ZONOTOPES, BRAIDS AND QUANTUM GROUPS

MARCELO AGUIAR

ABSTRACT. Various results about the action of the binomial braids and other braid analogs [A2]
on some particular higher dimensional representations of the braid groups are presented. These
representations are constructed from a fixed integer square matrix A. The common nullspace of the
binomial braids is studied in some detail. This space is graded over N”, where r is the size of A.
Our main results state that the non-trivial components occur only on the lattice points of a certain
hypersurface in r-space that is canonically associated to A, and that when A is the symmetrization
of a Cartan matrix C of finite type, these lattice points are closely related to the vertices of the
zonotope associated to C' (the precise relationship is given in theorem 5.3). The same action is used
to construct a quantum group Ug (A) from an arbitrary integer square matrix A. The simplest choices
of A yield the usual polynomial and Eulerian Hopf algebras of Joni and Rota (in the corresponding
representations, the binomial braids become the usual binomial or g-binomial coefficients). The other
choice we consider is that when A is the symmetrization of a symmetrizable Cartan matrix C'. Some of

the previous results are used to prove that in this case Ug (A) coincides with the usual quantum group

of Drinfeld and Jimbo. The quantum group is actually defined in a more general setting involving
Hopf algebras and crossed bimodules. This paper is a continuation of [A2].

1. INTRODUCTION

This paper studies the combinatorics of a certain action of the braid groups on the tensor powers of
a vector space, defined in terms of a given matrix, and its relation to quantum groups.
Let B, denote the braid group in n strands and kB, the group algebra over an arbitrary field k.

In [A2], elements bgn) € kB, where defined and shown to satisfy properties analogous to those of the
ordinary or ¢-binomial coefficients [ 7; } Braid analogs of classical identities of Pascal, Vandermonde,

Cauchy and several others where presented there.

The identities among braids in fact specialize to the g-identities after passing to the one-dimensional
representation of B, where every canonical generator acts by multiplication by a fixed scalar ¢ € k;
in particular, the case of the usual identities corresponds to the choice of the trivial representation
(¢ = 1). Higher dimensional representations yield new realizations of these identities, where numbers
or g-numbers are now replaced by matrices.

The study of the actions of the binomial braids bl(» € kB, on some particular higher dimensional
representations is relevant to the definition of the quantum groups of Drinfeld [D] and Jimbo [Jim]
(these are certain g-analogues of the universal enveloping algebras of simple Lie algebras), as explained
in [A1] and [A2]. A similar observation had been made before by Schauenburg in [Sch].

In this paper we derive some results on these higher dimensional representations and use them to
define a quantum group Uq‘l' (A) from any integer square matrix A, that coincides with the quantum
group of Drinfeld and Jimbo when A is a symmetric Cartan matrix (or, more generally, when A is the
symmetrization of a symmetrizable Cartan matrix C').
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2 M. AGUIAR

The contents of the paper are as follows. We start in section 2 by recalling some definitions and
braid identities from [A2], as well as the language of monoidal categories and some basic Hopf algebraic
notions that are useful in dealing with higher dimensional representations of the braid groups.

In section 3.2 we define an algebra U(?(A) associated to any integer square matrix A and scalar
q € k, and also a companion Hopf algebra U(I"'(A). We show that the simplest choices of A (A = [0]
and A = [1]) yield respectively the usual binomial and Eulerian Hopf algebras of Joni and Rota. This
comes to no surprise since it is the basic observation of [A2] that in the corresponding representations
of the braid groups, the binomial braids act as the usual binomial or ¢-binomial coefficients, and these
are the section coefficients for these Hopf algebras (in the sense of Joni and Rota).

It will be shown in section 5.1 that when A is a symmetric Cartan matrix (or, more generally, the
symmetrization of a symmetrizable Cartan matrix C') U(?(A) and U;’ (A) coincide respectively with the
g-analogs of the universal enveloping algebras of the nilpotent and Borel subalgebra of the simple Lie
algebra corresponding to C', as defined by Drinfeld and Jimbo.

If the size of A is r, U(?(A) has r generators and the relations among them are defined in terms of the
Z(»n) and a representation of the braid groups defined by means of A. The construction
of the quantum group is carried out in section 3.1 in a more general setting where the initial data are
a Hopf algebra H and a crossed H-bimodule instead of a matrix A and a scalar ¢, although the latter
is the only case to be considered elsewhere in the paper.

In section 4 we study the higher dimensional representations of the braid groups defined by A, with
the goal of describing the relations of the algebra U(?(A) in some detail (corollaries 4.12 and 4.13).
By definition, the ideal of relations is generated by the common nullspace of the binomial braids on
these representations, and this space is graded over N”. We prove that the only non-trivial components
occur on the locus of a certain hypersurface in £” that is canonically associated to A (proposition 4.4).
In particular we deduce that, if A 1s symmetric and positive-definite, then U(?(A) is finitely-related
(corollary 4.7). The proofs of this type of results are combinatorial, in the sense that they are based
on some of the combinatorial identities obtained in [A2].

The special case when A is the symmetrization of a symmetrizable Cartan matrix C' is treated in
section 5. The basic facts on Cartan matrices, root systems and their zonotopes are reviewed as they
are needed for the exposition.

In section 5.1 we prove that, for the most general case of a symmetrizable Cartan matrix C', the
ideal of relations is generated by the so-called quantum Serre relations. This means that our definition
of the quantum groups associated to C coincides with the usual one of Drinfeld and Jimbo. Part of
the proof of this result is combinatorial, but another part relies on a somewhat deep result of Lusztig
about the definition of U7(C) (which is obtained through representation theory) and Schauenburg’s
observation about the occurrence of the factorial braid in Lusztig’s definition. A pure combinatorial
proof would be desirable.

If the Cartan matrix is of finite type (i.e. positive definite), we can describe the nullspace of the
binomial braids (that is, the relations of the quantum group) more explicitly in terms of the the root
system of C' and the corresponding zonotope. This is done in section 5.2, independently of the results
in 5.1. In this case, the common nullspace of the binomial braids is naturally graded over the root
lattice of C, and the only non-trivial components occur on the sphere through the origin, centered at
the lowest weight of the root system. Theorem 5.3 states that among these lattice points, those that
do not lie on the walls of the root system are precisely the vertices of the zonotope associated to C'.
This is one of the main results of the paper.

In section 6 we list some additional results and a few open questions that are motivated by the
previous work.

This paper is a continuation of [A2]. Some of the results in section 4 already appeared in [A1, section
9.8.5]. The relation to quantum groups was studied from a different point of view in [A1, section 9.8].

binomial braids b
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The author thanks Steve Chase, Ken Brown and Dan Barbasch for useful conversations during the
preparation of this paper.

2. BRAID IDENTITIES AND OTHER PREREQUISITES

2.1. Braid groups and braid analogs. The group B, of braids in n strands has n — 1 generators

(n) (n)

sy ,...,8, 1 subject to the relations
(A1) sgn)sg»n) = sgn)sgn) if |1 —j| > 2,
(A2) 52('”)52('1)1 sl(»n) = sl(i)lsl(n)sl(i)l if1<i<n-—2

(n)

The generator s; "’ is represented by the following picture, and the product st of two braids s and
t in B, is obtained by putting the picture of s on top of that of ¢. The identity of B, is represented
by the picture with n vertical strands; the inverse of s is obtained by reflecting its picture across a
horizontal line, without leaving the plane of the picture.

|, R P ST [ n
52('”) - . \
[, R PR >+1 .................... n

Let kB, denote the group algebra of B, over an arbitrary fixed field k. In [A2, sections 3 and

5], elements [n], bl(»n) and f(®) € kB, were defined and called natural, binomial and factorial braids
respectively. From the several identities involving them that were obtained in [A2], we will only need
the following:

n) _ ¢i)g pln—i) . p(®)

(1) Ji )‘_ fUlgp(n—i) b}
(2) 1(“®b§.’:“ . bl(,”) = bl(.f)(g)l(n—j) ) bg,”)

P
(3) b = 3" 10eg,, g1 (PR L pap()

k=0
) £ = 10=g[1] . 10=2a[2] - 18[n — 1] - [n]
(5) 3 Mol =R 4 = 0¥ n >0

k=0
n n)~1 n

(6) M) ym 1 ).

