converse holds.

Given a finite dimensional ǫ-bialgebra A = (A, m, ∆), we are interested in the
ǫ-bialgebras

A′ := (A∗, ∆∗op

,−m∗cop

) and ′A := (A∗,−∆∗op

, m∗cop

)

(recall the basic constructions of section 2).

Proposition 5.6. Let (A, r) be a finite dimensional quasitriangular ǫ-bialgebra,
r =

∑

i ui⊗vi. Then the maps

λr : ′A→ A , f 7→
∑

i

f(ui)vi and

ρr : A′ → A , f 7→
∑

i

uif(vi)

are morphisms of ǫ-bialgebras.

Proof. First consider λr : ′A→ A. The multiplication in ′A is fg = −(g⊗f)∆A.
Therefore

λr(fg) =
∑

i

(fg)(ui)vi = −
∑

i

(g⊗f)∆A(ui)vi = −(g⊗f⊗id)(∆A⊗id)(r)

(5.2)
= (g⊗f⊗id)(r23r13) =

∑

i,j

g(uj)f(ui)vivj = λr(f)λr(g) .
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Thus λr is a morphism of algebras.
The comultiplication in ′A is

∆′A(f) = f1⊗f2 ⇐⇒ f(ab) = f1(b)f2(a) ∀ a, b ∈ A .

Therefore

(λr⊗λr)∆′A(f) = λr(f1)λr(f2) =
∑

i,j

f1(ui)f2(uj)vi⊗vj = (f⊗id⊗id)(r13r12)

(5.3)
= (f⊗id⊗id)(id⊗∆A)(r) =

∑

i

f(ui)∆A(vi) = ∆A

(

∑

i

f(ui)vi

)

= ∆Aλr(f) .

Thus λr is also a morphism of coalgebras.
We will reduce the assertion regarding ρr : A′ → A to the one just proved, by

using that ρr = λτ(r), where τ(a⊗b) = b⊗a.
First we claim that τ(r) is a solution to (AY B) for the algebra (A, mop). To

see this, let σ(x⊗y⊗z) = z⊗y⊗x. Then

τ(r)13 ·
opτ(r)12 =

∑

i,j

vi ·
opvj⊗uj⊗ui =

∑

i,j

vjvi⊗uj⊗ui = σ(ui⊗uj⊗vjvi) = σ(r23r13) .

Similarly, τ(r)12 ·
op τ(r)23 = σ(r12r23) and τ(r)23 ·

op τ(r)13 = σ(r13r12). Thus

τ(r)13 ·
op τ(r)12 − τ(r)12 ·

op τ(r)23 + τ(r)23 ·
op τ(r)13

= σ(r13r12 − r12r23 + r23r13) = 0

as claimed.
Now, the comultiplication on (A, mop) corresponding to τ(r) is

∆τ(r)(a) = a ·op τ(r) − τ(r) ·op a =
∑

i

via⊗ui −
∑

i

vi⊗aui

= −τ(a · r − r · a) = −τ∆r(a) = −∆cop
r (a) .

Thus, the quasitriangular ǫ-bialgebra corresponding to τ(r) is B := (A, mop,−∆cop
r ).

It follows from the part of the statement already proved that λτ(r) : ′B → B is a
morphism of ǫ-bialgebras. A trivial inspection of the various basic constructions
reveals that this is the same thing as saying that ρr : A′ → A is a morphism of
ǫ-bialgebras.

Corollary 5.7. Let (A, r) be a quasitriangular ǫ-Hopf algebra with bijective
antipode S. Then

(a) (id⊗S)(r) = (S−1⊗id)(r);
(b) (S⊗id)(r) = (id⊗S−1)(r) and
(c) (S⊗S)(r) = r = (S−1⊗S−1)(r).

Proof. We know from propositions 5.6 and 3.8 that λr : ′A→ A is a morphism
of ǫ-Hopf algebras. By propositions 3.11, 3.12 and 3.13, the antipode of ′A is (S−1)∗.
Therefore, ∀ f ∈ A∗,

λr(S
−1)∗(f) = Sλr(f)⇒ λr(fS−1) = S

(

∑

i

f(ui)vi

)

⇒
∑

i

(fS−1)(ui)vi =
∑

i

f(ui)S(vi) .
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Hence
∑

i

S−1(ui)⊗vi =
∑

i

ui⊗S(vi)⇒ (S−1⊗id)(r) = (id⊗S)(r) .

