
PREPOISSON ALGEBRAS

MARCELO AGUIAR

Abstract. A definition of prepoisson algebras is proposed, combining structures of prelie and zinbiel
algebra on the same vector space. It is shown that a prepoisson algebra gives rise to a Poisson algebra
by passing to the corresponding Lie and commutative products. Analogs of basic constructions of
Poisson algebras (through deformations of commutative algebras, or from filtered algebras whose
associated graded algebra is commutative) are shown to hold for prepoisson algebras. The Koszul
dual of prepoisson algebras is described. It is explained how one may associate a prepoisson algebra
to any Poisson algebra equipped with a Baxter operator, and a dual prepoisson algebra to any Poisson
algebra equipped with an averaging operator. Examples of this construction are given. It is shown that
the free zinbiel algebra (the shuffle algebra) on a prelie algebra is a prepoisson algebra. A connection
between the graded version of this result and the classical Yang-Baxter equation is discussed.
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1. Prelie and zinbiel algebras

Throughout the paper, we deal with the left version of each type of algebras. All definitions and
results admit a right version.

A left prelie algebra is a vector space A together with a bilinear map ◦ : A × A → A such that

x ◦ (y ◦ z) − (x ◦ y) ◦ z = y ◦ (x ◦ z) − (y ◦ x) ◦ z .(1.1)

Defining { , } : A × A → A by {x, y} = x ◦ y − y ◦ x one obtains a Lie algebra structure on A. Prelie
algebras were introduced by Gerstenhaber [Ger]. See [C-L] for more references and examples, including
an explicit description of the free prelie algebra on a vector space.

A left zinbiel algebra is a vector space A together with a bilinear map ∗ : A × A → A such that

x ∗ (y ∗ z) = (y ∗ x) ∗ z + (x ∗ y) ∗ z .(1.2)

Defining · : A × A → A by x · y = x ∗ y + y ∗ x one obtains a commutative algebra structure on A.
Zinbiel algebras were introduced by Loday [L1]. In that work, they were called dual leibniz algebras.
See [L2, chapter 7] and [Liv] for more on zinbiel algebras.

A dendriform algebra [L2, chapter 5] is a vector space A together with bilinear maps ≻: A×A → A
and ≺: A × A → A such that

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y ≻ z)(1.3)

x ≻ (y ≺ z) = (x ≻ y) ≺ z(1.4)

x ≻ (y ≻ z) = (x ≺ y) ≻ z + (x ≻ y) ≻ z .(1.5)
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Defining · : A× A → A by x · y = x ≻ y + x ≺ y one obtains an associative algebra structure on A. In
addition, defining x ◦ y = x ≻ y − y ≺ x one obtains a left prelie algebra structure on A.

Just as a commutative algebra is an associative algebra for which x · y = y · x, a left zinbiel algebra
may be equivalently defined as a dendriform algebra for which x ≻ y = y ≺ x (the zinbiel product
being x∗ y = x ≻ y = y ≺ x). If one thinks of dendriform algebras as an analog of associative algebras,
then one may view zinbiel and prelie algebras as the “dendriform analogs” of commutative and Lie
algebras respectively. The situation is summarized by means of the following diagram, where one may
think of the rows as “exact sequences”:

Zinbiel

��

// Dendriform

��

// Prelie

��

Commutative // Associative // Lie

The main goal of this note is to define the “dendriform analog” of Poisson algebras, by suitably
combining the notions of zinbiel and prelie algebras.

2. Definition

Recall that a Poisson algebra is a triple (A, ·, { , }) where (A, ·) is a commutative algebra, (A, { , })
is a Lie algebra and the following condition holds:

{x, y · z} = {x, y} · z + y · {x, z} .(2.1)

Combining zinbiel and prelie algebras into an appropriate notion of “prepoisson” algebras appears
to be not completely straightforward. We propose the following.