Here Bmn € Bmin 1s the braiding [A2, section 2.4] and pu®) € kBy is the Mébius braid of [A2,
sections 6.2 and 2.2], whose definitions will be recalled below. Formulas (1), (2), (3), (4), (5) and
(6) are respectively formulas (21), (20), (14), (15) , (25) and (12) from [A2]. Each of these identities
generalizes a well-known ¢-identity. For instance, (5) is the braid analog of

Z(_qu(i)[mq:ovnm,
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while (3) is the braid analog of Vandermonde’s identity

(] =g [ m ]

k=0

=100

We also need to recall the braid sy’ € B, associated to a permutation ¢ € S,. The picture of

(n)

So

and (6) is simply the analog of

is obtained by drawing a straight line from 1 in the bottom to (1) in the top, then under that a

straight line from 2 to ¢(2), etc. For instance if o = (123 4) then

An explicit expression for sgn) in terms of the generators s

(n)

map S, — B,, 0+ s5 7, 18 a section of the canonical projection B, — S,,. Moreover, it was shown in
[A2, lemma 5.2] that

(n)

i

was given in [A2, section 5.1]. The

(7) if o = 7p and length(c) = length(r) + length(p), then s{*) = S(T")SE)”).

Here the length of a permutation is the minimum number of elementary transpositions required to
write 1t as a product of such. We will make use of this fact in section 4.3.
The braiding and Mobius braids are defined as follows. If

_( 1 2 ... m m+lm+2 .. m+n)
0= n+ln+2 ... n+m 1 2 ... n ’

then 8, = s qf o = (1,2, %) (the permutation with the longest length), then pu(®) =

(—1)nss).

2.2. The braid category and its representations. The collection B =[], ., B, of all braid groups
forms a category, where the objects are the natural numbers, B, is the set of endomorphisms of n, and
there are no morphisms between distinct objects. This category is monoidal, in the sense that there is
a functor

B x BB, (s,1) — set

that is associative and unital. Explicitly, this multiplication consists of morphisms of groups B,, X By, —
(n)gglm) _ gntm) (ntm)

i N

= ntj - In terms of pictures, s®t 1s

B, +m that are defined on the generators by s
obtained by putting ¢ to the right of s.

For more details on the basics on monoidal categories and the category of braids the reader is referred
to [Kas, X.6, XI.2 and XTII1.2] or [JS].

We are interested in monoidal representations of the category 9B. Explicitly, such a representation
consists of a vector space X, such that, for every n, the braid group B, acts on the tensor power X

with the property that
s@t - xey = (s-z)8(t-y) Vs € By, t € Bn, ze X yex®n.
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Since sgn) = 1(i_1)®3(12)®1(”_i+1), this property implies that the action of B, on X®” is uniquely
determined by the action of 5(12) on X®X. Moreover, a linear operator R : X®X — X©X defines a
monoidal representation of B if and only if it is invertible and satisfies the Yang-Bazxter equation:

(Reidx ) o (idx®R) o (Reidx) = (idx®R) o (Rgidx) o (idx®R) .

This is a consequence of (A2).
If X is one-dimensional, then any invertible operator R : X — X satisfies this equation. R is neces-

Z(»n) acts by multiplication by

5™ and £ act on X®” by multiplication

» Vg

sarily given by multiplication by some non-zero scalar ¢ € k. In this case, s

q for every n > 2, 1 <i<n—1and, as was shown in [A2]

by the g-binomial coefficient [ 7; } and the g-factorial [n]!, respectively (so it this simplest choice that
q

produces the classical g-identities from the identities for braids).

An equivalent way to describe monoidal representations of the braid category is by means of the
following fact: 9B is the free braided monoidal strict category on one object (the object 1 € N). This
says that given any object X of a braided monoidal category €, there is a unique functor F : B — € that
preserves the monoidal structures and the braidings and such that F(1) = X [Kas, lemma XIIT.3.5].
This highlights the fundamental role of the braiding &, . If € carries in addition a k-linear structure
(compatible with the rest of the structure), then F' extends to F' : kB — €. Usually € consists of
vector k-spaces with some additional structure, and then the vector space X becomes a monoidal
representation of B, as defined above. An example of such a category is € = D¢, the category of
crossed G-bimodules, for any group G. An object of D¢ is a k-space X equipped with a linear action
of G and a linear G-grading, i.e. a decomposition X = @,c¢ X, into subspaces, such that the action
of h € G carries Xy to Xpgp-1. In this context, one usually writes [2| = g when € X, so that the
condition just mentioned becomes |h - x| = h|z|h~!. This category is braided monoidal under the usual
tensor product of k-spaces, where X®Y is equipped with the G-action g - (z,y) = (g - 2,9 - y) and the
G-grading |(z, y)| = |#||y|, and the braiding is

Bxy : XoY = YeX, Bxy(zy) = (2] yor.

This construction can in fact be carried out for any Hopf algebra H in place of GG: there is a category
Dp of crossed H-bimodules [Kas, definition 1X.5.1], which is braided monoidal. Crossed G-bimodules
as defined above correspond to the choice H = kG, the group algebra of G. Crossed bimodules are
also called Yetter-Drinfeld modules in the literature.

The following statement summarizes the part of these results we are mostly interested in.

Proposition 2.1. Let H be a Hopf algebra and X a crossed H-bimodule. Then the braid group B,
acts on X®" for every n > 0, by morphisms of crossed H-bimodules and with the property that

sot-x0y = (s-2)0(t-y) ¥V s € By, t € By, z€ X ye X9

Proof. O

2.3. Hopf algebras in categories. There is a notion of Hopf algebra in an arbitrary braided monoidal
category [M, section 10.5], that we review next.

Let € be a monoidal category and I its unit object. An algebra in € is a triple (A, pu, u) where A is
an object of € and pu : A®A — A and u : I — A are maps in €, subject to the obvious associativity
and unitality axioms. Coalgebras in € are defined similarly. If € is also braided, then the notion of
bialgebras and Hopf algebras in € are also defined. First, one defines an algebra structure on the tensor
product of two algebras A and B via

idA®B g, a®idg
—_—

fiass : (A®B)a(AB) (AoA)o(BoB) L4212, Aop .
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A bialgebra in € is a object A that is an algebra and a coalgebra in such a way that A : A — A®A and
€ : A — I are morphisms of algebras in €. A Hopf algebra in € is a bialgebra in € for which id : A — A
has a convolution inverse S : A — A, called the antipode. When € is the category of vector spaces,
equipped with the trivial braiding z®y — y®z, the above notions boil down to the usual notions of
algebras, coalgebras, bialgebras and Hopf algebras.

We are mainly interested in Hopf algebras in the category @ g of crossed H-bimodules. The basic
example of such an object is provided by the ordinary tensor algebra T'(X) of a crossed H-bimodule
X (proposition 3.1).

If A is a Hopf algebra in ®p, then the tensor product A®H carries a structure of ordinary Hopf
algebra, called the biproduct of A and H and denoted Ax H [M, theorem 10.6.5]. This construction of
a Hopf algebra from a Hopf algebra in a braided monoidal category is sometimes called bosonization.

3. THE QUANTUM GROUP ASSOCIATED TO A CROSSED BIMODULE

3.1. Definition of the quantum group. Let H be a Hopf k-algebra, X a crossed H-bimodule and
T(X) =P x|
n=0

the tensor algebra of the vector space X. Schauenburg proved that T'(X) is a bialgebra in ®p [Sch,
corollary 2.4 and theorem 2.7]. We present a different proof next, based on the combinatorial identities
for the braid analogs, and show that T'(X) is actually a Hopf algebra in D . Recall that by proposition
2.1, By, acts on X®" ¥n > 0.

Proposition 3.1. . Let X be a crossed H-bimodule and T'(X) the tensor algebra of the underlying
vector space X. Then T(X) is a Hopf algebra in ® g with comultiplication, counit and antipode defined
onx € X% by

1 fx=1
P 0 ifn>0"
The notation above stands for the natural identifications X" = X®igx®n-i) ¢ Y(i)®Y (n—i)-

Proof. We compute

ae01800 = 325507 o 00 o) o0 00)
. i=0 h=0
:gg(l%bwl) b(n)x)“@(l(z)@b;ﬁ_i) bl(n)x)(h)®<1(z)®b§1n—i) bgn)x)(n_i_h)

and

:Z (bEj)®1(”_”~b§»”)x)(i)®(b§j)®1(”‘j)~b§.”)x) ®(b§j)®1(n—j),b§n)x)

(7-1) (n—i)

Coassociativity thus follows from formula (2): l(i)®b2n_i) . bgn) = bgj)®1("_j) . b;n) ifh=j—1.