This proves (a).
For the same reasons, ρr : A′ → A is a morphism of ǫ-Hopf algebras. Therefore,

∀ f ∈ A∗,

ρr(S
−1)∗(f) = Sρr(f)⇒ ρr(fS−1) = S

(

∑

i

uif(vi)
)

⇒
∑

i

ui(fS−1)(vi) =
∑

i

S(ui)f(vi) .

Hence
∑

i

ui⊗S−1(vi) =
∑

i

S(ui)⊗vi ⇒ (id⊗S−1)(r) = (S⊗id)(r) ,

proving (b). Part (c) follows from (a) by applying S⊗id and id⊗S−1 to both sides.

Example 5.8. The results of corollary 5.7 can be verified directly for the “es-
sentially” quasitriangular ǫ-Hopf algebra k[x]. We have

S⊗id : k[x,y]→ k[x,y] , f(x, y) 7→ −f(x− 1, y) ;

id⊗S : k[x,y]→ k[x,y] , f(x, y) 7→ −f(x, y − 1) ;

S−1⊗id : k[x,y]→ k[x,y] , f(x, y) 7→ −f(x + 1, y) ;

id⊗S−1 : k[x,y]→ k[x,y] , f(x, y) 7→ −f(x, y + 1) .

Therefore

(id⊗S)(r) =
−1

x− (y − 1)
=

−1

x + 1− y
= (S−1⊗id)(r) ;

(S⊗id)(r) =
−1

x− 1− y
=

−1

x− (y + 1)
= (id⊗S−1)(r) ;

(S⊗S)(r) =
1

x− 1− (y − 1)
=

1

x− y
= r ;

(S−1⊗S−1)(r) =
1

x + 1− (y + 1)
=

1

x− y
= r .

Remark 5.9. There are many other interesting properties of quasitriangular
ǫ-Hopf algebras. In particular one can show that if the antipode S is bijective then
−S is necessarily given as circular conjugation by the canonical element

u := −
∑

i

S(ui)vi = −
∑

i

uiS
−1(vi) .

This is the analog of Drinfeld’s element for ordinary quasitriangular Hopf algebras.
These properties, as well as the connection between ǫ-bialgebras and Lie bialgebras
are discussed in detail in [A2].

We close this section with an application of proposition 5.1, which complements
the result of example 5.4.6.
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Proposition 5.10. Let X be a finite set and kX the algebra of functions on
X. Then the only ǫ-bialgebra structure on kX is the trivial one: ∆ = 0.

Proof. Let ∆ : kX → kX⊗kX be a coassociative derivation. Since kX is a
separable algebra, H1(kX , M) = 0 for any kX -bimodule M , i.e. any derivation is
principal [Wei, theorem 9.2.11]. Thus there is some element

r =
∑

x,y

r(x, y)ex⊗ey ∈ kX⊗kX such that ∆ = ∆r ,

where {ex} denotes the canonical basis of orthogonal idempotents of kX . By propo-
sition 5.1,

r13r12 − r12r23 + r23r13 =
∑

x,y,z

r(x, z)r(x, y)ex⊗ey⊗ez−
∑

x,y,z

r(x, y)r(y, z)ex⊗ey⊗ez+
∑

x,y,z

r(x, z)r(y, z)ex⊗ey⊗ez

is an kX -invariant element of kX⊗kX⊗kX . Applying the morphism of kX -bimodules
id⊗m : kX⊗kX⊗kX → kX⊗kX we deduce that

∑

x,y

r(x, y)2ex⊗ey

is an kX -invariant element of kX⊗kX . Hence, acting with ez from both sides on
this element we must have that

∑

y

r(z, y)2ez⊗ey =
∑

x

r(x, z)2ex⊗ez .

It follows that r(x, y) = 0 ∀ x 6= y. Thus

r =
∑

x

r(x, x)ex⊗ex .

But such an element is clearly kX -invariant, so ∆r = 0.

6. Bicrossproducts of associative algebras

In this section we present a notion analogous to that of “matched pairs” of
groups or Hopf algebras [Kas, definitions IX.1.1, IX.2.2], and the corresponding
bicrossproduct construction, for associative nonunital algebras. Drinfeld’s double
for ǫ-bialgebras will be obtained as a particular case in section 7. Matched pairs
of groups are also called “double groups” and we choose this terminology for the
analogous notion for associative algebras.