Definition 2.1. A left prepoisson algebra is a triple (A, ∗, ◦) where (A, ∗) is a left zinbiel algebra,
(A, ◦) is a left prelie algebra and the following conditions hold:

(x ◦ y − y ◦ x) ∗ z = x ◦ (y ∗ z) − y ∗ (x ◦ z)(2.2)

(x ∗ y + y ∗ x) ◦ z = x ∗ (y ◦ z) + y ∗ (x ◦ z) .(2.3)

Observe that the associated Lie and commutative products {x, y} = x◦y−y◦x and x·y = x∗y+y∗x
intervene in the axioms, but these cannot be expressed solely in terms of them.

Axioms (2.2) and (2.3) do in fact guarantee that the associated products satisfy the Poisson axiom
(2.1):

Proposition 2.2. Let (A, ∗, ◦) be a left prepoisson algebra. Define

x · y = x ∗ y + y ∗ x and {x, y} = x ◦ y − y ◦ x .

Then (A, ·, { , }) is a Poisson algebra.

3. Deformations

Let A be a commutative algebra. A deformation of A is an associative multiplication on the space
A[[~]] of formal power series, that is ~-linear and coincides with the original commutative multiplication
modulo ~ [C-P, section 1.6.A]. Denote the original multiplication of two elements a and b of A by the
symbol a ·0 b and the multiplication of two formal series f and g by the symbol f ·~ g. The latter is
determined by its effect on elements of A, for which it takes the form

a ·~ b = a ·0 b + (a ·1 b)~ + (a ·2 b)~2 + . . . .

Since a ·0 b = b ·0 a, one may define an element of A by the formula

{a, b} =
a ·~ b − b ·~ a

~
|~=0 ,
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or equivalently by

{a, b} = a ·1 b − b ·1 a .

It is well known that then (A, ·0, { , }) is a Poisson algebra (which is referred to as the classical limit
of the deformation) [Dri, section 2].

Similarly, one may look for deformations of a zinbiel algebra into dendriform algebras, and wonder
what additional structure this imposes on A. In support of definition 2.1, we find that this is the
structure of a prepoisson algebra.

Proposition 3.1. Let (A, ∗) be a left zinbiel algebra, that is, a dendriform algebra (A,≻0,≺0) for
which a ≻0 b = a ∗ b = b ≺0 a. Suppose (A[[~]],≻,≺) is a deformation into dendriform algebras, that
is, a dendriform algebra structure on the space of formal power series, with the properties that both
operations ≻ and ≺ are ~-linear and coincide with ≻0 and ≺0 modulo ~. Define a new operation on A
by

a ◦ b =
a ≻ b − b ≺ a

~
|~=0 .

Then (A, ∗, ◦) is a left prepoisson algebra.

4. Prepoisson algebras from filtered dendriform algebras

One of the basic constructions of Poisson algebras goes as follows. Starting from an associative
algebra equipped with a filtration, if the corresponding graded algebra happens to be commutative,
then it carries a canonical Lie bracket that turns it into a Poisson algebra.

There is a dendriform analog of this construction. A filtration of a dendriform algebra (A,≻,≺) is
an increasing sequence of subspaces A0 ⊆ A1 ⊆ A2 ⊆ . . . such that

A =

∞
⋃

n=0

An and An ≻ Am + An ≺ Am ⊆ An+m .

In this situation, there is an associated graded dendriform algebra

Gr(A) =

∞
⊕

n=0

An+1/An

with operations (a+An) ≻ (b+Am) = a ≻ b+An+m+1 ∈ An+m+2/An+m+1 and (a+An) ≺ (b+Am) =
a ≺ b + An+m+1 ∈ An+m+2/An+m+1, for elements a ∈ An+1 and b ∈ Am+1.

Suppose that Gr(A) happens to be zinbiel, i.e. (a + An) ≻ (b + Am) = (b + Am) ≺ (a + An), for a
and b as above. Then a ≻ b − b ≺ a ∈ An+m+1 and one may well define a new operation on Gr(A) by

(a + An) ◦ (b + Am) = a ≻ b − b ≺ a + An+m ∈ An+m+1/An+m .