Counitality boils down to the fact that bén) = bﬁf) = 1, which holds by definition of the binomial
braids.
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Take x € X®* and y € X®™. Then,
n+m

A(xy) = Z (bl(?”"'m)x@y)(p)®(b1(9”+m)x®y)(n+m_p) )

p=0
On the other hand, by definition of multiplication in T'(X)®T(X), we have
A(x)A(y) =

z”: i(l(i)(@ﬂn_iy]’@l(m_‘j) . bl(»n)x@)b;-m)y)('_l_ ')®( same element )
i+j

i=0 =0 (ntm=i=j)

Multiplicativity for A thus follows from Vandermonde’s formula (3). Tt is clear then that A and ¢ are
morphisms of algebras in D .
Finally,

m(Seid)A(x) = Y OB %) )0 (b %) (noiy = Y uPDe10 7D pMx = ¢(x)1
=0 =0
precisely by formula (5). The other axiom for the antipode follows from a similar identity (equation
(26) in [A2]). O
Let K(® = K1) =0 and, for each n > 2,

n—1 o]
K™ = () Ker(b( : X" = X" K = P K™ C 7(X)
i=1 n=0
and let K denote the ideal generated by K in T(X). Define an algebra
Uh(X) =T(X)/K .
Thus, U (X) is generated by X subject to the relations K.
Since B, acts on X®" by morphisms of crossed H-bimodules (proposition 2.1), K is a crossed

subbimodule of T(X). Therefore, so is K, and hence the quotient U%(X) is also an algebra in Dp.
Moreover:

Proposition 3.2. In the Hopf algebra T(X) in Dp, K is a coideal stable under the antipode. There-
fore, U%(X) s a Hopf algebra in D .

Proof. If x € K(") then
A(x) =x@1 + 1ex € KoT(X) + T(X)eK

and, for 1 <i<n—1,

b 500) =) e, ) = 0.

so K is a coideal stable under the antipode. Hence K is a Hopf ideal of T(X) and the quotient is a
Hopf algebra in ®p. (]

Remark 3.1. One could also derive this result from the fact that K consists precisely of those primitive
elements of T'(X) of degree at least 2 (with respect to the natural grading of T'(X)).

As explained in section 2.3, the above result allows us to construct an ordinary Hopf algebra as the
biproduct

UM(X) =Up(X)*H .

U%(X) and U (X) are the quantum groups whose construction was announced in the introduction.
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Ezxample 3.1. Take H = kZ,y,, the group algebra of the cyclic group of order m > 1, ¢ a root of unity

of order m and X = k{z}, the one-dimensional crossed Z,,-bimodule defined by
|z]=1 and n-z=q¢"2Vn€Zp, .

The action of the binomial braids is given in this case by the g-binomial coefficients:

g—1

If m does not divide n, then [ 7; } S #0, so K®) = 0. If m divides n, then, for 1 <i<n—1,
q

n] (" =D =" 1)
.-

: (@ =D =1)-(g—1)

so K" = k{z"}. Therefore, K = (™), the ideal generated by 2™, and Ulgzm(X) =

m-dimensional Hopf algebra in ®z,_ with structure
A(In) = Z[ 7; i| l‘i®l‘n_i and S(:L‘n) = (—1)nq(2)gjn .

Notice that S*(z") = (—l)k”qk(z)m”, so the antipode has order 2m. The biproduct

Uiy, (X) = kla]/(2"™) % kZm

k[z]/(z™) is an

is an ordinary Hopf algebra of dimension m? with antipode of order 2m. This Hopf algebra was

originally constructed by Taft [T] (and by Sweedler for ¢ = —1).

We close this section with two simple but important observations about the common nullspace K
of the binomial braids K. A related space 1s the nullspace F' of the factorial braids, defined as follows:

F= @F(”) C T(X) where F) = Ker(f(”) c X0 X®”) .
n=0

Lemma 3.3. F is an ideal of T(X), and K C F.
Proof. Formula (1)

fligpin=i) .bl(”) = f(n)

shows that Kerbl(»") C Kerf(™) ¥ i; in particular, K(®) C F(*) so K C F. On the other hand, applying

the horizontal symmetry operator * of [A2, section 2.3] to formula (1) one obtains

" (fDgpin=ily = fn)

since this operator preserves tensor products, reverses compositions and fixes the factorial braids (for-
mula (17) in [A2]). This immediately implies that F' is an ideal of T'(X). Since it contains K, it must

also contain K.

Lemma 3.4. K" C Ker(u(™) + 1).

(n) _ 1.

Proof. This is an immediate consequence of identity (5), since bén) = by

O



ZONOTOPES AND QUANTUM GROUPS 9

3.2. The quantum group associated to a matrix. Let A = [aps] € M, (Z) be an integer square
matrix of size r and ¢ € k* a fixed scalar. We will always assume that ¢ is not a root of unity, ¢'/2 € k
and chark = 0.

Let G = Z", the free abelian group of rank r, and X the vector space with basis {z1, ... ,z,}, viewed
as crossed G-bimodule with

lzn| = (a1h, ... arn) €EZ7, (n1,...,0p) 2 = ¢ 25 ¥V (n1,...,n,) €EZ" .

The algebras U2, (X) and U:G(X) will be denoted by U(?(A) and U;’(A) respectively. They will be
studied in sections 4 and 5, where, in particular, it will be shown that when A is the symmetrization of
a symmetrizable Cartan matrix C', the quantum group U;’ (A) defined above coincides with the usual
one defined by Drinfeld and Jimbo (thus justifying the choice of notation).

(2)

According to the discussion in section 2.2, the action of s;”’ € By on X®X 1is given in this case by
TpOTE — ¢ xRy .
It follows that the action of 32(»”) = l(i_1)®5(12)®1("_1) € B, on X®" is given by

(8) Tp,®...0Ty, — itz ®. .0z, 0T,,®.. .08, .

i1

We close this section by considering the simplest instances of this construction, namely those cor-

responding to A = [0] and A = [1].

Ezxamples 3.2.
(n)

1. Consider the case A = [0]. X®” is then one-dimensional and, as recalled in section 2.2, b,

n
)

acts by multiplication by the ordinary binomial coefficient ( ) It follows that K () = 0, since
chark = 0. Therefore, U(?(A) is just the polynomial algebra k[z] with its usual Hopf algebra
structure

A=Y <”) r'oz" and S(a") = (—1)"2"

(the binomial Hopf algebra).
2. When A = [1], X is one-dimensional and bl(»n) acts by multiplication by the ¢g-binomial coefficient

[ 7; } Since chark = 0 and ¢ is not a root of unity, this operator is injective. Hence U(?(A) is still

the polynomial algebra k[z], but the Hopf algebra structure is
=0

This is the Eulerian Hopf algebra of [JR].

4. THE BRAID ACTION DEFINED BY A MATRIX

Let A, ¢ and X be as above. In this section we study the nullspaces K and F of the binomial and
factorial braids acting on the tensor powers of X by means of A as in section 3.2. It will be shown that
these spaces are naturally graded over N” and that the non-trivial components of K occur only on the
locus of a certain hypersurface in k£” that is canonically associated to A. These results will be applied
to decide when the quantum group U(I"'(A) is finitely related.
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4.1. The grading on K and F. For each n and r € N let F(n,r) denote the set of all functions
{1,...,n} = {1,...,r}, and C(n,7) = {(m,...,n,) € N/ m+ ...+ n = n}. For any n =
(m,...,nr) € C(n,r) let
S ={f€F(n,r) [ #F7(1) =n, #7'2) =n2, ..., #S7'(r) =0}
For each f € F(n,r), consider the tensor
X i =Zp1)®...0%f(p) c X®n .
The set
{x; / f€TF(n,r)}

is a k-basis of the vector space X Tt follows from (8) that, for each n € €(n, r), the subspace X" of
X® spanned by {x; / f € 8(n)} is invariant under the action of B,. In other words, the distinguished
basis of X determines a grading of T'(X) over the monoid N”, and this grading is preserved by the
action of B,. Therefore, the nullspaces K and F inherit a grading over N” as follows

0o n—1
K= K™ where K™ = () Ker(b{™ : X — x0) |
neENT i=1

and

F = @ F where FO =Ker(f™ : X 5 X0) (and n=m +...+n,) .
neENT

4.2. The action of the braids s((,n). The action of the braids s((,n) € B, on the above basis of X®n
can be easily described in terms of the natural action of S, on F(n,r), 0 - f = foo~l.
Recall that the set of inversions of a permutation o € S, is

Inv(e) ={(i,5) /1 <i<j<nando(i) > o(5)},

and the inversion inder of o is inv(o) = #lnv(c). We will make use of the well-known fact that
inv = length.