Definition 6.1. A double algebra is a pair (A, B) of associative nonunital
algebras together with

a left B-module structure on A: B ×A→ A, (b, a) 7→ b→ a(6.1)

a right A-module structure on B: B × A→ B, (b, a) 7→ b← a(6.2)

such that

b→ aa′ = (b→ a)a′ + (b← a)→ a′(6.3)

bb′ ← a = b(b′ ← a) + b← (b′ → a) .(6.4)
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Proposition 6.2. Given a double algebra (A, B), there is a unique associative
multiplication on the space

A©B := (A⊗B)⊕A⊕B

such that

(a) A and B are subalgebras of A©B,
(b) a · b = a⊗b and
(c) b · a = b→ a + b← a.

Proof. We define a multiplication on A©B by formulas (a), (b) and (c) to-
gether with:

(d) a · (a′⊗b) = aa′⊗b, (a⊗b) · b′ = a⊗bb′;
(e) (a⊗b) · a′ = a(b→ a′) + a⊗(b← a′), b · (a⊗b′) = (b→ a)⊗b′ + (b← a)b′;
(f) (a⊗b) · (a′⊗b′) = a(b→ a′)⊗b′ + a⊗(b← a′)b′.

Associativity plus (a), (b) and (c) clearly force us to define the multiplication in
this way; so uniqueness is guaranteed, once we prove that this multiplication is
actually associative.

It is enough to check the associativity axiom on the generators a ∈ A and b ∈ B
of A©B. There are four cases to consider:

a(a′a′′) = (aa′)a′′, b(b′b′′) = (bb′)b′′;(i)

a(a′b) = (aa′)b, a(bb′) = (ab)b′;(ii)

a(ba′) = (ab)a′, (ab′) = (ba)b′;(iii)

b(aa′) = (ba)a′, b(b′a) = (bb′)a.(iv)

(i) holds by (a), i.e. by definition. Similarly, (ii) and (iii) hold by definitions
(a)-(e). (iv) is the only case that requires verification. For the first half of (iv), we
have

(ba)a′ (c)= (b→ a + b← a)a′ = (b→ a)a′ + (b← a)a′

(c)
= (b→ a)a′ + (b← a)→ a′ + (b← a)← a′

(6.3), (6.2)
= b→ aa′ + b← aa′

(c)
= b(aa′) .

Similarly the other half of (iv) follows from (c), (6.4) and (6.1).

Remark 6.3. The proof shows that the following converse of proposition 6.2
holds: given a pair of algebras (A, B) and linear maps (b, a) 7→ b→ a and (b, a) 7→
b ← a, if there is an associative multiplication on A©B satisfying (a), (b) and (c)
then axioms (6.1)-(6.4) hold, i.e. (A, B) is a double algebra.

Examples 6.4.
For the purposes of this paper, the most important example of a double algebra

is provided by an ǫ-bialgebra and its dual, since this gives rise to Drinfeld’s double
(see section 7). Other interesting examples are discussed below.

1. Let A be any associative algebra and B := End(A), an algebra under com-
position. Define

T → a := T (a) and T ← a := TLa − LT (a)
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where La ∈ End(A) is La(b) = ab. The reader can easily check that then
(A, End(A)) is a double algebra. The resulting algebra structure on the
subalgebra A⊗End(A) of A©End(A) is

(a⊗T ) · (b⊗S) = aT (b)⊗S + a⊗TLbS − a⊗LT (b)S .

2. Let A and B be any associative algebras and define

b→ a := 0 and b← a := 0 .

Then (A, B) is trivially a double algebra. The resulting algebra structure on
A©B can be described as follows. Consider first the direct sum of algebras
R := A⊕B:

(a + b) · (a′ + b′) = aa′ + bb′

and view the space M := A⊗B as an A⊕B-bimodule via

(a + b) · a′⊗b′ = aa′⊗b′ and a′⊗b′ · (a + b) = a′⊗b′b .

The map

f : R×R→M, f(a + b, a′ + b′) = a⊗b′

is then a Hochschild 2-cocycle and the corresponding Hochschild extension
is precisely the algebra A©B of proposition 6.2

0→M → A©B → R→ 0 .

We close this section with the universal property of the bicrossproduct construction.
This says that A©B is the free product of algebras A ∗ B modulo the relation
b · a = b→ a + b← a.