This operation on Gr(A) satisfies the left prelie axiom (1.1), because so does the product a ≻ b− b ≺ a
on the dendriform algebra A. Moreover:

Proposition 4.1. In this situation, Gr(A) is a left prepoisson algebra.

The prepoisson axioms for Gr(A) follow from the following identities, that hold in the dendriform
algebra A:

(a ◦ b − b ◦ a) ≻ c = a ◦ (b ≻ c) − b ≻ (a ◦ c) (this implies (2.2))

(a ≻ b + a ≺ b) ◦ c = a ≻ (b ◦ c) + (a ◦ c) ≺ b (this implies (2.3))

The fact that these identities hold in any dendriform algebra is analogous to the fact that in any
associative algebra the commutator bracket [x, y] = xy − yx satisfies [x, yz] = [x, y]z + y[x, z].
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5. Baxter operators

Gian-Carlo Rota advocated in many occasions for the study of some special types of operators defined
on an associative algebra A, beyond the usual automorphisms and derivations [R1, R2]. Among these
there are the Baxter operators, defined by the condition

β(x) · β(y) = β
(

β(x) · y + x · β(y)
)

.(5.1)

These operators are frequent in algebra. For instance, on the polynomial algebra, the indefinite integral

β(f)(x) =

∫

x

0

f(t) dt

is a Baxter operator. The inverse of a bijective derivation is a Baxter operator.
Baxter operators are named after Glen Baxter, who introduced them in [Bax]. Surprisingly, there is

a connection with the associative analog of the classical Yang-Baxter equation (named after C.N.Yang
and R.J.Baxter), which was introduced in [A1] and further studied in [A2]. If A is an associative
algebra, an element r =

∑

ui⊗vi ∈ A⊗A is a solution of the associative Yang-Baxter equation if

A(r) = 0(5.2)

where

A(r) = r13r12 − r12r23 + r23r13 =
∑

uiuj⊗vj⊗vi −
∑

ui⊗viuj⊗vj +
∑

uj⊗ui⊗vivj .

The connection is as follows: if r =
∑

ui⊗vi is a solution of the associative Yang-Baxter equation, then
the map β : A → A defined by

β(x) =
∑

uixvi

is a Baxter operator. This follows from (5.2) by simply replacing the tensor symbols above by x and y.
The notion of a Baxter operator can be defined for algebras over any binary operad, in the obvious

manner. For instance for the Associative and Commutative operad, Baxter operators are defined by
condition (5.1), while for the Lie operad they are defined by

{β(x), β(y)} = β
(

{β(x), y} + {x, β(y)}
)

.(5.3)

Starting from a Baxter operator on an associative algebra A, one may construct a dendriform algebra
structure on A. This is an instance of a more general fact, of which we state the cases of present interest
below.

Proposition 5.1. 1. Let (A, ·) be an associative algebra and β : A → A a Baxter operator. Define
new operations on A by

x ≻ y = β(x) · y and x ≺ y = x · β(y) .

Then (A,≻,≺) is a dendriform algebra.
2. Let (A, { , }) be a Lie algebra and β : A → A a Baxter operator. Define a new operation on A by

x ◦ y = {β(x), y} .

Then (A, ◦) is a left prelie algebra.
3. Let (A, ·) be a commutative algebra and β : A → A a Baxter operator. Define a new operation on

A by

x ∗ y = β(x) · y .

Then (A, ∗) is a left zinbiel algebra.
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In view of the above results, one expects that a Baxter operator on a Poisson algebra will allow us
to construct a prepoisson algebra structure on it. This is indeed the case, and this provides another
reason in support of definition 2.1.

Proposition 5.2. Let (A, ·, { , }) be a Poisson algebra and β : A → A a Baxter operator, i.e. a map
satisfying both (5.1) and (5.3). Define new operations on A by

x ∗ y = β(x) · y and x ◦ y = {β(x), y} .