Proposition 4.1. Let o € S, and f € F(n,r), Then

D ariie)

s() . xy = glh)EmU)

pu Xo.f -

Proof. We proceed by induction on length(o). If length(c) = 1, that is o is the transposition (i,i + 1)
for some 7, then s = sl(»n) and Inv(c) = {(7,7 4 1)}, so the result holds precisely by equation (8).
Thus, it suffices to show that if ¢ = 7 - (4,7 + 1), length(c) = length(7) + 1 and the result holds for
7, then 1t also holds for o.
. 1. i1 i i+l i+2 .. m .
In this case, 0= (1) " (21 r(i41) (1) r(i42) . r(n))- We claim that

Inv(e) = Inv(r) U {(¢,i+ 1)} .
This is clearly equivalent to: 7(i) < 7(i + 1). If we had 7(i) > 7(i + 1) , it would be (7,7 + 1) € Inv(7)
and (7,74 1) € Inv(o), from where it would follow that length(c) = inv(c) = inv(7) — 1 = length(7) — 1,
against our hypothesis.
We calculate

7
s(m) Xy (:) S(T")SZ(.”) cxyp = qMGnIe 3(7") CX(iig1)f -
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Let g = (¢,i+ 1) - f. Since (i,i+ 1) & Inv(7), we have (g(4),9(?)) = (f(J), f(?)) for all (¢,j) € Inv(7).

Therefore, by induction,
> it > i)

Sgn) . Xf = qaf(l+1)f(l)q(ivj)EInV(T) XT~g = q(i;j)elnv(o) X0~f .

O

4.3. The action of the Mdbius braid. It turns out that the action of u(™) on X®" diagonalizes and
thus can be completely described. It is in this description that a certain hypersurface in k" naturally
arises. To define it, consider first the quadratic form associated to A, namely

Qa(z) = Zahhlh-i- > (ank +agn)zazs

h=1 1<h<k<r
where z = (21, 22,...,2,) is a vector in k", and also the linear form
r
DA(I) = E aApph .
h=1

We are interested in the hypersurface
[(H): Qa(z) = Da(x)]
in particular in points with non-negative coordinates z € N".
Lemma 4.2. Let f € F(n,r) and n = (#f72(1), #f742),... ., #f71(r)) € C(n,7). Then
Z apiyrGy = Q@a(n) —Da(n) .

1<i#j<n
Proof. For each h and k € {1,2,... 7}, let Apg = {(4,j) / 1 <i# j <nand f(i) = h, f(j) = k}.
If h # k then Apg = {(4,5) / f(i) = h, f(j) = k}, so #Anx = nank. On the other hand, App =
{(i,5) / i # jand f(i) = f(j) = h}, so #Apn = na(nn — 1). Therefore,

Yo oaaim =Y D wGasmt+ », D
h=1(

1<iZj<n =1(i,j)€EAnn 1§h¢k<r(ij)eAhk
r T
= appp(ny — 1) + g ApkNMaNE = E ahhﬂh + E (ank + axp)nane — E AphMh
h=1 1<h#k<r h=1 1<h<k<r h=1

=Qa(n)— Da(n) .
O

The diagonalization of (™) on X®" will be described in detail in the proof of the following propo-
sition. For simplicity, its statement only provides the essential information about its eigenvalues.

Proposition 4.3. Let n € C(n,r). Then p) o X0 5 X0 diagonalizes. Moreover, u™) only has
two possible eigenvalues:

qzl@am=Dam)] gpnqg _ 43lQa()=Dalm)]

Proof. We need to stablish some notation. For each f € F(n,r), let fe F(n,r) be f(z) =fln+1-1).
If f € 8(n) then f € 8(n) too. Let 8¢ = {f € 8(n) / f = f} and fix a disjoint decomposition

S =8 u | J{ff}.

fES,
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Correspondingly, X splits as a direct sum

X0 = P ki{xs} o P k{xs, x5}

.fESD fE81

Recall that u(?) = (—1)”s(gn) where 0 = (1,2, ’1‘) Notice that o - f = f and that the set of
inversions of this permutation is Inv(c) = {(7,7) / 1 <7 < j < n}. Therefore, by proposition 4.1,

p xp = (1)

where ay = lei<j§n ar(5)r)-
Therefore, each subspace k{x;} with f € 8o or k{xy,x;} with f € 8; is invariant under p™). On

n

k{x;} with f € 8, u(®) diagonalizes with eigenvector x; and eigenvalue (—1)?¢®. Tt also follows

readily that, on k{xf,xj;} with f € 81, u(*) diagonalizes with eigenvectors
q%afx; + q%aij; and q%afxf - q%aij;
and respective eigenvalues
(=1)rg3lertes) and  — (—1)ngalestes)
But notice that

ayp+ap= Z afsi) + Z Qf(n+1—j5)f (n+1—i)
1<i<j<n 1<i<j<n

by lemma 4.2.
In particular, if f € 8§, then

1 1
ap = 5(0‘1’ +af) = E[QA(U) — Da(n)] .
This shows that x(*) diagonalizes and that the eigenvalues are as indicated. O

We can now derive the main result on the nullspace of the binomial braids announced at the beginning
of section 4.

Proposition 4.4. The only non-trivial components K of K occur when n € N” lies on the hyper-

surface (H). In other words, if K(") #0, then Qa(n) = Da(n).

Proof. By lemma 3.4, if K(7) # 0 then —1 is an eigenvalue of p(") . By proposition 4.3, this happens
only if Qa(n) — Da(n) = 0. O

4.4. The hypersurface associated to A. We assume that £ = R for the results of this section. The
first couple of results hold for arbitrary real matrices A = [apk] of size r (not necessarily integer).

In this section we obtain some basic information about the hypersurface (H) associated to A by
means of the equation

(H) Qa(z) = Da(z) .

This study is motivated by the result of proposition 4.4. In fact, we will obtain as a corollary the
finite generation of the ideal of relations of U(?(A) when A is symmetric and positive-definite.

Recall that
Qa(z) = (Az,z) and Dy(z) = (da,z) ,
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where d4 = (a11,...,a,) € R” and (z,y) = Y ;_; z;y; denotes the standard inner product in R".
Clearly,

QA:QA At andDA:DA At
2 2

so there is no loss of generality in assuming that A is symmetric. In this case, the inner product and
norm in R” associated to A are simply

(@,9)a = (Az,y) and |jz]|a = Qa(x)'/* .

Proposition 4.5. Suppose that A is symmetric and positive-definite. Then, with respect to the norm
defined by A on R", (H) is the equation of the sphere of center %A‘ldA that goes through the origin.

Proof. We compute
1 _ 1, _
l# = 5A7 dalla = ll2lld — (A7 da, @)a + (A7 dal?
1

= Qa(z) = Da(w) + Z[IA7 dall”
so (H) is equivalent to

1 1

e = 5A™ dalla = llA7 dall

which is the equation of a sphere as stated. O

Corollary 4.6. Let u = (1,1,...,1) € R". If A is symmetric and positive-definite, and

n > %(A‘ldA,w + %\/(A—lu,u)(A—ldA,dA> :
then there are no solutions x to equation (H) satisfying at the same time
rit+rea+...+x=n.
Proof. Let H, be the hyperplane in R” with equation
1 +x2+...+x,=n.
Let ng € R be such that H,, is tangent to the sphere of proposition 4.5 (cf. figure 1).

F1GURE 1. The sphere and the tangent plane of corollary 4.6.
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If n > ng, H, does not intersect the sphere. So the result will follow once we prove that

1 1
no = (A7 da, u) + 5\/<A—1u,u><A—1dA,dA> :
Let P be the point of tangency between H,, and the sphere. The radial vector to P must be perpen-
dicular to H,,, with respect to the inner product defined by A. But the vector A~lu is clearly normal

to H,, with respect to this inner product, so it follows that

1
P= iA_ldA + A7y
for some A € R. We can determine A by imposing the fact that P lies on the sphere:
1 1 1
HEA_ldA + AA ™y — EA_ldAHA = §I|A_1dAHA ;

it follows that

_ L[|AT dalla _ 1A s, da)?

2 [[Aulla 2 (A-Tu,u)l/?
Now, since ng is the sum of the coordinates of P, we have that

1 1 1 1
ng = <§A_1dA +AA u u) = E(A_ldA,u> + MA  uyu) = §<A_1d,4,u> + 5\/<A_1u,u><A—1dA,dA>

and the proof is complete. O

Assume now that A is an integer matrix. Consider the action of the braid groups B, on X defined
by A and the ideal K of T(X) defined by means of the binomial braids (the ideal of relations) as in
sections 3.1 and 3.2.

Corollary 4.7. If A is symmetric and positive-definite, and

1 1
n > §<A_1dA,u> - 5\/<A—1u,u><A—1dA,dA> :
then K™ = 0. In particular, the ideal K is finitely generated.