Proposition 6.5. Let (A, B) be a double algebra, C another algebra and f :
A→ C and g : B → C morphisms of algebras such that ∀ a ∈ A, b ∈ B,

g(b)f(a) = f(b→ a) + g(b← a) .(6.5)

Then there exists a unique morphism of algebras h : A©B → C such that h|A = f
and h|B = g.

Proof. Since a⊗b = a · b, h must be defined by

h(a) = f(a), h(b) = g(b) and h(a⊗b) = f(a)g(b) .

Thus, uniqueness is clear. To show that h is indeed a morphism of algebras one has
to check the multiplicativity property

h(α)h(β) = h(αβ)(∗)

in each of the following nine cases:

Case i ii iii iv v vi vii viii ix
α in A B A A A⊗B B A⊗B B A⊗B
β in A B B A⊗B B A A A⊗B A⊗B

In cases i and ii, (∗) holds by hypothesis. In case iii it holds by definition of h:

h(a · b) = h(a⊗b) = f(a)g(b) = h(a)h(b) .

Cases iv and v follow formally from i, ii and iii. For instance, case iv is

h(a · (a′⊗b)) = h(aa′⊗b) = h(aa′b)
iii
= h(aa′)h(b)

i
= h(a)h(a′)h(b)

iii
= h(a)h(a′⊗b) .
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The crucial case is vi:

h(ba) = h(b→ a) + h(b← a) = f(b→ a) + g(b← a) = g(b)f(a) = h(b)h(a)

by hypothesis.
Cases vii, viii and ix again reduce to the previous cases, because of the fact

that B · A ⊆ A + B. For instance, case viii is

h(b · a⊗b′) = h(bab′) = h((b→ a)b′) + h((b← a)b′)

ii, iii
= h(b→ a)h(b′) + h(b← a)h(b′)

= h(b→ a + b← a)h(b′) = h(ba)h(b′)
vi
= h(b)h(a)h(b′)

iii
= h(b)h(ab′) .

Remark 6.6. Double algebras are studied in more detail in [A2]. In particular
it is discussed under which conditions A©B is an ǫ-bialgebra.

7. Drinfeld’s double for infinitesimal Hopf algebras

For ordinary Hopf algebras, the double D(H) contains H and H∗op

as subal-
gebras. The relevant version of the dual for (finite dimensional) ǫ-bialgebras turns
out to be

A′ := (A∗, ∆∗op

,−m∗cop

) ,

as already considered on section 5. In terms of the given ǫ-bialgebra structure on
(A, m, ∆), the structure on A′ is:

(f · g)(a) = g(a1)f(a2) ∀ a ∈ A, f, g ∈ A′ and(7.1)

∆(f) = f1⊗f2 ⇐⇒ f(ab) = −f2(a)f1(b) ∀ f ∈ A′, a, b ∈ A .(7.2)

Below we always refer to this structure when dealing with multiplications or co-
multiplications of elements of A′.

Proposition 7.1. Consider the maps A′ ×A→ A and A′ ×A→ A′:

f → a = f(a1)a2 and f ← a = −f2(a)f1(7.3)

or equivalently

g(f → a) = (gf)(a) and (f ← a)(b) = f(ab) ;(7.4)

in terms of the multiplication and comultiplication of A′. Then (A, A′) is a double
algebra.

Proof. We have to check the conditions in definition 6.1. First, it is clear
that f ← a defines a right A-module structure on A′ and that f → a defines a left
A′-module structure on A (i.e. the right A∗-module structure corresponding to the
left A-module structure a 7→ a1⊗a2). It remains to verify axioms (6.3) and (6.4).
We have

f → ab
(2.1), (7.3)

= f(ab1)b2 + f(a1)a2b

(7.4)
= (f ← a)(b1)b2 + f(a1)a2b

(7.3)
= (f ← a)→ b + (f → a)b
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which proves (6.3). Similarly,

(fg ← a)(b)
(7.4)
= (fg)(ab)

(7.1), (2.1)
= g(ab1)f(b2) + g(a1)f(a2b)

(7.4)
= (g ← a)(b1)f(b2) + f

(

g(a1)a2b
)

(7.1), (7.3)
=

(

f(g ← a)
)

(b) + f
(

(g → a)b
)(7.4)

=
(

f(g ← a) + f ← (g → a)
)

(b)

which proves (6.4).