Then (A, ∗, ◦) is a left prepoisson algebra.

As noted before, a solution of the associative Yang-Baxter equation gives rise to a Baxter operator
on an associative algebra. Surprisingly, if the algebra is Poisson, the operator automatically satisfies
the Baxter identity with respect to the Lie bracket:

Proposition 5.3. Let (A, ·, { , }) be a Poisson algebra and r =
∑

ui⊗vi a solution of the associative
Yang-Baxter equation (5.2). Then the map β : A → A given by β(x) =

∑

uixvi is a Baxter operator
on the Poisson algebra A.

The proof is based on repeated applications of the Poisson axiom (2.1), together with the facts that

(a)
∑

uiujvivj = 0 , (b)
∑

{ui, uj}vivj = 0 and (c)
∑

uiuj{vi, vj} = 0 .

(a) holds because it follows from (5.2) that r2 = 0, while (b) and (c) hold simply by the skew symmetry
of the Lie bracket and the commutativity of the product.

Example 5.4. An interesting family of examples can be obtained as follows. Let A be a finite dimen-
sional Poisson algebra and f : A → k a linear functional for which the form

ωf : A⊗A → k , ωf(a, b) = f({a, b})

is non degenerate. The form ωf is skew symmetric and, moreover, it satisfies

ωf(ab⊗c) − ωf (a⊗bc) + ωf (ca⊗b) = 0 .

(This is an immediate consequence of the Poisson axiom (2.1).) In other words, ωf is a cyclic cocycle
in the sense of Connes. Now, since by assumption ωf is non degenerate, it corresponds to some tensor
rf ∈ A⊗A (identifying A ∼= A∗ through ωf ). According to [A2, proposition 2.1], rf is a solution of the
associative Yang-Baxter equation. Therefore, by means of propositions 5.3 and 5.2, f gives rise to a
Baxter operator and a prepoisson structure on A.

6. Dual prepoisson algebras

It is well known that the Koszul dual of the Zinbiel operad is the Leibniz operad [L2, chapter 4]
and the Koszul dual of the Prelie operad is the Permutative operad of [Cha]. The Koszul dual of the
operad defining left prepoisson algebras is as follows.

Proposition 6.1. An algebra over the Koszul dual of the operad defining left prepoisson algebras is a
triple (A, •, { , }) where (A, •) is a left permutative algebra:

a • (b • c) = (a • b) • c = (b • a) • c ,(6.1)

(A, { , }) is a left Leibniz algebra:

{{a, b}, c} = {a, {b, c}} − {b, {a, c}}(6.2)
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and the following three conditions hold:

{a, b • c} = {a, b} • c + b • {a, c}(6.3)

{a • b, c} = a • {b, c} + b • {a, c}(6.4)

{a, b} • c + {b, a} • c = 0 .(6.5)

In [L2, section 4.15], Loday introduced a notion of Poisson dialgebras, which combines a structure of
a diassociative algebra and a (right) Leibniz algebra. The algebras of proposition 6.1 are a particular
case of (the left version of) these Poisson dialgebras.

The construction of a prepoisson algebra from a Poisson algebra equipped with a Baxter operator
(section 5) admits a dual counterpart. The role of Baxter operators is now played by another class of
operators, which surprisingly are also singled out in Rota’s papers [R1, R2]. They are called averaging
operators in those works. As before, this notion makes sense for algebras over an arbitrary binary
operad. For instance, an averaging operator on a commutative algebra (A, ·) is a map α : A → A such
that

α(x) · α(y) = α
(

α(x) · y
)

.(6.6)

Averaging operators over Lie and associative algebras are respectively defined by the conditions

[α(x), α(y)] = α
(

[α(x), y]
)

,(6.7)

α
(

x · α(y)
)

= α(x) · α(y) = α
(

α(x) · y
)

.(6.8)

Proposition 6.2. 1. Let (A, ·) be an associative algebra and α : A → A an averaging operator.
Define new operations on A by

x ⊢ y = α(x) · y and x ⊣ y = x · α(y) .