Proof. Suppose K" # 0. Since K(®) = @nee(n,r)
K™ # 0. By proposition 4.4, 5 lies in (H), and it also satisfies 1 + 92 + ...+ 1, = n by definition of
C(n, r). This contradicts corollary 4.6. O

K there must be some 1 € C(n,r) such that

Remarks 4.1.
If the matrix A is not positive definite, then (H) does not represent a compact hypersurface anymore,
and there may be infinitely many solutions in N”. For instance, consider the matrix

2 =2
[

(1)

(A is the Cartan matrix of the root system A; 7). In this case equation (H) becomes
24y —2zy=zx+vy.

The solutions (z,y) € N? to this equation are precisely

n2—|—n n?—n n?—n n2+n
r= , Y= and z =
2 2 2

This equation represents a parabola in R?, cf. figure 2.

for every n >0 .
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@o®

ws® ©3

one @31

(]
(00) (1.0)

FIGURE 2. The solutions for A = A(ll).

4.5. The quantum Serre relations. In this section we study the nullspaces K(7) for some simple
choices of n € N".
Let {€1,...,¢-} be the canonical basis of N". The simplest choice is

n=ne,=(0,...,0,n,0,...,0) e N" |

where n € N and h € {1,2,...,r} are arbitrary. In this case there is only one function f € 8(7),
namely f = h, so the space X" is one-dimensional, spanned by Xp = :c%" Now, from equation (8)

(n)

i

bl

every generator s; ’ acts on this space by multiplication by ¢?**; therefore, as recalled in section 2,

bgn) acts by multiplication by the binomial coefficient [ " . But since ¢ is not a root of unity, this

1 i|qahh
element is non-zero, so we conclude that K = 0 in this case.
The next simplest choice is

n=mne,+e,=(0,...,0,n,0,...,0,1,0,...,0) e N" |

where n € Nand hand k € {1,2,...,r} are arbitrary but distinct. In this case there are n+1 functions
in 8(n), namely

fi= (5 pitidz k) fori=0,...,n.

Therefore, the space X is (n + 1)-dimensional, spanned by xy¢, := :E%i(@xk@a?%(n_l) € XOn+1),

We will show that, for these 5, the nullspaces K are either trivial or one-dimensional, spanned
by some particular vectors S}, € X®+1) to be defined in proposition 4.11, called the quantum Serre
relations. The first result in this direction is:

Lemma 4.8. Let 1 = nep + € as above. If (n — 1)app + ank + axn # 0, then KM =o.

Proof. By lemma 3.4, K =0 if —1 is not an eigenvalue of u(®*1) in X By proposition 4.3, if —1
is an eigenvalue of (1) then Q4(n) = D4 (). But for this 5,

Qa(n) = anwn® + axk + (ank + axp)n and Da(n) = arpn + akk ;
therefore, Q4 (n) = Da(n) if and only if (n — 1)apy + ang + axp = 0. O
The spaces K were defined in section 4.1 as the intersection of the nullspaces of the binomial

braids b;»n-l_l) acting on X C X®n+1)  The following result says that, under certain hypothesis,; all
these nullspaces coincide.
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Lemma 4.9. If for each p=1,...  n the braid [p] € kB, is injective on X((P=Dentex) € XOP  then,
Ker(b‘g'n—i—l)lX(neh‘Fék)) =KMote) v i1 n.

Proof. Recall the factorial formulas (1) and (4)
fAepti=i) p(rHh) = pn+1) = 1Wg1] . 10~ De[2] . ... 1e[n] - [n + 1] .

We claim that 1@[n] is injective on the space X(nentex) I fact, this space splits as the direct sum of
the one-dimensional space spanned by x;, = xk@)x%” € X%+1) and the space k{z;}oX((r=Dentex)
and both of these are invariant under 18[n]. On the first, 18[n] acts by multiplication by the g-analog
[n]gann , which is non-zero since ¢ is not a root of unity, while on the second it is injective by hypothesis.
Similarly, all the lower factors 1(”+1_p)®[p] are injective on X (er+ex) for p=1,... n. It follows that
) and f+1-9) are injective on X(ertex) for j =1,... n, and from here that

Ker(b;n+1)|X(n6h+6k)) = Ker([n + 1]|X(neh+6k)) forj=1,...,n.

Since K (mer+er) is the intersection of these kernels, the result follows. O

In the proofs below, ¢%"* will be abbreviated by ¢ and ¢*"* by qnx. We will assume, for simplicity,
that apn # 0 (a hypothesis that is always satisfied by Cartan matrices). Also, [n], will denote the

gp-analog of the natural number n and {7;} the gp-analog of the binomial coefficient (7;) The
h

subindices h # k remain fixed.

Lemma 4.10. Assume that app, # 0 and let a = a”"'::"”‘ Then

Z(—I)Z{ 7; } qi(a""‘i'ah")"'(;)a"h =0 i and onlyif —a€{0,1,2,...,n—1}.
. qhh

+=0

Proof. First notice that

(%) Qhkqkh = g -

Consider the polynomial

By one of Cauchy’s identities for g-binomials [A2, section 6.2, or GR, corollary 2], f(z) factors as
follows:

() f@) = (=)@ —qn)...(z—g).
Now,
S ], e = St 7],
& zn:(—l)iQZiq,E;) 7], = fif) -
(g)l(:qoi" — D" — q_ha)n- gt =0y ) |
In

which is zero if and only if —a € {0,1,2,...,n—1}.
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Proposition 4.11. For eachi=0,...,n, let

qiakh+(;)ahh ek and Sgk — Z)‘ixfl = X(neh-I-Ek) )

i=0

A= (-1)2’[

2 i|q“hh
Assume that app, £ 0. Then

. k{SP} if — Gkt c 1012 . n—1
Ker(b( +1)|X(neh+6k)) :{ { hk} / Ghh { }

! 0 otherwise .

Proof. By definition [A2, sections 3 and 7.1], b(ln+1) = Z?;l s((;;-l_l), where ¢; € Sp41 18 the j-cycle

o; =(1,2,...,7—1,7). The set of inversions of this permutation is

Inv(e;) = {(1,7),(2,5),....(G—1,4)}

and
Jiyr f0<i<j—2
oj-fi=fico;' =1 fo ifi=j—1
fi ifj<i<n.
Hence, by proposition 4.1, the action of SETT;+1) on the basis elements x;, of X (nenter) ig

q(j_2)ahh+akhxfl+l if0<i<j—2
Xyp, 4 ¢k Xy, ifie=7-1
q(j_l)“hhxfl ifj<i<n.
It follows that, for each 1 = 0,...,n,

n+1
bt

xp, = (qu—l)ahh+q<2—1)ahh+m+q<z’—1)ahh)xfl+quxfu+

i

+ (q(i+2—2)ahh+dkh + q(i+3—2)ahh+akh + ...+ q(n+1_2)ahh+akh)xfz+1

= [iaxys, + GheXso + qengh[n — ilnxy.,, -

Let x = Y1, ptiXy, be a general element of Xnenter) where p; € k are arbitrary scalars. Then

n n n
b =N ililnxg, + D midhexs, + > pigrndhn — iaxs.,,

i=0 =0 i=0
= Z(m[i]h + pic1qrngy n—i+ 1]h)Xfl+(ZMf1fm)Xfu :
i=1 =0

It follows that x € Ker(b(ln+1)|x(n6h+6k)) if and only if
(a) 0= pildln + pi—1qknqy "[n — i+ 1], for each i = 1,...,n and

(b) 0= pighs -
i=0
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Equation (a) determines y; in terms of pg, fori=1,... n:

p1 = —poqrn[n]n

H2 = —H Qkth[n_l]h = podi Qh[n]h[n_l]h = pogi Qh{n}
2= — —Q— = Ho —— e = Mo .
(2]n H (2]n L2 0
5] =2
p ‘ h
ﬂaz-ﬁuqmm2klzghlz-ﬂmq3qSLE—lL—————:-#MQSQS{n}
h [3]11 kh'%h [3]1’1 kh'%h 3 A
and in general, forz =1,... ,n

i i ()
pi = (1) /loqkhqi( )[ ; }h = poAi ,

where ); is as defined in the statement of the proposition. This means that x = pgSy;,. Thus, there
are two possibilities for the kernel. If the A; satisfy equation (b) in place of the y;, then the kernel is
one-dimensional spanned by S}, if not, the kernel is zero. But when we substitute y; for A; in the

right hand side of (b) we get

- ol = - 1y n i(akh+ahk)+(;)ahh

;)\ZQhk ;( 1) { i Lahhq )
which, by lemma 4.10, is zero if and only if —% € {0,1,2,...,n — 1}. This completes the
proof. O

The vectors S}, € X®n+1) defined in proposition 4.11 are called the quantum Serre relations (we
will show in section 5.1 that they boil down to the usual quantum Serre relations for the case of Cartan
matrices). We can now derive the main result of this section, which describes the nullspaces KM for
7 as above, in terms of the quantum Serre relations.