Lemma 7.2. Let A be a finite dimensional ǫ-bialgebra, {ei} be a linear basis of
A and {fi} the dual basis of A′. Then ∀ a ∈ A and f ∈ A′,

∑

i

fi(a)ei = a and
∑

i

f(ei)fi = f(7.5)

∑

i

aei⊗fi =
∑

i

ei⊗(fi ← a)(7.6)

∑

i

(f → ei)⊗fi =
∑

i

ei⊗fif .(7.7)

Proof. Equations 7.5 are immediate from the definition of dual bases. To
prove (7.6) we evaluate on b ∈ A:

∑

i

fi(b)aei

(7.5)
= ab

(7.5)
=

∑

i

fi(ab)ei

(7.4)
=

∑

i

(fi ← a)(b)ei ,

as needed. Similarly, to prove (7.7) we evaluate on a ∈ A:

∑

i

(fif)(a)ei

(7.1)
=

∑

i

f(a1)fi(a2)ei

(7.5)
= f(a1)a2

(7.3)
= f → a

(7.5)
=

(

∑

i

f(ei)fi

)

→ a =
∑

i

fi(a)(f → ei) ,

as needed.

Theorem 7.3. Let A be a finite dimensional ǫ-bialgebra, consider the vector
space

D(A) := (A⊗A′)⊕A⊕A′

and denote the element a⊗f ∈ A⊗A′ ⊆ D(A) by a ⊲⊳ f . Let {ei} be a linear basis
of A and {fi} the dual basis of A′.

1. D(A) is an associative algebra with multiplication determined by
(a) A and A′ are subalgebras,
(b) a · f = a ⊲⊳ f and
(c) f · a = f → a + f ← a.

2. Let

r = −
∑

i

ei⊗fi ∈ A⊗A′ ⊆ D(A)⊗D(A) .

Then (D(A), r) is a quasitriangular ǫ-bialgebra.
3. The corresponding coassociative comultiplication on D(A) is determined by

(d) A and A′ are subcoalgebras;
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(e) ∆(a ⊲⊳ f) = (a ⊲⊳ f1)⊗f2 + a1⊗(a2 ⊲⊳ f).

Proof. Part 1 follows immediately from propositions 7.1 and 6.2. To prove 2
we must show that (AYB) holds. We compute

r13r12 − r12r23 + r23r13 =
∑

i,j

ejei⊗fi⊗fj −
∑

i,j

ei⊗fiej⊗fj +
∑

i,j

ei⊗ej⊗fjfi

(c)
=

∑

i,j

ejei⊗fi⊗fj −
∑

i,j

ei⊗(fi ← ej)⊗fj −
∑

i,j

ei⊗(fi → ej)⊗fj +
∑

i,j

ei⊗ej⊗fjfi

=
∑

i,j

(

ejei⊗fi − ei⊗(fi ← ej)
)

⊗fj −
∑

i,j

ei⊗

(

(fi → ej)⊗fj − ej⊗fjfi

)

= 0

by (7.6) (applied to a = ej) and (7.7) (applied to f = fi).
It only remains to check that ∆ = ∆r verifies (d) and (e). Since ∆ is a

derivation, (e) follows from (b) and (d). Now, for any a ∈ A we have

a · r − r · a = −
∑

i

aei⊗fi +
∑

i

ei⊗fia

(c)
= −

∑

i

aei⊗fi +
∑

i

ei⊗(fi ← a) +
∑

i

ei⊗(fi → a)

(7.6)
=

∑

i

ei⊗(fi → a)
(7.3)
=

∑

i

ei⊗fi(a1)a2
(7.5)
= a1⊗a2 = ∆A(a) .

This proves that A is a subcoalgebra of D(A). Similarly, for any f ∈ A′,

f · r − r · f = −
∑

i

fei⊗fi +
∑

i

ei⊗fif

(c)
= −

∑

i

(f ← ei)⊗fi −
∑

i

(f → ei)⊗fi +
∑

i

ei⊗fif

(7.7)
= −

∑

i

(f ← ei)⊗fi

(7.3)
=

∑

i

f2(ei)f1⊗fi

(7.5)
= f1⊗f2 = ∆A′(f) .

This proves that A′ is a subcoalgebra of D(A). Thus (d) holds and the proof is
complete.