Then (A,⊢,⊣) is a diassociative algebra.
2. Let (A, [ , ]) be a Lie algebra and α : A → A an averaging operator. Define a new operation on

A by

{x, y} = [α(x), y] .

Then (A, { , }) is a left Leibniz algebra.
3. Let (A, ·) be a commutative algebra and α : A → A an averaging operator. Define a new operation

on A by

x • y = α(x) · y .

Then (A, •) is a left permutative algebra.
4. Let (A, ·, [ , ]) be a Poisson algebra and α : A → A an averaging operator, i.e. a map satisfying

both (6.6) and (6.7). Define new operations on A by

x • y = α(x) · y and {x, y} = [α(x), y] .

Then (A, •, { , }) is a dual left prepoisson algebra (as described in proposition 6.1).

Notice that a differential d : A → A (i.e. a derivation d such that d2 = 0) is a special case of an
averaging operator. According to Y.Kosmann-Schwarzbach, the observation that one may construct
a Leibniz algebra from such a map d essentially goes back to Koszul [Kos]. The construction of a
diassociative algebra from a differential is already mentioned in [L2, section 2.2].
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7. The shuffle algebra of a prelie algebra

Let Sn denote the symmetric group and

Shn,m = {σ ∈ Sn+m / σ(1) < σ(2) < . . . < σ(n), σ(n + 1) < σ(n + 2) < . . . < σ(n + m)}

denote the set of (n, m)-shuffles. Recall that the shuffle algebra on a vector space V is the space

Sh(V ) :=
⊕

n≥1

V
⊗n

equipped with the shuffle product:

(x1⊗ . . .⊗xn) ⋔ (xn+1⊗ . . . xn+m) =
∑

σ∈Shn,m

xσ−1(1)⊗ . . .⊗xσ−1(n+m) .(7.1)

(Sh(V ), ⋔) is an associative, commutative, nonunital algebra.
The free left zinbiel algebra on a vector space V is the space Sh(V ) equipped with the product

(x1⊗ . . .⊗xn) ∗ (xn+1⊗ . . . xn+m) =
∑

σ∈Shn,m−1

xσ−1(1)⊗ . . .⊗xσ−1(n+m−1)⊗xn+m ;(7.2)

see [L2, section 7.1]. The corresponding commutative product (section 1) is precisely the shuffle pro-
duct.

One of the most basic examples of a Poisson algebra is provided by the symmetric algebra S(g) of a
Lie algebra g. In view of the above, the “dendriform analog” of this fact should state that the shuffle
algebra of a prelie algebra is a prepoisson algebra. This is our main result. In order to describe the
prelie product, we introduce some notation. For σ ∈ Shn,m−1, let

I(σ) = {i / 1 ≤ i ≤ n + m − 2, σ−1(i) ≤ n and σ−1(i + 1) ≥ n + 1} .

Also, let

Sh2
n,m−1 = {σ ∈ Shn,m−1 / σ(n) = n + m − 1} .

Theorem 7.1. Let (P, ◦) be a left prelie algebra. Then Sh(P ) is a prepoisson algebra, with the zinbiel
product (7.2) and the prelie product given by

(7.3) (x1⊗ . . .⊗xn) ◦ (xn+1⊗ . . .⊗xn+m)

=
∑

σ∈Shn,m−1

∑

i∈I(σ)

xσ−1(1)⊗ . . .⊗xσ−1(i−1)⊗{xσ−1(i), xσ−1(i+1)}⊗xσ−1(i+2)⊗ . . .⊗xσ−1(n+m−1)⊗xn+m

+
∑

σ∈Sh2

n,m−1

xσ−1(1)⊗ . . .⊗xσ−1(n+m−2)⊗(xn ◦ xn+m)

for any n, m ≥ 1, where {x, y} = x ◦ y − y ◦ x for x, y ∈ P .