Corollary 4.12. Assume that app, # 0 and let S}, be as before. Then

K (nenter) — {k{sgk} if — feetlen —p

0 otherwise .

Proof. If —% # n—1 then K(?ertex) = ( by lemma 4.8. Suppose that —% =n—1. Then,
in particular,

_Onk RO gy p—2 ¥ p=1,... .n.
App

Therefore, by proposition 4.11, b(lp) is injective on X((P=Dertex) for p = 1,. .. n. But then lemma 4.9

applies, to conclude in particular that
Knenter) — Ker (b(ln+1)|X(neh+6k)) =k{S}.};
the last equality by proposition 4.11 again. O

Finally, we summarize the information we have obtained on the nullspaces K and F' for arbitrary
matrices A. For the case of Cartan matrices, more precise information will be obtained in section 5.1,
where it will be shown that our definition of the quantum group boils down to that of Drinfeld and
Jimbo.
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Corollary 4.13. Let S be the ideal of T(X) generated by the quantum Serre relations

n o __ - _ i| N iakh-l—(;)ahh ®(n+1)
Shk—g( 1) {Z-Lahhq xp € X
for those h and k for which app, #0 and (n — 1)app + apg + axp = 0. Then
SCKCF.

Proof. By corollary 4.12, S}, € K for those h and k, so .S C K. The rest is lemma 3.3. O

5. THE CASE OF CARTAN MATRICES

In this section we specialize the constructions and results of sections 3 and 4 to the case when A is
a symmetric Cartan matrix, or, more generally, the symmetrization of a symmetrizable Cartan matrix
C'. In section 5.1, it will be shown that the quantum group U(?(A) introduced in section 3.2 is the usual
one defined by Drinfeld and Jimbo. In section 5.2 we prove that, when C' is of finite type, the points
with non-negative integer coordinates on the hypersurface (H) from section 4.3 include the vertices of
the zonotope corresponding to C, and the remaining integer points on (H) lie on the walls of the root
system of C'. This refines the results of section 4.4 and is one of the main results of the paper. The
relevant notions on Cartan matrices and root systems will be reviewed as they are needed.

5.1. Generalized Cartan matrices. Quantum groups. A matrix C' = [cpx] € M, (7Z) is called a
(generalized) Cartan matriz if

Chh:2Vh:1,...,T,
cng < 0 for h # k and
ifchk:Othen CkhIO.

We will also assume, without further notice, that all Cartan matrices are indecomposable; this means
that there is no permutation o € S, such that [ca(h)o(k)] splits as a direct sum.

An arbitrary matrix C' € M, (7Z) is called symmetrizable if there is an invertible diagonal matrix
D € M,(7Z) such that DC' is symmetric.

If C'is a symmetrizable Cartan matrix, then the diagonal matrix D is unique up to a constant factor,
and all its entries have the same sign. The canonical symmetrization of C,

A= DC,

is the one corresponding to the choice of D with minimum positive integer entries. For more details
on Cartan matrices the reader is referred to [Kac, chapters 1,2 and 4].

Associated to any symmetrizable generalized Cartan matrix C' there is Lie algebra g(C'), called a Kac-
Moody Lie algebra, and a quantum group (Hopf algebra) U,(g(C)), defined by means of generators and
relations [Jan, 4.3]. The latter were first defined by Drinfeld [D] and Jimbo [Jim]. We shall concentrate
on the subalgebra U(? (9(C)), which is defined by generators zj for h = 1,... 7 (usually denoted by
E}, instead), subject to the so-called quantum Serre relations:

n
Z(—l)i <n) :L‘Z:bkmz_i = 0 whenever ¢cp =1 —n .
: 2 d
i=0 qh
Here, cpy are the entries of C, dj are the (diagonal) entries of D and the ¢-binomial coefficient (?)q 18

that of [Kas, VI.1.6], not the g-binomial [ 7; } of previous sections. These ¢g-binomials are related by
q
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(2), =13,

Let us compare this definition with our definition of U(?(A) =T(X)/K. The entries of A, C and D
are related by apr = dpcnk; chp = 2 and apg = agp. It follows that

the formula [Kas, VI.1.8]

(n—Dapp +ape +axr =0 cpp=1—n,

7] = ()

and

so that

Sgk — Z;(_l)z |: 727' :|qahh qldkh‘l'(z)dhhxfl — ;(_1)2 (i)qdh Izmkmz—z )
In other words, the quantum Serre relations that were introduced in section 4.5 for arbitrary matrices
A, boil down to the usual ones when A is the symmetrization of a Cartan matrix C'.

To prove that our quantum group U(?(A) coincides with U(? (9(C)) as defined above, we must show
that the ideal K is generated by the quantum Serre relations, i.e. that S = K. We know from corollary
4.13that SC K C F.

To prove that equality holds, we need to recall yet another definition of the quantum group, namely
that of Lusztig, which is closer to ours. In Lusztig’s book, U(?(g(C')) is defined as the quotient of
T(X) by the radical of a certain bilinear form on T'(X) [L, 1.2.5]. Lusztig proves, after developing the
representation theory of his quantum group, that this ideal is generated by the quantum Serre relations
[L, 33.1.5].

On the other hand, Schauenburg [Sch, example 3.1 and theorem 2.9] has noted that Lusztig’s ideal
coincides with F', the nullspace of the factorial braids as defined in section 4 (the fact that the braids
appearing in Schauenburg’s paper [Sch, definition 2.6] coincide with our factorial braids was already
noted in [A2, section 7.1]).

Therefore, S = K = F, and the proof that our definition boils down to that of Drinfeld and Jimbo
(or Lusztig’s) is complete.

5.2. Cartan matrices of finite type. Zonotopes. A Cartan matrix is of finite type if it is positive-
definite. Such Cartan matrices are always symmetrizable. Finite-dimensional simple Lie algebras over
C are in one-to-one correspondence with symmetrizable Cartan matrices of finite type. Good references
for Cartan matrices, simple Lie algebras and root systems are [H, chapter III] and [Sam, chapters 2
and 3.1]. We will only need the basic information outlined below.

Let C be a Cartan matrix of finite type and A = DC' its canonical symmetrization. Let £ be the root
space of C. By definition, E is an Euclidean space of dimension r (the size of C') with a distinguished
basis {a1,...,a,} (whose elements are called the simple roots) and inner product

(o, ap)p = apy = dpepr
Notice that the entries of C' and D are given by

ag, 1

QM and dh = _—(ah,ah>E
(ap, an)E 2

(this shows that our notation for the Cartan integers cpg is the transpose of that of [H] and [Sam]).

Chk =

! Warning: our (:L)q is Kassel's [ . ] and viceversa.
tlg
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Consider the linear transformation 7' : £ — E whose matrix in the basis of simple roots is C'. Since
C' is invertible, so is T, and a second basis {w1,... ,w,} of E is defined by T(ws) = as. The vectors
wp, are called the fundamental weights. Equivalently, we have
r
(9) ap = Z ChrWg .
k=1
The lowest weight 1s the vector

(10) S-S ek
h=1

Let us reformulate the results of section 4.4 in this context.

Proposition 5.1. Let C be a Cartan matriz of finite type and A = DC' its canonical symmetrization.
1. With respect to the canonical inner product on the root space of C, (H) is the equation of the
sphere of center § (the lowest weight) that goes through the origin.
2. Suppose that C is symmetric. Then, if n > 2||8||%, there are no solutions z to equation (H)
satisfying at the same time x1 + o + ...+ x, = n. In particular, K") = 0 for these n.

Proof. By assumption, the diagonal of A is d4 = 2Du, where u = (1,1,...,1) € R", so equation (H)
for the matrix A becomes
(DCx,z) = 2(Du, z) .

Since C' is positive definite, so is A. As explained above, if we identify the root space with R” in such a
way that the simple roots correspond to the canonical basis of R”, then the canonical inner product of
the root space becomes the inner product (Az,y) of R". Therefore, proposition 4.5 applies, and (H) is
the equation of the sphere of center %A‘ldA that goes through the origin, with respect to the canonical
inner product on the root space. To complete the proof of 1, we must show that %A‘ldA = 4. Now,

1 1
5A—ldA = 5C—1D—12Du =0 .

¢

On the other hand, consider the linear transformation 7" as above. Under the identification in question
between R”™ and F, u corresponds to 22:1 ayp, and C to T; therefore, C~1u corresponds to

r r 10
S T o) = Y Vs
h=1 h=1
Now assume that C' is symmetric, i.e. A = C". In this case d4 = 2u and the right hand side of the
inequality in corollary 4.6 becomes simply 2(C'~'u, u). But
(C7lu,u) = (C71u, C™lu)p = [|C™ Ml = [1611Z

so 2 is just a reformulation of corollary 4.6.