Proposition 7.4. Let A be a finite dimensional ǫ-Hopf algebra with bijective
antipode SA. Then D(A) is an ǫ-Hopf algebra with antipode S determined by

S(a) = SA(a), S(f) = fS−1
A and S(a ⊲⊳ f) = −SA(a) ⊲⊳ fS−1

A ∀ a ∈ A, f ∈ A′.

Proof. As already noted in the proof of corollary 5.7, A′ is an ǫ-Hopf algebra
with antipode SA′ = (S−1

A )∗. Thus, we only need to verify the antipode axioms (A)
for S on an element of the form α := a ⊲⊳ f . Referring to the conditions in theorem
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7.3 we have

S(α1)α2 + S(α) + α
(e)
= S(a ⊲⊳ f1)f2 + SA(a1)(a2 ⊲⊳ f) + S(a ⊲⊳ f) + a ⊲⊳ f

= −
(

SA(a) ⊲⊳ SA′(f1)
)

f2 + SA(a1)(a2 ⊲⊳ f)− SA(a) ⊲⊳ SA′(f) + a ⊲⊳ f

(a), (b)
= − SA(a) ⊲⊳ SA′(f1)f2 + SA(a1)a2 ⊲⊳ f − SA(a) ⊲⊳ SA′(f) + a ⊲⊳ f

= SA(a) ⊲⊳ f − SA(a) ⊲⊳ f = 0

by the antipode axioms for SA and SA′ . Similarly one checks that

α1S(α2) + α + S(α) = 0 .

Our last result shows that every quasitriangular ǫ-bialgebra is a quotient of its
double. This is a familiar property of ordinary quasitriangular bialgebras.

Proposition 7.5. Let A be a finite dimensional ǫ-bialgebra. Then A is quasi-
triangular if and only if the canonical inclusion A →֒ D(A) splits as a morphism of
ǫ-bialgebras.

Proof. Suppose that (A, r) is quasitriangular for some r =
∑

ui⊗vi ∈ A⊗A;
let ∆ = ∆r . Define πr : D(A)→ A by

πr(a) = a, πr(f) = −
∑

i

f(ui)vi and πr(a ⊲⊳ f) = −
∑

i

f(ui)avi .(∗)

To show that πr is a morphism of algebras, according to the universal property of
double algebras, we only need to check that

πr(f)πr(a) = πr(f → a) + πr(f ← a) ∀ a ∈ A, f ∈ A′ .

We have that

a1⊗a2 = ∆(a) = a · r − r · a =
∑

i

aui⊗vi −
∑

i

ui⊗via

⇒ f(a1)a2 =
∑

i

f(aui)vi −
∑

i

f(ui)via

(7.3), (7.4)
⇒ f → a =

∑

i

(f ← a)(ui)vi −
∑

i

f(ui)via

(∗)
⇒ πr(f → a) = −πr(f ← a) + πr(f)πr(a)

as needed.
Finally, to show that πr is a morphism of coalgebras, it suffices to check that

πr |A and πr |A′ are morphisms of coalgebras, since A and A′ generate D(A) as an
algebra (this is a general property of ǫ-bialgebras). Obviously πr |A is a morphism
of coalgebras. If f ∈ A′, then

(πr⊗πr)∆(f)
(∗)
=

∑

i,j

f1(ui)vi⊗f2(uj)vj

(7.2)
= −

∑

i,j

f(ujui)vi⊗vj

= −(f⊗id⊗id)(r13r12)
(5.3)
= − (f⊗id⊗id)(id⊗∆)(r) = −

∑

i

f(ui)∆(vi)
(∗)
= ∆πr(f)
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as needed.
For the converse it follows immediately from theorem 7.3 that if π : D(A)→ A

is a section of A →֒ D(A), then letting

r := π⊗π(−
∑

i

ei⊗fi) ∈ A⊗A

one obtains a quasitriangular ǫ-bialgebra (A, r).

Remark 7.6. The morphism λr : A′ → A of proposition 5.6 is the composition
of the map ′A → A′, a → −a, (an isomorphism of ǫ-bialgebras), the canonical
inclusion A′ →֒ D(A) and the morphism πr : D(A)→ A in the proof of proposition
7.5.

Modules over the double admit a simple description in terms of modules and
comodules over the original ǫ-bialgebra. This will be detailed in [A2].
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