The first values of the prelie product are

a ◦ b = a ◦ b(7.4)

a ◦ (b1⊗b2) = {a, b1}⊗b2 + b1⊗(a ◦ b2)(7.5)

(a1⊗a2) ◦ b = a1⊗(a2 ◦ b)(7.6)

To compute the prelie product of two elements a1⊗ . . .⊗an and b1⊗ . . .⊗bm one may proceed as follows.
First, one performs the shuffle product of a1⊗ . . .⊗an and b1⊗ . . .⊗bm−1 and tensors the result with bm.
Now, each term in the shuffle product gives rise to several new ones, obtained by replacing a pair of
consecutive factors of the form ai⊗bj for {ai, bj}, with the exception of the pair an⊗bm, which may occur
only at the right end, and which should be replaced by an ◦ bm. The prelie product is the expression
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obtained as the sum of all these terms. For instance, the product (a1⊗a2) ◦ (b1⊗b2) is computed as
follows:

1. Shuffle a1⊗a2 and b1. 2. Tensor with b2. 3. Pair up consecutive ai⊗bj .
a1⊗a2⊗b1 a1⊗a2⊗b1⊗b2 a1⊗{a2, b1}⊗b2

a1⊗b1⊗a2 a1⊗b1⊗a2⊗b2 {a1, b1}⊗a2⊗b2 + a1⊗b1⊗(a2 ◦ b2)
b1⊗a1⊗a2 b1⊗a1⊗a2⊗b2 b1⊗a1⊗(a2 ◦ b2)

Thus,

(a1⊗a2) ◦ (b1⊗b2) = a1⊗{a2, b1}⊗b2 + {a1, b1}⊗a2⊗b2 + a1⊗b1⊗(a2 ◦ b2) + b1⊗a1⊗(a2 ◦ b2) .

Remark 7.2. While S(g) is the free Poisson algebra on a Lie algebra g, Sh(P ) is not the free prepoisson
algebra on a prelie algebra P . Suppose this were the case. Then, for any prepoisson algebra A, there
would be a morphism of prepoisson algebras Sh(A) → A, extending the identity of A. Relation (7.6)
would then imply that for any elements a1, a2, b of A one would have

(a1 ∗ a2) ◦ b = a1 ∗ (a2 ◦ b)

(since a1⊗a2 = a1 ∗ a2 in Sh(A)). However, this relation does not hold in an arbitrary prepoisson
algebra. In fact, it fails for A = Sh(P ), for elements of degree higher than one.

In this connection, it is worth mentioning a closely related distinction between prepoisson and
Poisson algebras. The axiom defining Poisson algebras, equation (2.1), tells us how to distribute the
Lie product over the commutative product. More precisely, the Poisson operad is obtained from the
Lie and Commutative operad by means of a distributive law in the sense of Markl [Mar] (see also [F-M,
section 9]). This implies that the free Poisson algebra on a Lie algebra g is S(g).

Notice that, while axiom (2.2) in the definition of prepoisson algebras tells us how to distribute the
prelie product over the zinbiel product (from the left), axiom (2.3) is not distributive in nature. For
this reason, the Prepoisson operad cannot be described by means of a distributive law between the
Prelie and the Zinbiel operads.

Remark 7.3. It is known that the shuffle algebra Sh(g) of a Lie algebra is a Poisson algebra. The
commutative product is the shuffle product (7.1), while the Lie bracket is given by the formula

{x1⊗ . . .⊗xn, xn+1⊗ . . .⊗xn+m}

=
∑

σ∈Shn,m

∑

i∈I(σ)

xσ−1(1)⊗ . . .⊗xσ−1(i−1)⊗{xσ−1(i), xσ−1(i+1)}⊗xσ−1(i+2)⊗ . . .⊗xσ−1(n+m−1)⊗xσ−1(n+m)

where, as before, I(σ) = {i / 1 ≤ i ≤ n + m − 1, σ−1(i) ≤ n and σ−1(i + 1) ≥ n + 1}. The graded
version of this result appears in work of Fresse [Fre, chapter 3], where the Lie bracket on Sh(g) is called
the shuffle Poisson bracket. We will come back to this in section 8

In characteristic zero, S(g) embeds as a Poisson subalgebra of Sh(g), by viewing Sn(g) as the

subspace of Sn-invariants of g
⊗n.