O
Ezample 5.1. For the root system A, corresponding to the Lie algebra sl,41(C), the Cartan matrix is
2 -1 0 ... 0
-1 2 -1 ... 0
c=10 -1 2 ... 0
0 0 -1 2

(a square matrix of size r).
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From the proof above we know that § = C~'u. Let
1
:L‘k:§k(r+1—k)ERfork:l,...,randm:(ml,...,xr)ERr.

One easily computes Cz = u, from where x = §. Therefore,
. 1
2 _ =1 _ _ _ 4 :
161/ = (C™ 1w, u) = (x,u) = ;mk = Srr+1)(r+2).

Thus if n > %r(r +1)(r + 2) then K(®) = 0. For instance if » = 2 then K(") = 0 for n > 4. The
description of K™ for n < 4 will be carried out in example 5.2 below.

Let W be the Weyl group of C, that is, the group of isometries of E generated by the reflections
across the hyperplanes perpendicular to the simple roots ap € E. Since C' is of finite type, W is finite.
The finite set

R={w(y)eF/weWandi=1,...,r}

is called the root system of C, and its elements are called roots. For a € R, let H, C E be the
hyperplane perpendicular to a. These hyperplanes are called the walls of the root system. The
connected components of

B\ |J Ha
a€ER

are called the Weyl chambers. The closure € of a Weyl chamber € is called a closed Weyl chamber.

As before, we identify (E,({, Yg) with (R",{, Ya) by sending {a1,...,a,} to the canonical basis
{e1,...,e,} of R". The set of integer linear combinations of the simple roots gets then identified with
Z" C R”; this is called the root lattice of C'. The set of non-negative integer combinations of the simple
roots is called the positive cone; it is identified with N”. The set of integer linear combinations of the
fundamental weights is called the weight lattice. For instance the lowest weight § belongs to the weight
lattice (equation (10)). Equation (9) shows that the root lattice is included in the weight lattice.

A root a € R is called positive if it lies in the positive cone N”. Let RT denote the set of positive
roots. The zonotope of C' is defined as the Minkowsk: sum of the positive roots:

{Y Ma€E/0<A<1}CE.
acR+

For instance, the zonotope of the root system A, is called the permutahedron [Z, examples 0.10 and
7.15]. Figures 4 and 5 show the zonotopes of A3 and By (below in this section).
The proof below will rely on the following facts [H, chapter II1]:

(a) The set
GFZ{)\EE/<ah,)\>E<0VhIL...,’P}

is a Weyl chamber (the opposite of the fundamental Weyl chamber).
(b) The chamber Cr coincides with the negative cone generated by the fundamental weights, that is,

Cr={ anwn € B /an <0V h=1,. 1},
h=1

) If € is a Weyl chamber and w € W, then w(€) is a Weyl chamber and w(€) = w(€).

) Given two Weyl chambers € and €', there is a unique w € W such that w(C) = €.
e) The closed Weyl chambers cover E.

) The root lattice Z" is invariant under the action of W.
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(g) Even though § may not lie in the root lattice Z", § — w(J) lies in the positive cone N" V w € W.
(In fact, d — w(d) is equal to the sum of those positive roots that become negative under w.)
(h) The set {§ —w(d) / w € W} is precisely the set of vertices of the zonotope of C.

The following result describes the set of integer solutions of equation (H) in terms of the zonotope
of C' in some detail. The idea of the proof is to translate the hyperplanes and Weyl chambers from the
origin to 4, and observe that there is only one solution in every translated chamber. According to (d)
above, it suffices to look for solutions in the (translated) chamber § + Cp. We will show that the only
such integral solution is A = 0 (part 1 of lemma 5.2). This will allow us to conclude that the set of
integral solutions that do not lie on the walls (translated by J) is precisely the set of vertices of the
zonotope (theorem 5.3), which is the main result of this section. We will also show that A = 0 is the
only solution lying at the same time in the closed chamber § + € and in the positive cone IN” (part 2
of lemma 5.2). Figure 3 reflects these assertions for the root system As.

H

Qg

Wi

aq

5—|—GF

Ficure 3. The translated fundamental chamber for A,.

Lemma 5.2. Let A € Z" be a solution of equation (H) lying on the root lattice.
L. IfA€d+Cp then A = 0.
2. If A€ (04 Cp)NN" then A = 0.

Proof. 1. According to (b) we can write

r

A—(S:Zahwh with ap <0V h .
h=1

Recall that § = Y} _; ws. Since the root lattice in included in the weight lattice, A also belongs
to the weight lattice. It follows that

ap S —1VYh.
Since A belongs to the sphere (H), we have that [|A — é||g = ||0||z. Hence,
IMIE = [IA =8 +6l1% = 1A =3l + 20\ = 6,8)r + 1611 = 2[16]|% + 2(A = §,8)

=2 E (wh,wr)E + 2 E ap{wh,wr)p <0,

hk=1 hk=1
and thus A = 0 as needed.
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2. Let

A:E:MakmmAkEN
k=1

be a solution in (d + E) AN". Then A —§ € Cpg, so by (a)

0>A=d,an)e=Nane— {0, ar)E = Z/\kdhchk —dj
k=1

from which it follows (since dp > 0V h) that

(A) EZM%R§1Vh:LH.m
k=1

On the other hand, since A lies on the sphere (H), we have
1
(B) 1A =dlle = [ble = (A, d)r = 5(A Ne

Let us compute each side of (B) separately:

<)\,5>E = <Z )\heh,C’_lu> Z )\heh,Du Z/\hdh
h=1 h=1

while

MMNE = Z AxAp{ar, ap)p = Z A Andpepr = Z)\hdh (Z/\kchk) .

h k=1 h k=1

Combining these with (A) and the fact that A\, > 0 Y h we obtain

<)\7)\>E = E)\hdh (Z )\kchk) S Z/\hdh = </\76>E
h=1 k=1 h=1

Now using (B) we obtain

NOE = %(A,A)E < =(\dE

N | —

which implies
</\,6>E = </\;)\>E =0 ie. A=0.

This completes the proof of the lemma.

O

Theorem 5.3. Let C be a Cartan matriz of finite type. The set of solutions of equation (H) that lie
in the root lattice 77 but not on the walls of the root system of C' (translated by §) is precisely the set
of vertices of the zonotope of C', or, equivalently, the set

{0 —w(d) / we W},

one different solution for each w € W. In particular, these solutions lie in the positive cone N”.
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Proof. Let Ts : E — FE be the translation of vector 4,
Ts(A)=A+dfor e E .

For each Weyl chamber €, let we € W be the only element of the Weyl group such that we(Cr) = €,
and let

Ae=d—we(d) €FE .
We know from (g) that
(A) Ae €N" .
We will show that:

(B) Ae € T5(C)
and
(©) Ae is the only solution in T5(C) N Z" .

Since the closed Weyl chambers cover £ and the open Weyl chambers are disjoint, this will prove that
the set of solutions is as described.
Consider the action of W on E obtained by conjugating the canonical action by Ts:

(%) w-A:=0+wA—4) forwe W and A € E.
Notice that we, = idg, so Ae, =0 € E. Hence
Ae =0 —we(d) =0 +we(rep —8) = we - Aep -
On the other hand, since € = we(Cr),
T5(C) = Ts o we(Cp) = we - T5(Cr) .

Therefore, assertion (B) is equivalent to Ae, € T5(Cr). Since Ae, = 0, this is in turn equivalent to
—4 € Cp, which is obvious from (b) and (10).

The canonical action of W is by isometries of E that fix the origin, while Ts is an 1sometry that
sends the origin to . Therefore, action (*) is by isometries that fix 6. Hence this action preserves
the sphere (H) of center d. Also, by (f) and (g), Z" is invariant under this action. Thus, the set of
solutions to (H) in Z" is invariant under (). Therefore, assertion (C) is equivalent to

Aep = 0 is the only solution in T5(Cp) N Z".
Obviously Ae, = 0 is a solution of (H). It is the only such precisely by part 1 of lemma 5.2. Thus (C)
holds and the proof is complete. O

Remark 5.1. Any closed Weyl chamber C is a fundamental domain for the canonical action of W on E
(this is the content of assertions (c), (d) and (e) above). This implies, as in the proof of theorem 5.3,

that the set 75(C) NZ" N H is a fundamental domain for the action (x) of W on the set of solutions in
7" to (H). Part 1 of lemma 5.2 says that

Ts(Cr)NZ" N H = {0},

i.e. A = 0 is the only solution in the interior of this fundamental domain. Its W-orbit is of course the
set of vertices of the zonotope, as in theorem 5.3. For root systems of rank 2, it is possible to prove by
a geometric argument that

T5(Cr)NZ"N H = {0},
i.e. the origin is the only solution in this fundamental domain, and hence the solutions in Z" to (H)

are precisely the vertices of the zonotope. In other words, for these root systems, there are no solutions
lying on the translated walls. This will be verified directly in examples 5.2.
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In general, however, there are other solutions in this fundamental domain (necessarily on the trans-
lated walls), and hence other solutions in Z" besides the vertices of the zonotope. This was pointed
out to the author by Dan Barbasch, who found the solution ay + as + az — as for the root system As.
This solution lies in the root lattice and in one of the walls of T} (@) In terms of coordinates, the
equation of (H) is in this case

2 2
i+ ... tryg—x1— ... —T5 — L1y — Taxz —...—Ta25 =0,

and the above solution corresponds to (1,1,1,0,—1) =. Notice that the solution does not lie in the
positive cone N”| as predicted by part 2 of lemma 5.2. However, some points in its W-orbit will lie in
N" (since one can find a chamber € such that T; (@) C N” and then a w such that w(Cp) = €). This
shows that even if we only look for solutions to (H) lying in N", there are such solutions which are not
vertices of the zonotope.

A simple description of these “extra” solutions appears difficult. Using Maple, we have computed
the number of solutions in the fundamental domain T}y (@) NZ"™N H for the root system A, for r < 11.
These numbers are displayed in table 5.1. In each case, A = 0 is the only solution that lies in N" or
that does not lie in any of the translated walls, as guaranteed by lemma 5.2. The first case when a

non-zero solution appears is r = 5.

r 1[2[3[4[5]6] 78] 9 [10] 11
#(Tg(G)OZ’”OH) Ll ]3]9|27|80|255 847 2774

TABLE 1. The number of solutions in the fundamental domain for A,.

Ezramples 5.2.
1. For the root system A we have
2 -1
C=A= [—1 2
Equation (H) is simply
Pty =eytety;
from example 5.1 we no that there are no solutions with x + y > 4. In fact, it is easy to see
directly that the only solutions in Z? are

(0,0, (1,0),(0,1),(1,2),(2,1) and (2,2) .

These are the vertices of the zonotope of As, so in this case there are no other solutions than
those predicted by theorem 5.3. Therefore,

KM =0V¥n>5o0rn<2;
K® =g g g12) and
KW =g(22)

The first two non-trivial components are spanned by the quantum Serre relations, as described
by corollary 4.12: notice that —‘“2"’% =1= —%; therefore,

K21 = k{S%,} where S%, = x119 — (¢ + ¢ ) @121 + a1y
and

]{(1’2) = k{Sgl} where 551 = 2112 — (q =+ q_l)iﬂzlg + T211 .
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The remaining non-trivial component can be computed by hand; it turns out to be one-dimensional
as well:

K®2) = k{R35} where Roy = —21129 + (¢ + ¢ )z1212 — (¢ 4+ ¢7 122121 + o211 -

From section 5.1 we know that the relation at (2,2) must be generated by the quantum Serre
relations. In fact, in this case either Serre relation suffices to generate Rys, since we have that

2
R22 = —;75‘1@5%2 —+ Sf2®;l‘1 = —S§1®I2 + 332@521 .

The zonotope is shown in figure 4.

21 22

(1.0 (12

(0,0) (0,2)
FiGURE 4. The zonotope of A,.

2. For the root system B, we have

2 —1 2 0 4 =2 _ o
C:[_2 2] andD:[O 1],SOA:DC:[_2 2] and § = C~'u = (3/2,2);

equation (H) is
422 + 2% — day = 4z + 2y,
the only solutions in Z? are
(0,0),(1,0),(0,1),(2,1),(1,3),(3,3),(2,4) and (3,4),

and the zonotope is shown in figure 5.

(33 (34)

1) (24)

(1,0 13

F1GURE 5. The zonotope of Bs.

The quantum Serre relations occur at the vertices (2, 1) and (1, 3).
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3. For the root system G5 we have

C= |:_23 _21] and D = [g (1)] ,s0 A=DC = [_63 _23] and § = C~'u = (3,5);
equation (H) is

622 + 2y — 6y = 6 + 2y,
the only solutions in Z? are

(0,0, (1,0), (0, 1), (2, 1), (1,4), (4,4), (2,6), (5, 6), (4,9), (6,9), (5, 10) and (6, 10),

and the zonotope is shown in figure 6.

(6,9) (6,10)

(5,6) (5,10)
(4,4) (4,9)
(2,1) (2,6)

(1,0) (1,4)

(0,0) ?02, 1)

F1GURE 6. The zonotope of G5.

6. FURTHER QUESTIONS AND RESULTS

Consider the action of the braid groups B,, on the tensor powers X® of a vector space X, defined
by means of a fixed matrix A € M, (Z) as in sections 3.1 and 3.2. In this paper the attention has been
concentrated on the study of the corresponding nullspaces of the binomial braids, motivated by its
relevance to quantum groups. In section 4.5, some components K (" of these nullspaces were explicitly
described. Tt may be possible to obtain similar descriptions of the other non-trivial components (and
thus understand why the quantum Serre relations suffice to generate the ideal of relations for the case
of Cartan matrices, without resorting to Lusztig’s result as we did in section 5.1). A related question
that arises naturally is whether K = F always (we know it holds for the case of Cartan matrices from
section 5.1).

There are other interesting questions and results about this action. It is possible to obtain explicit
expressions and factorizations for the determinants of some of the braid analogs discussed in this paper.
For instance, one can show that for any o € S,, and 5 € C(n,r),

(1) det (s{7) : XM 5 X0 = (1) ()-Neen ) @At Datn)

bl
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where (:;) = #8(n) (the multinomial coefficient), N (o, n) is the number of orbits for the action of o on
8(n) and Q4 and Dy are as in section 4.3. It follows from here that

(12) det( (n) . X®n N X®n) — (_1)rn—N(cr) .qinv(a)rn_2 Poh,k Ghk ’

where N (o) is the number of orbits for the action of & on F(n, r). Explicit expressions for N (o, n) and
N (o) can be obtained through Polya’s theory; for instance for the n-cycle o = (1,2,...,n),

qu ( )adN qu dyrn/d

ﬂD

where ¢ is Euler’s function and D = ged(n) is the greatest common divisor of the components of 7.
(n) _

We have also obtained factorizations for the determinant of ;" = [n] acting on some particular
components X (M:

n—1
(13) det ([n_+_ 1] c x(nenter) X(n€h+6k)) — [n]!q”hh H(l _qdhk+akh+idhh) ’

=0

(14) det([n + 2] :X(n6h+26k) N X(neh-}-zgk))

n

ﬁ ahh 1_qdhk-}-dkh-l-(n—i)dhh)iH(l_;r_( 1)2 ark+(n— Z)(ahk+dkh)+(n;l)ahh)

=0
and

r—2-i)t!

(15) det([r]  X(ateatoder) _y yl(eiteat . der ) 1:[ H (1 _ gl@alnn)- DA(m)])( ’
1=0 Te8;(

where 8;(r) denotes the set of all subsets I of {1,2,...,r} of cardinality i and n; € N has coordinates

1 ifhgl
N = 1 ¢ . Notice that, by lemma 4.2, Qa(nr) — Da(nr) = Z ap .
’ 0 ifhel hzk

hkel

=

From equation (15) one can deduce (by induction, using (1)) that

(16) det (f(r) ZX(61+52+~~+E'") — X(51+62+~~+6 ) 1:[ H (1 —qQA (nr)— DA(HI)])(T_2_i)!(i+1)! ,
i=0T€8;(

notice the slight difference between (15) and (16).

Equation (15) generalizes a formula of Hanlon and Stanley [HS, lemma 3.4]; their formula is the
case apr = 1 of ours. Other formulas in their paper can also be generalized to the context of braids.

The particular case when A is symmetric of equation (16) becomes a special case of a formula of
Varchenko [V]. This author associates a certain matrix to any weighted hyperplane arrangement (that is,
a hyperplane arrangement where a number has been chosen for every hyperplane) and obtains a formula
for its determinant. In the special case of the braid arrangement A,_1 = {Hpr / 1 < h < k < r},
where Hpp = {(21,...,2,) € R" [/ 2, = x1}, weighted by numbers ¢%* Varchenko’s matrix turns
out to be the matrix of f(r) : X(f1+eatder) _y x(erteat4er) with respect to the canonical basis of
section 4.1, and his formula turns out to be precisely (16).

It would be interesting to obtain factorization formulas of this type on an arbitrary component X ()
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