If P is a prelie algebra, then the two Poisson structures on Sh(P ) (one coming from the prepoisson
structure of theorem 7.1, the other from the above result of Fresse applied to the Lie algebra associated
to P ), agree.

8. Pregerstenhaber algebras

Gerstenhaber algebras are a certain graded version of the notion of Poisson algebras. Specifically, a
Gerstenhaber algebra is a graded vector space equipped with a commutative multiplication of degree
0:

x(yz) = (xy)z and xy = (−1)|x||y|yx



PREPOISSON ALGEBRAS 9

and with a Lie bracket of degree −1:

{x, y} = −(−1)(|x|−1)(|y|−1){y, x} ,

(−1)(|x|−1)(|z|−1){{x, y}, z}+ (−1)(|y|−1)(|x|−1){{y, z}, x}+ (−1)(|z|−1)(|y|−1){{z, x}, y} = 0

which are compatible:

{x, yz} = {x, y}z + (−1)(|x|−1)|y|y{x, z} .

Definition 8.1. A left pregerstenhaber algebra is a triple (A, ∗, ◦) where A is a graded vector space,
the operation ∗ preserves degrees and satisfies the graded zinbiel axiom:

x ∗ (y ∗ z) = (−1)|x||y|(y ∗ x) ∗ z + (x ∗ y) ∗ z ,(8.1)

the operation ◦ lowers degrees by one and satisfies the graded prelie axiom:

x ◦ (y ◦ z) − (x ◦ y) ◦ z = (−1)(|x|−1)(|y|−1)(y ◦ (x ◦ z) − (y ◦ x) ◦ z)(8.2)

and the following conditions hold:

(x ◦ y − (−1)(|x|−1)(|y|−1)y ◦ x) ∗ z = x ◦ (y ∗ z) − (−1)(|x|−1)|y|y ∗ (x ◦ z)(8.3)

(x ∗ y + (−1)|x||y|y ∗ x) ◦ z = (−1)|x|(|z|−1)x ∗ (y ◦ z) + (−1)(|x|+|z|−1)|y|y ∗ (x ◦ z) .(8.4)

The graded version of proposition 2.2 is:

Proposition 8.2. Let (A, ∗, ◦) be a left pregerstenhaber algebra. Define

x · y = x ∗ y + (−1)|x||y|y ∗ x and {x, y} = x ◦ y − (−1)(|x|−1)(|y|−1)y ◦ x .

Then (A, ·, { , }) is a Gerstenhaber algebra.

The other results presented in this note also admit a graded version. Perhaps the most interesting
is the one concerning the shuffle algebra. The graded shuffle algebra is the space

Shλ(V ) :=
⊕

n≥1

V
⊗n

equipped with the graded shuffle product:

(x1⊗ . . .⊗xn) ⋔ (xn+1⊗ . . .⊗xn+m) =
∑

σ∈Shn,m

ǫ(σ)xσ−1(1)⊗ . . .⊗xσ−1(n+m) ,(8.5)

where ǫ is the sign of a permutation. (Shλ(V ), ⋔) is a graded commutative algebra. It is actually the
graded commutative algebra associated to the following graded zinbiel structure on Shλ(V ):

(x1⊗ . . .⊗xn) ∗ (xn+1⊗ . . .⊗xn+m) =
∑

σ∈Shn,m−1

ǫ(σ)xσ−1(1)⊗ . . .⊗xσ−1(n+m−1)⊗xn+m .(8.6)

Theorem 8.3. Let (P, ◦) be a left prelie algebra. Then Shλ(P ) is a left pregerstenhaber algebra, with
the zinbiel product (8.6) and the prelie product given by

(8.7) (x1⊗ . . .⊗xn) ◦ (xn+1⊗ . . .⊗xn+m)

=
∑

σ∈Shn,m−1

∑

i∈I(σ)

ǫ(σ)(−1)ixσ−1(1)⊗ . . .⊗xσ−1(i−1)⊗{xσ−1(i), xσ−1(i+1)}⊗xσ−1(i+2)⊗ . . .⊗xσ−1(n+m−1)⊗xn+m

+
∑

σ∈Sh2

n,m−1

ǫ(σ)(−1)n+m−1xσ−1(1)⊗ . . .⊗xσ−1(n+m−2)⊗(xn ◦ xn+m)

for any n, m ≥ 1, where {x, y} = x ◦ y − (−1)(|x|−1)(|y|−1)y ◦ x for x, y ∈ P .
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The first values of the prelie product are

a ◦ b = a ◦ b

a ◦ (b1⊗b2) = (a ◦ b1 − b1 ◦ a)⊗b2 + b1⊗(a ◦ b2)

(a1⊗a2) ◦ b = a1⊗(a2 ◦ b)

(a1⊗a2) ◦ (b1⊗b2) = a1⊗(a2 ◦ b1 − b1 ◦ a2)⊗b2 + (a1 ◦ b1 − b1 ◦ a1)⊗a2⊗b2 + a1⊗b1⊗(a2 ◦ b2) − b1⊗a1⊗(a2 ◦ b2)

Remark 8.4. It is also true that the graded shuffle algebra Shλ(g) of a Lie algebra g is a Gerstenhaber
algebra. The Lie bracket is given by the formula

(8.8) {x1⊗ . . .⊗xn, xn+1⊗ . . .⊗xn+m} =
∑

σ∈Shn,m

∑

i∈I(σ)

ǫ(σ)(−1)ixσ−1(1)⊗ . . .⊗xσ−1(i−1)⊗{xσ−1(i), xσ−1(i+1)}⊗xσ−1(i+2)⊗ . . .⊗xσ−1(n+m−1)⊗xσ−1(n+m)

where I(σ) is as in remark 7.3. This is the result of Fresse mentioned before (although a different sign
convention is used in that work).

If g comes from a prelie algebra, then this Gerstenhaber structure on Shλ(g) agrees with the one
corresponding to the pregerstenhaber structure of theorem 8.3.

There is a connection between these structures and the classical Yang-Baxter equation, that we
explain next. For an element r =

∑

ui⊗vi ∈ g⊗g, this equation is the equality C(r) = 0, where

C(r) = [r12, r13] + [r12, r23] + [r13, r23] =
∑

[ui, uj]⊗vi⊗vj +
∑

ui⊗[vi, uj ]⊗vj +
∑

ui⊗uj⊗[vi, vj ] .

It follows readily from (8.8) that

{r, r} = 2C(r) .

This is, in fact, an extension of a well known interpretation of the classical Yang-Baxter equation
for a skew symmetric tensor r ∈ Λ2(g): in characteristic zero, the exterior algebra Λ(g) embeds as a
Gerstenhaber subalgebra of Shλ(g), by viewing Λn(g) as the subspace of skewed Sn-invariants of g

⊗n,
and it is well known that in this case {r, r} = 2C(r) [Dri, section 4]. Passing to the bigger algebra
Shλ(g) allows us to get rid of the assumption that r be skew symmetric.

If P is a prelie algebra, then Λ(P ) is not a pregerstenhaber subalgebra of Shλ(P ), but one may still
consider the prelie product r ◦ r in Shλ(P ), for r ∈ P⊗2. One obtains, this time,

r ◦ r = C(r) .

We would like to know of a similar interpretation for the associative Yang-Baxter equation (5.2).
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